高架电缆的端接装置的制作方法

文档序号:23181834发布日期:2020-12-04 14:11阅读:203来源:国知局
高架电缆的端接装置的制作方法

本公开涉及高架电缆领域,尤其涉及用于具有复合强度构件的高架电缆的端接的结构和方法,例如在终端结构处端接。



背景技术:

在高架输电和/或配电线路的建设中,传输电力的高架电缆沿着线路长度串设在支撑塔上。高架电缆通常包括一个或多个导电层,每个导电层包括缠绕在强度构件周围并由强度构件支撑的多个单独的导电股线。强度构件是必要的,因为当在支撑塔之间串设时,导电股线不具有足够的机械性能(例如,抗拉强度)来自支撑。传统上,导电股线由铝或铝合金制成,而强度构件由钢制成,具体地说,由几个独立的钢元件组合(例如,扭绞在一起)形成强度构件,这种构造被称为acsr(钢增强铝导体)。

近年来,在一些装置中,钢强度构件已被先进的复合材料所取代。先进的复合材料包括两种或多种不同的材料相,例如结合基质中的结构纤维,它们结合起来增强强度构件的一种或多种性能。与钢相比,这些复合材料中的一些提供了显著的益处,包括较高的抗拉强度、较低的热膨胀系数、耐腐蚀性等。

具有这种复合强度构件的高架电缆的一个例子是可从美国加利福尼亚州欧文市的ctcglobalcorporation获得的高架电缆。参见例如hiel等人的美国专利第7368162号,其全部内容通过引用结合于此。电缆包括围绕单件(例如,单杆)纤维增强复合强度构件的多个导电铝绞线。复合强度构件包括在聚合物(例如树脂)结合基质中的连续碳纤维的内核,其被结合基质中的连续玻璃纤维的外层包围。

当建造输电和配电线路时,电缆必须频繁地端接,例如用于连接到另一段电缆,用于下降到电站,或者下降到地下电缆。在这些情况下,使用端接硬件将电缆端接并连接到终端结构(例如,终端塔)。通常,端接硬件需要使用非常高的压力将外部导电金属套管压接到电缆上,以使金属外部套管变形。

用于具有纤维增强复合强度构件的高架电缆的端接硬件通常依赖于包括完全退火的梯形铝导电股线的电缆,以均匀地分布将铝外壳变形到复合强度构件上所需的压力。然而,并不是所有的高架电缆装置都可以利用这种特殊类型的铝绞线,例如,在高架电缆将受到严重的冰载荷和/或其他恶劣天气事件的影响的场合。



技术实现要素:

本文公开了一种端接装置,当用于端接具有铝合金(例如,比退火铝合金更硬的铝合金)导电股线和/或圆形或椭圆形导电股线的高架电缆时,该端接装置减少了压接操作期间复合强度构件上的局部压力。端接装置包括压缩套管(例如,管或套管),其安装在复合芯上的外壳被压缩在导电股线上的区域中。为了连接寿命,压缩套管可以保持在强度构件和铝导电股线之间。压缩套管的特征可以在于具有与压缩套管所保护的复合强度构件(例如,复合强度构件的外径)非常匹配的内部尺寸(例如,内径)。

在一个实施例中,公开了一种将高架电缆固定到终端结构的端接装置。高架电缆具有复合强度构件和围绕复合强度构件的导电股线。端接装置包括将端接装置锚定到终端结构的连接器、由连接器固定并在高架电缆的近端夹紧复合强度构件的夹紧元件、至少围绕夹紧元件和高架电缆的近端的外部金属套管,外部金属套管具有设置在高架电缆的近端上的压缩部分,以及至少沿着压缩部分下方的导电股线的长度设置在复合强度构件和导电股线之间的压缩套管。

前述端接装置的特征在于具有进一步的改进和/或附加特征,其可以单独实施或以任何组合实施。例如,在一种改进中,复合强度构件可以包括设置在结合基质(例如金属基质或聚合物基质)内的增强纤维。有用的聚合物基质材料的例子包括热固性树脂聚合物和热塑性聚合物。在另一个改进中,增强纤维选自碳纤维、硼纤维、金属氧化物陶瓷纤维、玻璃纤维、碳化物纤维、芳酰胺纤维和玄武岩纤维。碳纤维由于其高抗拉强度和重量轻而特别有用。

在另一个改进中,复合强度构件可以包括多个单独的复合杆,这些复合杆可操作地结合以形成复合强度构件。可选地,复合强度构件可以仅包括单个复合杆。在另一个改进中,至少一部分导电股线具有多边形的横截面形状。在又一个改进中,至少一部分导电股线具有非多边形的横截面形状,例如基本上为圆形的横截面形状。在进一步的改进中,至少一部分导电股线具有大致圆形的横截面形状,并且这些线与压缩套管直接接触。导电股线可以由诸如铜和铝的材料制成,并且在一种改进中,导电股线由硬化铝形成。

在另一个改进中,压缩套管基本上不延伸超过端接装置远端的压缩部分。在另一个改进中,压缩套管是闭合的圆筒形管。可选地,压缩套管是沿其长度具有狭槽的圆筒形管,以便于将压缩套管放置在复合强度构件上。在另一个改进中,压缩套管在结构上独立于复合强度构件。在又一改进中,压缩套管由诸如铝的金属制成。在一个特定改进中,压缩套管由硬化铝制成。在另一种改进中,压缩套管的厚度至少约为0.20mm。在另一种改进中,压缩套管的厚度不大于约2.6mm

在另一个改进中,连接器包括例如用于连接到终端结构的有眼螺栓。在另一个改进中,端接装置包括跳线板,例如用于进行电连接。

在另一个改进中,夹紧元件包括被压缩以夹紧复合强度构件的夹头。夹头可以设置在夹头壳体内,并且夹头壳体可以可操作地连接到连接器。

在一个改进中,压缩套管包括近端部分和远端部分,其中远端部分设置在复合强度构件和导电股线之间,近端部分包围复合强度构件的延伸超过高架电缆的近端的部分。在进一步的改进中,压缩套管的近端部分的外径大于压缩套管的远端部分的外径。在又一个改进中,压缩套管的远端部分设置在连接器中形成的空腔内。

在另一个实施例中,公开了一种用于将高架电缆固定到终端结构的方法。高架电缆包括复合强度构件和围绕复合强度构件的导电股线。该方法包括将压缩套管放置在高架电缆的近端的复合强度构件和导电股线之间,将外部金属套管放置在压缩套管和高架电缆的至少近端上,并将外部金属套管的至少一部分压缩到导电股线上。

前述方法的特征在于具有进一步的改进和/或附加的步骤,这些步骤可以单独实施或以任何组合实施。例如,压缩步骤可以包括向外部金属外壳施加至少大约15吨的压力。在另一个改进中,该方法包括将复合强度构件的近端固定到连接器的步骤。在又一个改进中,该方法包括将连接器锚定到终端结构。

在另一个实施例中,公开了一种套件,该套件包括被配置成组装成用于将高架电缆固定到终端结构的端接装置的部件。该套件包括:连接器,其被配置为将端接装置锚定到终端结构;夹紧元件,其被配置为由连接器固定并且在高架电缆的近端处可操作地夹紧复合强度构件;外部金属套管,其被配置为至少围绕夹紧元件和高架电缆的近端;以及压缩套管,其被配置为至少沿着外部金属壳体的长度设置在复合强度构件和导电股线之间。

附图说明

图1示出了具有复合强度构件的高架电缆的端接装置的示意图。

图2示出了已经压接到高架电缆上的端接装置的透视图。

图3示出了具有复合强度构件的高架电缆的透视图。

图4a和图4b示出了根据本公开实施例的压缩套管。

图5示出了根据本公开实施例的端接装置。

图6a和6b示出了高架电缆的截面图。

图7示出了根据本公开实施例的端接装置和压缩套管的截面图。

具体实施方式

图1示出了与高架电缆一起使用的端接装置(例如,终端)。bryant的pct公开文献wo2005/041358和bryant等人的美国专利8,022,301也示出和描述了图1中所示的端接装置110,这两个文献在此全部引入作为参考。

概括地说,图1所示的端接装置110包括夹紧元件112、外部套管120和连接器130,用于例如使用有眼螺栓132将端接装置110锚定到终端结构(例如,终端塔,未示出)。与有眼螺栓132相对,端接装置110可操作地连接到高架电缆140,该高架电缆140包括围绕复合强度构件144的电导体142。

夹紧元件112紧紧地夹紧复合强度构件144,以将高架电缆140固定到端接装置110。如图1所示,夹紧元件112包括夹头116,夹头116具有围绕并夹紧在强度构件144上的内腔。夹头116设置在夹头外壳114中。当电缆140被张紧并拉动强度构件144时,强度构件144和夹头116之间(例如,沿着内腔)产生摩擦,并且强度构件144将夹头116进一步拉入夹头壳体114中。夹头116的圆锥形状和夹头壳体114的漏斗形状形成了对强度构件144的增加的压力,确保强度构件144不会滑出夹头116。

外部套管120围绕夹紧元件112,并围绕连接器130的螺纹部分134和中间部分136。外部套管120包括导电体128,以促进电导体142和跳线板126之间的导电。例如,导电体128可以由铝制成。如图1所示,跳线板126被焊接到导电体128上。在使用中,跳线板126被配置为附接到连接板150,以促进电缆140和另一导体(例如,可操作地连接到连接板150的另一电缆(未示出))之间的电传导。

连接器130包括位于连接器130近端的有眼螺栓132和位于连接器130远端的螺纹部分134。螺纹部分134构造成可操作地与夹头壳体114的螺纹部分118配合,以便当连接器旋转时,例如顺时针旋转时,有助于连接器130朝向夹头116移动,将夹头116推入夹头壳体114中。这加强了夹头116对强度构件144的夹紧,进一步将高架电缆140固定到端接装置110。有眼螺栓132被配置为附接到终端结构,以将端接装置110以及电缆140固定到终端结构,例如终端塔。

在一些情况下,希望或有必要将高架电缆140进一步固定到端接结构110。例如,会希望将外部套管120压接到连接器130上,特别是压接到连接器的中间部分136上。压接包括使用压力机和模具对套管120施加极大的压力,以机械变形并将套管120压到连接器130上。此外,套管120也可以在端接结构110的远端压接到高架电缆140上。外部套管120的这种压接确保了外壳120在安装后不会相对于高架电缆140移动。端接结构110还可以包括金属(例如铝)内部填充套管122,以在套管120被压接到电缆140上时增强外部套管120和电缆140之间的电和机械接触。对电导体142(例如导电股线)使用软的(例如退火的)铝以及使用梯形导电股线防止了当外部套管120压接到电缆140上时对复合强度构件144的损坏。

图2示出了已经压接到高架电缆上的端接装置的透视图。如上文关于图1所述,端接装置210包括具有有眼螺栓232的连接器,有眼螺栓232从外部金属套管220的近端向外延伸。跳线板226焊接到导电体228的近端,用于电连接到例如连接板(见图1)。如图2所示,外部套管220在两个区域上压接,即近端压接区域220b和远端压接区域220a。近端压接区域220b位于连接器的中间部分上(见图1),而远端压接区域220a位于高架电缆240的一部分上。在压接操作期间围绕外部套管220施加的极大的压力被传递到下方的部件,即,压接区域220b下的连接器和压接区域220a下的高架电缆240。

因此,导电股线和端接装置的其他部件,例如外部套管,由铝制成。如本文所用,除非另有说明,当术语“铝”单独使用时,它通常指纯铝或铝合金(例如,包含至少约50wt%铝),以及已经热处理(例如,退火)、加工硬化、压缩或以其他方式处理的所有类型的铝,从而在最终部件中产生期望的性能。如本文所用,术语“软铝”是指可能经过退火的基本上纯(例如,非合金)形式的铝。软铝的例子包括已经退火的铝业协会“1xxx”系列(例如,大于99%的铝),例如aa1350-o铝,它是完全退火的铝。此外,术语“硬化铝”或“硬铝”是指抗拉强度至少约为100mpa,例如至少约为120mpa,例如至少约为150mpa,或者甚至至少约为200mpa的铝。例如,硬化铝的抗拉强度可高达约380mpa。如上所述,当围绕复合强度构件的导电股线由软铝制成时,线将变形并吸收一些压力,从而减小下面的复合强度构件上的应力。使用梯形(即梯形横截面)导电股线(其具有与强度构件直接接触的大表面积)也可以减少施加在复合强度构件上的应力。因此,压接操作损坏下面的复合强度构件的可能性非常低。

图3示出了高架电缆340的横截面。电缆340包括用于导电的电导体342。电导体包括围绕中心强度构件344缠绕(例如绞合)的两层导电股线342a和342b。强度构件344由纤维增强复合材料的单个杆形成,该单个杆具有内部碳纤维芯344a和诸如玻璃纤维的绝缘材料的外层344b。

导电股线342a/342b具有基本上梯形的横截面,其顶面和底面可以稍微弯曲(例如弓形),以形成基本上圆柱形的导体结构,在相邻股线342a/342b之间以及股线342a和强度构件344之间具有很少的间隙。导电股线342a/342b被选择为具有高导电性,并且由具有高导电性的aa-1350-o铝(例如,约61%iacs)制成。

然而,在一些安装中,高架电缆包括由导电股线形成的导体,当外部套管被压到导电股线上时,该导电股线具有沿着复合强度构件的长度产生应力点的形状(例如,横截面)。例如,具有圆形横截面的导电股线可能产生应力点,这是由于股线与下面的复合强度构件的接触面积相对较小。在这种情况下,当导电股线在高压下被压到强度构件上时,强度构件可能容易损坏(例如断裂)。

导电股线也可以由硬铝形成,例如当线路安装在电缆承受重冰负荷的区域时。例如,导电股线可以包括但不限于al-zr合金或aa1350-h10铝(其是应变硬化铝)的导电股线。

根据本公开,压缩套管至少沿着高架电缆经受压缩的部分被包括在导电股线和复合强度构件之间。压缩套管被构造成吸收(例如,消散)至少一部分压缩应力,否则该压缩应力将被施加复合强度构件上。图4a示出了根据本公开实施例的压缩套管的透视图,图4b示出了图4a的压缩套管的横截面。压缩套管460被配置(例如,设置形状和尺寸)为在复合强度构件(例如,具有圆形横截面的单件复合强度构件)上滑动,并且在导电股线下方滑动。

在这点上,压缩套管460的内径(id)的尺寸被设定为基本上匹配强度构件的外径,例如,使得压缩套管460的内周和复合强度构件的外周之间基本上没有间隙。例如,用于单件复合强度构件的压缩套管的内径可以是至少约1mm,例如至少约2mm,例如至少约2.5mm。通常,用于单件复合强度构件的压缩套管的内径通常不大于约25mm,例如不大于约20mm,或者不大于约15mm。

然而,根据复合强度构件的外径和构造,可以设想具有其他内径的压缩套管。例如,复合强度构件可以由多个单独的元件(例如,单独的杆)组成,这些元件可操作地结合(例如,螺旋地扭曲在一起)以形成强度构件。这种多件构造通常具有比单件复合强度构件的直径更大的有效外径。这种多件复合强度构件的例子包括但不限于:mccullough等人的美国专利6,245,425中所示的多件铝基复合强度构件;tosaka等人的美国专利6,015,953中所示的多件碳纤维强度构件;和daniel等人的美国专利9,685,257中所示的多件碳纤维增强构件。这些美国专利中的每一个都通过引用整体结合于此。与单件复合强度构件使用的压缩套管相比,这种多件复合强度构件会需要使用具有相对较大内径的压缩套管。

压缩套管的厚度(t)应足以保护下面的复合强度构件在压接操作的压力下不破裂。然而,如果厚度太大,在端接过程中可能难以将套管放置(例如滑动)在复合强度构件和导电股线之间。在一个特征中,套管的厚度为至少约0.20mm,例如至少约0.5mm,例如至少约1.0mm。在另一个特征中,套管的厚度不大于约2.6mm,例如不大于约2.0mm。

压缩套管460可以由多种材料制成。在一个特征中,压缩套管460由金属材料制成。在一个特定的特征中,压缩套管可以由铝制成。硬化铝的使用对于压缩套管特别有利,因为它允许铝套管在安装在复合芯股线和缠绕在复合芯股线周围的导电股线之间时保持其形状。硬化铝也很容易挤出。

在一个特定的特征中,压缩套管由铝业协会系列6xx合金(“aa6xxx合金”)制成,其典型地具有至少约150mpa且不大于约380mpa的拉伸强度。aa6xxx合金包含硅和镁作为合金元素,形成具有形硅化镁的合金。其他有用的铝合金包括al-zr合金,如aa7xxx合金。用于压缩套管的其他有用金属可以包括铜和钢。非金属材料也是有用的,例如高性能塑料(例如聚合物),包括但不限于peek(聚醚醚酮)、pek(聚醚酮)和pes(聚醚砜)。这种塑料可以用纤维增强,例如碳纤维、玻璃纤维、芳族聚酰胺纤维、碳氟纤维(例如ptfe)等,以增强塑料的机械性能。

如图4a-4b所示,压缩套管460可以包括纵向延伸的狭槽462。纵向延伸的狭槽462可以有助于在组装端接装置期间将压缩套管460放置在复合强度构件上。尽管图示为纵向延伸的狭槽462,但是压缩套管460也可以包括非线性狭槽,例如围绕套管460的外周呈螺旋形的狭槽。其他套管构造可以包括围绕套管表面外侧的滚花,和/或在一端或两端呈锥形。这些构造可有助于导电股线从复合强度构件上分离,并允许套管更容易地插入复合强度构件和缠绕在复合强度构件周围的导电股线之间。此外,套管可以被构造成两个或更多个部分,当被安装在强度构件和缠绕在强度构件周围的导电股线之间时,这两个或更多个部分可以聚集在一起以形成围绕复合强度构件的基本连续的圆筒形。

在另一种构造中,压缩套管可以包括闭合的圆筒形管,例如,两端开口的圆筒形管,并且不包括沿着套管壁的狭槽或其他分隔部。

选择压缩套管460的长度,使得压缩套管460至少沿着在压接过程中受到压力的复合强度构件的长度来围绕复合强度构件。在一个特征中,压缩套管460具有至少约150mm的长度,例如至少约450mm。然而,压缩套管460不应该延伸超过受压的复合强度构件的大致长度,例如,不应该朝向连接器延伸超过导电股线。在一个特征中,压缩套管460的长度不大于约915mm,例如不大于约650mm

图5示出了根据本公开的端接装置的局部横截面,例如,用于将高架电缆固定到终端结构。高架电缆540包括复合强度构件546和围绕复合强度构件546的导电股线542。端接装置510包括由连接器固定的夹紧元件,该夹紧元件在高架电缆540的近端夹紧复合强度构件546。如图5所示,夹紧元件512包括夹头516和夹头壳体514,其中夹头516稍微延伸超过壳体514并夹紧复合强度构件546。外部金属套管520围绕夹紧元件512和高架电缆540的近端。外部金属套管520的压缩部分520a设置在高架电缆540的近端上方(例如,周围)。压缩套管560至少沿着压缩部分520a的长度设置在复合强度构件546和导电股线542之间。

端接装置510特别适用于包括复合强度构件546的高架电缆540。特别适合使用端接装置510的高架电缆的例子包括但不限于,具有包括结合在基质中的增强纤维的强度构件的那些,例如聚合物基质或金属基质。增强纤维可以是沿着复合强度构件的长度延伸的基本连续的增强纤维,和/或可以包括分散在基质中的短增强纤维(例如,纤维须或短切纤维)。纤维可选自多种材料,包括但不限于碳、玻璃、硼、金属氧化物、金属碳化物、高强度聚合物(如芳族聚酰胺纤维或含氟聚合物纤维)、玄武岩纤维等。基质材料可以包括例如塑料(例如聚合物),例如热塑性聚合物或热固性聚合物。该基质也可以是金属基质,例如铝基质。mccullough等人的美国专利6,245,425中示出了铝基复合材料强度构件的一个例子,该专利通过引用整体结合于此。聚合物基质纤维增强强度构件的一个例子是美国加利福尼亚州欧文市的ctcglobalcorporation制造的高架电缆中使用的强度构件。这种高架电缆例如在hiel等人的美国专利7,368,162中给出,其全部内容通过引用结合于此。尽管在图5中示出为单件强度构件546(例如,单个杆),但是强度构件可以包括多个单独的复合元件,这些复合元件被组合(例如,螺旋扭曲在一起)以形成强度构件,如上所述。

导电股线542可以具有多边形或非多边形横截面。在一个特征中,导电股线542具有非多边形横截面,例如,沿着被压缩的复合强度构件546的长度产生应力点。在一个特征中,导电股线包括具有圆形横截面的股线,其与复合强度构件546直接接触。具有圆形横截面的股线沿着圆形股线和复合强度构件之间的接触线来集中所施加的力,这会导致复合强度构件546的断裂,即使在相对中等的压缩载荷下也是如此。导电股线可以由导电金属材料制成,包括但不限于铝和铜。一个特定的特征是,导电股线包括硬化的铝,例如非退火的铝导电股线,例如al-zr导电股线或aa1350-h19导电股线。

图6a和6b示出了没有压缩套管(图6a)和具有压缩套管(图6b)的高架电缆的端部的示意性横截面。如图6a所示,高架电缆640a包括复合强度构件646a,其包括在聚合物基质中的碳纤维。多个具有圆形横截面的导电股线642a螺旋缠绕在强度构件646a周围。从图6a可以看出,圆形导电股线642a具有相对较小与下面的强度构件646a直接接触的部分。因此,当导电股线642a在压接操作期间被压到强度构件646a上时,应力集中在导电股线642a接触强度构件646a的部分下方。

图6b示出了根据本公开的实施例在端接过程中的压缩套管的使用。类似于图6a,高架电缆640b包括复合强度构件646b,其包括聚合物基质中的碳纤维。多个具有圆形横截面的导电股线642b螺旋缠绕在强度构件646b周围。在图6b的实施例中,压缩套管624b被放置在导电股线642b和复合强度构件646b之间。压缩套管624b是闭合的圆筒形管,其在压接操作之前被放置(例如,滑动到)复合强度构件646b上。结果,当导电股线642b在压接操作期间被压到强度构件646b上时,压缩套管624b吸收压力并围绕强度构件646b的整个外周分配压力,从而减小了强度构件646b断裂的机会。

图7示出了根据本公开的端接装置的另一个实施例。图7中所示的端接装置的实施例是chadbourne的美国专利7,348,489中公开的端接装置的变型,该专利通过引用整体结合于此。

如图7所示,端接装置710包括具有有眼螺栓732的连接器730,例如,用于将端接装置710锚定到终端结构。压缩套管724的远端部分724a沿着外部金属外壳的远端部分720a设置在复合强度构件746和导电股线742之间。压缩套管724包括近端部分724b,其外径大于远端部分724a的外径。近端部分724b设置在连接器730的内部和延伸超过导电股线742的复合强度构件746的一部分之间。以这种方式,外部金属壳体720可以基本上沿其整个长度被压接,例如沿部分720a和720b被压接,同时复合强度构件746沿承受压应力的整个长度受到保护。

从上文可以理解,本公开还涉及一种用于将高架电缆固定到终端结构的方法。概括地说,高架电缆包括复合强度构件和围绕复合强度构件的导电股线。该方法包括在高架电缆的近端将压缩套管放置在复合强度构件和导电股线之间,将外部金属套管至少放置在高架电缆的近端和压缩套管上,并将外部金属套管的至少一部分压到导电股线上。

该方法可以使用上面公开的端接装置来实现。将外部套管压到导电股线上的步骤可以利用至少约15吨的压力来对外部套管变形和压缩。

从上文还将理解,本公开还涉及一种套件,例如,公开了被配置为组装到用于将高架电缆固定到终端结构的端接装置中的部件的组件。该套件可以包括:连接器,其被配置为将端接装置锚定到终端结构;夹紧元件,其被配置为由连接器固定并且在高架电缆的近端处可操作地夹紧复合强度构件;外部金属套管,其被配置为至少围绕夹紧元件和高架电缆的近端;以及压缩套管,其被配置为至少沿着外部金属壳体的长度设置在复合强度构件和导电股线之间。

虽然已经详细描述了用于将高架电缆固定到终端结构的端接装置和方法的各种实施例,但是很明显,本领域的技术人员将会想到这些实施例的修改和适应。然而,应当清楚地理解,这些修改和适应在本公开的构思和范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1