一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜的制作方法

文档序号:26481533发布日期:2021-08-31 17:38阅读:212来源:国知局
一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜的制作方法

本发明涉及有机固体废弃物处理及综合利用技术领域,具体涉及一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜。



背景技术:

有机固体废弃物如生活污水处理的伴生产物污泥、畜禽养殖业和农业生产中的秸秆、畜禽粪便等,含有大量的有机质,这些有机质多数容易被微生物所利用。堆肥发酵是目前应用最广泛、经济性最好的有机固体废弃物的综合利用方法,是在好氧条件下,利用有机固体废弃物为主要原料,通过微生物的作用,将有机物分解,转化成有机质,并在过程中产生60-70℃的高温,从而将病原菌、寄生虫卵等杀灭,提高肥分。在堆肥发酵过程中,温度是重要的因素之一,温度可以影响微生物的活性,从而影响堆肥发酵的速度和质量,但现有的ptfe堆肥膜使用环境不宜低于-25℃,因为多微孔结构原因,在温度低于-25℃时膜微孔内水蒸气会因为低温冰冻导致覆盖膜孔径撕裂,膜本身纵向受损,造成氨、氮、硫化氢等有害气体沿膜冻伤部位泄露,造成二次环境污染和雨水渗漏。在我国北方地区冬天室外温度和地温可能会低于-25℃,因此现有的ptfe堆肥膜不能满足使用要求。专利cn110857257a公开了垃圾好氧发酵系统及处理生活垃圾获取营养土的方法,包括发酵槽、通风管、覆盖膜和控制系统,当发酵槽内的温度低于设定控制温度时,加大通风管的通风供氧量,以增强微生物活性并增加产热量;否则,减小通风供氧量,以降低微生物活性并使温度回落,由于发酵系统通常设置在户外,系统的保温效果差,因此在寒冷天气时通常发酵产生的热量通常交换到外界环境中,需要依靠额外的装置来提高温度,造成热能的浪费,降低堆肥发酵的效率,且成本高。聚氨酯材料具有良好的保温性能,专利cn210845872u已经公开将聚氨酯用于制备微孔高分子防水透气微孔膜,并进行细菌、除臭等的物理屏障。但是聚氨酯材料存在透气性不好的缺点,不利于堆肥发酵过程中氧气浓度的调节,降低堆肥发酵的效率。



技术实现要素:

为了解决现有的技术问题,本发明提供了一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜,通过改性聚氨酯膜、纳米活性炭和聚酯纤维复合,制备得到有效隔离灰尘、气溶胶、细菌、病原体、臭味和冷凝水,且高透气和高透湿的聚氨酯层压复合膜。

一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜,包括改性聚氨酯膜、纳米活性炭和聚酯纤维材料;

所述聚氨酯层压复合膜的制备方法,步骤如下:

s1、将聚醚多元醇、二异氰酸酯和扩链剂混合后制备得到聚氨酯,其中聚醚多元醇与二异氰酸酯的质量比为(6~10):1;

s2、将聚氨酯、聚乙二醇和催化剂按照质量比(40~80):(15~35):(3~8)混合均匀,加入偶氮二异丁腈和稀释剂后混合均匀,偶氮二异丁腈的质量为聚氨酯质量的1~5%,稀释剂的质量为聚氨酯和聚乙二醇总质量的1~5%,100~120℃干燥3~5h,再送到流延机中180~240℃挤出得到改性聚氨酯膜;

s3、在改性聚氨酯膜外表面均匀涂布一层纳米活性炭;

s4、将s2制备得到的改性聚氨酯膜放置在s3制备得到的外表面涂布纳米活性炭的改性聚氨酯膜的外侧,经300~320℃高温烧结为一层改性聚氨酯和纳米活性炭复合膜;

s5、将聚酯纤维材料进行拒水处理;

s7、将聚酯纤维材料、改性聚氨酯和纳米活性炭复合膜、聚酯纤维材料按照由外向外的顺序进行放置,接缝处通过pur热熔胶进行层压复合,层压复合的宽度为0.8~0.12m。

进一步地,所述聚醚多元醇包括聚氧化丙烯二醇、聚四氢呋喃二醇或四氢呋喃-氧化丙烯共聚二醇中的至少一种;所述扩链剂为乙二醇、1,3-丙二醇、1,4-丁二醇、2,3-丁二醇或1,5-戊二醇中的至少一种;所述聚乙二醇的数均分子量为2500-4000;所述催化剂为有机锡、有机铋或有机锌中的一种;所述二异氰酸酯为2,6-甲苯二异氰酸酯、2,4-甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、苯二亚甲基二异氰酸酯、3,3’-二甲基-4,4-联苯二异氰酸酯、三苯基甲烷三异氰酸酯或对苯二异氰酸酯中一种;所述稀释剂为甲苯、丁酮或二甲基甲酰胺中一种。

进一步地,所述s3中纳米活性炭的厚度为15~35μm;

进一步地,所述s4中改性聚氨酯和纳米活性炭复合膜的孔径为0.1~0.25μm,厚度为50~90μm。

进一步地,所述聚氨酯层压复合膜的厚度为2.5~3.5mm,重量为450~600g/m2、200pa下透气性为10.1~12.6m3/m2/h、水蒸气透过性能为6500~8000g/m224h、74.3kpa下防水性为13000~17000mmh2o、抗拉强度为9.3~10.7kg/mm2、延伸率为10~15%。

进一步地,所述聚酯纤维材料经过防紫外线、抗酸碱处理,再经过拒水处理和电晕放电处理。

进一步地,所述聚氨酯层压复合膜拼接成两端封堵的拱形结构。

进一步地,所述聚氨酯层压复合膜的外层的聚酯纤维材料的颜色为黑色或绿色。

本发明的聚氨酯层压复合膜使用过程中,将聚氨酯层压复合膜覆盖在需要堆肥发酵的有机固体废弃物的表面,外层的聚酯纤维材料将外来的雨水、风有效隔离,防水和防潮性强,从外部保护堆肥发酵的过程免受外界环境的影响;内层的聚酯纤维材料将发酵产生的冷凝水进行隔离,并让灰尘、气溶胶、细菌、病原体、voc、臭味、热量透过,同时中层的改性聚氨酯和纳米活性炭复合膜对灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量进行有效的阻隔,从而避免灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量透过聚氨酯层压复合膜,且空气和堆体产生的水蒸气可以有效的通过聚酯纤维材料和改性聚氨酯和纳米活性炭复合膜,从而创造有利于堆肥发酵的内部环境,维持氧气充足的环境,有效提高堆肥发酵的效率,且防止灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量外透,保护环境。

由于聚氨酯层压复合膜拼接成两端封堵的拱形结构,因此,可以覆盖更多的有机固体废弃物,且外层更好的防水、防风等,有利于空气和水蒸气透过聚氨酯层压复合膜至外层,且覆盖操作容易,减少人力物力的浪费,密封效果好。

改性聚氨酯和纳米活性炭复合膜制备过程中,通过聚乙二醇增加改性聚氨酯膜的空隙,增加膜的通透性,透气性和透湿性增加,且聚乙二醇引入聚氨酯的软段相,极大的提高了改性聚氨酯膜的韧性和强度;改性聚氨酯和纳米活性炭复合后因为三层材料之间相互层叠,层与层之间孔径进行部分阻隔,从而使得最终制备的改性聚氨酯和纳米活性炭复合膜的孔径大小为0.1~0.25μm,由于孔径较小,灰尘、气溶胶、细菌、病原体不能通过改性聚氨酯和纳米活性炭复合膜,且h2s、nh3、voc、臭味、热量等大部分被阻隔和反弹。因此,本发明制备得到的聚氨酯层压复合膜对于灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量的阻隔作用显著提高,且透气性和透湿性显著提高。

本发明的内层的聚酯纤维材料进行拒水处理,可以有效的将聚氨酯层压复合膜内发酵产生的冷凝水隔离,且防止冷凝水将内层的聚酯纤维材料浸湿而影响其隔离冷凝水的性能,降低聚氨酯层压复合膜的使用效果和使用寿命,且维持堆肥发酵的湿度,有利于提高堆肥发酵的效率。

聚氨酯层压复合膜的外层的聚酯纤维材料的颜色为黑色或绿色,黑色或绿色具有吸热作用,有利于提高聚氨酯层压复合膜内部的温度,使其更接近堆肥发酵的最适温度,从而加快了堆肥发酵的进程。此外,将聚酯纤维材料、改性聚氨酯和纳米活性炭复合膜、聚酯纤维材料接缝处通过pur热熔胶进行层压复合,层压复合的宽度为0.8~0.12m,使得每层材料之间复合牢固的同时存在空隙,从而对有利于聚氨酯层压复合膜内部环境的保温,避免了堆肥发酵过程中热能的浪费。

本发明的聚氨酯层压复合膜的延伸率为10~15%,较现有技术中的延伸率降低,从而保证聚氨酯层压复合膜维持高强度,有利于维持堆肥发酵的空间大小,从而维持堆肥发酵内部环境的稳定。

采用上述技术方案,本发明实现的有益效果如下:

(1)本发明制备得到的聚氨酯层压复合膜,通过改性聚氨酯膜显著提高透气性和透湿性,通过改性聚氨酯膜和纳米活性炭复合,减小膜的孔径,通过改性聚氨酯膜、纳米活性炭和聚酯纤维材料复合,实现外部防水防潮性能好,有效阻隔灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量,且高透气性和高透湿性的聚氨酯层压复合膜,适用于温度低于-25℃的高寒地区,加快了堆肥发酵的进程,保护环境。

(2)改性聚氨酯膜和纳米活性炭的复合结构,显著降低了改性聚氨酯膜的孔径,使得孔径降低为0.1~0.25μm,从而实现对显著提高了对灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量的阻隔作用。

(3)内层的聚酯纤维材料进行拒水处理,可以更好的对堆肥发酵产生的冷凝水进行阻隔,有利于维持聚氨酯层压复合膜内发酵的湿度,加快发酵的进程,且提高聚氨酯层压复合膜的使用寿命。

附图说明

图1为本发明的结构示意图。

图中,聚酯纤维材料1、改性聚氨酯膜2、纳米活性炭3、通风管道4、沙袋5。

具体实施方式

下面结合具体实施例对本发明作进一步详细的说明。

实施例1

一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜,包括改性聚氨酯膜2、纳米活性炭3和聚酯纤维材料1;

所述聚氨酯层压复合膜的制备方法,步骤如下:

s1、将60g聚氧化丙烯二醇、10g2,4-甲苯二异氰酸酯和3g乙二醇混合后制备得到聚氨酯;

s2、将70g聚氨酯、20g数均分子量为2500的聚乙二醇和4g辛酸亚锡混合均匀,加入0.7g偶氮二异丁腈和0.9g甲苯稀释剂后混合均匀,100℃干燥5h,再送到流延机中180℃挤出得到改性聚氨酯膜2;

s3、在改性聚氨酯膜外表面均匀涂布一层纳米活性炭3;

s4、将s2制备得到的改性聚氨酯膜放置在s3制备得到的外表面涂布纳米活性炭的改性聚氨酯膜的外侧,经300℃高温烧结为一层改性聚氨酯和纳米活性炭复合膜;

s5、将聚酯纤维材料1进行拒水处理;

s7、将聚酯纤维材料1、改性聚氨酯和纳米活性炭复合膜、聚酯纤维材料1按照由外向外的顺序进行放置,接缝处通过pur热熔胶进行层压复合,层压复合的宽度为0.8m。

进一步地,所述s3中纳米活性炭3的厚度为20μm;

进一步地,所述s4中改性聚氨酯和纳米活性炭复合膜的孔径为0.25μm,厚度为60μm。

进一步地,所述聚酯纤维材料1经过防紫外线、抗酸碱处理,再经过拒水处理和电晕放电处理。

进一步地,所述聚氨酯层压复合膜拼接成两端封堵的拱形结构。

进一步地,所述聚氨酯层压复合膜的外层的聚酯纤维材料的颜色为黑色。

图中,聚酯纤维材料1、改性聚氨酯膜2、纳米活性炭3、通风管道4、沙袋5。

本发明的聚氨酯层压复合膜使用过程中,将聚氨酯层压复合膜覆盖在需要堆肥发酵的有机固体废弃物的表面,四周通过沙袋5压住进行密封固定,外层的聚酯纤维材料1将外来的雨水、风有效隔离,防水和防潮性强,从外部保护堆肥发酵的过程免受外界环境的影响;内层的聚酯纤维材料1将发酵产生的冷凝水进行隔离,并让灰尘、气溶胶、细菌、病原体、voc、臭味、热量透过,同时中层的改性聚氨酯和纳米活性炭复合膜对灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量进行有效的阻隔,从而避免灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量透过聚氨酯层压复合膜,且空气和堆体产生的水蒸气可以有效的通过聚酯纤维材料1和改性聚氨酯和纳米活性炭复合膜,通风管道4为堆肥发酵过程提供新鲜空气,从而创造有利于堆肥发酵的内部环境,维持氧气充足的环境,有效提高堆肥发酵的效率,且防止灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量外透,保护环境。

实施例2

一种适用于有机固体废弃物堆肥发酵的聚氨酯层压复合膜,包括改性聚氨酯膜2、纳米活性炭3和聚酯纤维材料1;

所述聚氨酯层压复合膜的制备方法,步骤如下:

s1、将100g聚四氢呋喃二醇、10g2,4-甲苯二异氰酸酯和6g1,3-丙二醇混合后制备得到聚氨酯;

s2、按照将70g聚氨酯、35g数均分子量为4000的聚乙二醇和7g二辛酸二丁锡混合均匀,加入1g偶氮二异丁腈和2g二甲基甲酰胺后混合均匀,120℃干燥5h,再送到流延机中240℃挤出得到改性聚氨酯膜2;

s3、在改性聚氨酯膜外表面均匀涂布一层纳米活性炭3;

s4、将s2制备得到的改性聚氨酯膜放置在s3制备得到的外表面涂布纳米活性炭的改性聚氨酯膜的外侧,经320℃高温烧结为一层改性聚氨酯和纳米活性炭复合膜;

s5、将聚酯纤维材料1进行拒水处理;

s7、将聚酯纤维材料1、改性聚氨酯和纳米活性炭复合膜、聚酯纤维材料1按照由外向外的顺序进行放置,接缝处通过pur热熔胶进行层压复合,层压复合的宽度为0.12m。

进一步地,所述s3中纳米活性炭3的厚度为35μm;

进一步地,所述s4中改性聚氨酯和纳米活性炭复合膜的孔径为0.13μm,厚度为70μm。

进一步地,所述聚酯纤维材料1经过防紫外线、抗酸碱处理,再经过拒水处理和电晕放电处理。

进一步地,所述聚氨酯层压复合膜拼接成两端封堵的拱形结构。

进一步地,所述聚氨酯层压复合膜的外层的聚酯纤维材料的颜色为绿色。

本发明的聚氨酯层压复合膜使用过程中,将聚氨酯层压复合膜覆盖在需要堆肥发酵的有机固体废弃物的表面,四周通过沙袋5压住进行密封固定,外层的聚酯纤维材料1将外来的雨水、风有效隔离,防水和防潮性强,从外部保护堆肥发酵的过程免受外界环境的影响;内层的聚酯纤维材料1将发酵产生的冷凝水进行隔离,并让灰尘、气溶胶、细菌、病原体、voc、臭味、热量透过,同时中层的改性聚氨酯和纳米活性炭复合膜对灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量进行有效的阻隔,从而避免灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量透过聚氨酯层压复合膜,且空气和堆体产生的水蒸气可以有效的通过聚酯纤维材料1和改性聚氨酯和纳米活性炭复合膜,通风管道4为堆肥发酵过程提供新鲜空气,从而创造有利于堆肥发酵的内部环境,维持氧气充足的环境,有效提高堆肥发酵的效率,且防止灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量外透,保护环境。

对比例1

与实施例2的区别在于,删除s3和s4,将s7修改为:将聚酯纤维材料、改性聚氨酯膜、聚酯纤维材料按照由外向外的顺序进行放置,接缝处通过pur热熔胶进行层压复合,层压复合的宽度为0.12m。

对比例2

与实施例2的区别在于,删除s2,将s1修改为:将100g聚四氢呋喃二醇、10g2,4-甲苯二异氰酸酯和6g1,3-丙二醇混合后,120℃干燥5h,再送到流延机中240℃挤出得到聚氨酯膜;

将s3-s7中的改性聚氨酯修改为聚氨酯。

对实施例1和2,对比例1和2进行透气性、水蒸气透过性能、延伸率等测试,具体测试结果如表1所示。

表1性能测试结果

从表1结果可以看出,实施例1和实施例2的孔径比对比例1孔径小,说明改性聚氨酯后,显著增加了膜的孔径,且对比例1中由于孔径增大,透湿性和透气性显著提高,由此可见,实施例1中通过改性聚氨酯和纳米活性炭复合后,显著降低膜的孔径至<0.25μm,从而对灰尘、气溶胶、细菌、病原体、h2s、nh3、voc、臭味、热量进行有效的阻隔。实施例1和实施例2与对比例3进行对比可知,聚氨酯未改性时,透气性较差,不利于聚氨酯层压复合膜内空气与外界环境的交换,不能保证内部氧气浓度充足。因此,实施例1和实施例2即降低了膜的孔径,又提高了透湿性和透气性,有利于维持堆肥发酵的最佳氧气浓度、湿度等条件,从而加快堆肥发酵的进程。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1