基于双向buck功率因数校正和lc高频谐振软开关技术的单相单级hid高频电子镇流器的制造方法_2

文档序号:10393291阅读:来源:国知局
镇流器的体积、重量和成本。
[0027]本实用新型所采取的技术方案中,在功率主电路中没有直流环节,没有电解电容,因此,可以极大延长镇流器的寿命。
[0028]本实用新型所采取的技术方案中,在灯额定使用寿命终了时,可以适当增加镇流器输出功率,保持灯照明亮度不变,延长灯使用寿命。
[0029]本实用新型所采取的技术方案中,照明时LC谐振电路工作在准谐振状态,一方面镇流器输出是高频交流电,频率成分单一,另一方面高频功率开关管实现了软开关,极大减小了开关损耗和电磁辐射,这样大大提高了镇流器的整机效率,易于满足电磁兼容的要求。
[0030]本实用新型所采取的技术方案中,相当于采用了双向BUCK功率因数校正技术,功率主电路中双向BUCK开关电路和LC滤波电路分别对输入交流电源进行高频斩波后再滤波,输入电源侧滤波电感中的电流连续,且跟随输入电压变化,功率因数接近于I,实现了镇流器输入电源侧高功率因数,极大减小或消除了对电网的谐波污染。
[0031 ]本实用新型所采取的技术方案中,在HID点火启动期间,开关频率固定,在预热和照明期间,开关频率微调,用来实现恒流或恒功率控制,开关频率变化范围小,在LC谐振频率附近。同一套参数要满足启动和照明的要求,这也增加了电路参数设计难度。
[0032]作为本实用新型的改进,在HID点火启动期间,镇流器工作在扫频状态,开关频率从高逐步趋近LC谐振频率,也可以实现高频准谐振启动,而在预热和照明期间,以高准谐振方式工作,一套电路两套参数,可以简化电路参数设计。
[0033]作为本实用新型的进一步改进,在HID点火启动期间,HID相当于开路,电路Q值较大,镇流器工作在固定的LC谐振电路准谐振频率上,随着输入电源正弦波幅值增大,HID灯电压足够高,可以使HID灯两电极击穿启动,不用附加点火装置,可以热启动。在预热和照明阶段,HID等效电阻R与谐振电容C并联,电路Q值变小,镇流器以调频方式工作在RLC准谐振频率上(R是HID灯等效电阻),同时满足灯功率和灯电压的要求,也降低了控制电路的设计。
[0034]作为本实用新型的进一步再改进,在镇流器的输入端增加一个单相整流桥,对输入的工频市电进行整流,可以把原开关电路中的四个开关管减少到两个开关管,在不降低镇流器性能的前提下,可以降低控制电路的复杂程度,特别是降低了驱动电路的复杂程度。
[0035]本实用新型的显著优点是,结构简单,性能优越,只用一级功率变换电路就可以直接把输入的工频交流电变换成高频交流电,为HID灯照明提供适用的高频交流电源,同时满足HID灯自启动、输入电源侧高功率因数、整机高效率和满足FCC等电磁兼容的要求。
【【附图说明】】
[0036]为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0037]图1为本实用新型高频电子镇流器结构组成示意图。
[0038]图2为本实用新型高频电子镇流器的功率主电路的电路拓扑图。
[0039]图3为本实用新型高频电子镇流器的取样电路的电路示意图。
[0040]图4为本实用新型高频电子镇流器的工作流程框图。
[0041 ]图5为本实用新型高频电子镇流器工作时序波形示意图。
【【具体实施方式】】
[0042]下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
[0043]参照图1、图2与图3,本实施例以新型单相单级HID高频电子镇流器来说明本实用新型是如何实现高性能的新型直接交交变频的单相单级高频电子镇流器。
[0044]基于双向BUCK功率因数校正和LC高频谐振软开关技术的单相单级HID高频电子镇流器,包括功率主电路I和控制电路2,所述功率主电路I是一个双向BUCK电路拓扑,由LC滤波电路11、双向开关电路12与LC谐振电路13组成,LC滤波电路11设置在输入端,与输入电源连接,双向开关电路12由四个高频功率开关管S1、S2、S3、S4构成,所述LC谐振电路13设置在输出端,连接外部的HID等灯具。四个高频功率开关管S1、S2、S3、S4选用适当功率的MOS管。
[0045]控制电路2包括辅助电源21、同步电路22、灯电流和电压取样电路25、调理电路26、单片机27、PFM产生电路24、逻辑电路28与驱动电路23。灯电流和电压取样电路25的输入端连接上述LC谐振电路13的输出端,灯电流和电压取样电路25的输出端连接调理电路26,所述调理电路26再连接单片机27,单片机27的输出端连接PFM产生电路24的输入端,PFM产生电路24的输出端连接逻辑电路28,逻辑电路28再连接驱动电路23,驱动电路23再与上述双向开关电路12相连接。同步电路22的输入端连接上述LC滤波电路11取样,其输出端连接逻辑电路28、PFM产生电路24和单片机27。辅助电源21从LC滤波电路11输出端取电。
[0046]上述功率主电路I完成把电能从输入电源的工频市电变换成HID灯等照明用的高频交流电。采用调频控制方法和合适的控制逻辑,控制所述四个高频功率开关管S1、S2、S3、S4适时开通和关断,给输出端LC谐振电路13充电、放电或续流。所述LC谐振电路13工作在准谐振状态,使得输出交流电是高频正弦波,频率成分单一,同时使得四个功率开关管实现了软开关,降低了电磁干扰,减小了开关损耗,提高了整机效率。
[0047]所述LC滤波电路11提供后级电路需要的电压/电流脉冲,阻止后级电流脉冲或纹波进入电网造成电网污染。LC滤波电路还对后级电路的电流脉冲进行滤波,滤波电感中的电流连续,且跟随输入电压变化,实现输入电源侧功率因数接近于I。
[0048]上述控制电路2中的辅助电源21在输入LC滤波电路11输出端(滤波电容C上)取电,输出电压为控制电路2其他各部分供电。这样取电,经过LC滤波后可以减小辅助电源对输入电源的影响。但辅助电源21在上电期间输出电压不稳,需要等待片刻,才能输出电压稳定。为此设置准备阶段,输出一个用于等待的“准备好”信号,当辅助电源21输出电压稳定,输出“准备好”信号去协调控制电路其他各部分正常工作。
[0049]同步电路22完成对输入电源正半周和负半周的判别,给出同步信号。同步电路22也是在输入LC滤波电路11的滤波电容C上取样。这样取样输入电源电压,可以避免LC滤波电路11带来的相位滞后问题。同步电路22采用电阻分压器取样,经过零比较器后输出反映输入电源正半周和负半周的同步信号。
[0050]灯电流和电压取样电路25的输入端连接所述LC谐振电路13的输出端,其输出端连接所述调理电路26。灯电流用电阻取样,灯电压用电阻分压器取样。如图3所示,灯电流和电压取样电路25的电流取样电阻是低温漂的精密取样电阻,检测灯电流I。电压取样电路是多电阻构成的电阻分压器,有两路,一路用于检测照明时灯电压VA,一路用于检测启动时灯电压VB 0
[0051]调理电路26对取样电流I进行滤波、精密整流、放大,对取样电压进行分压、整流、滤波,得到反馈电流信号1和电压信号LV、HV。
[0052]单片机27完成系统管理和控制功能,对灯电流、灯电压的反馈信号采样、数字PI调节、比较等,输出PFM控制电压和灯状态信号。使用单片机27使镇流器更加智能化、人性化
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1