改良植物的方法

文档序号:137507阅读:740来源:国知局
专利名称:改良植物的方法
技术领域
本发明涉及一种用于改良植物的方法,更具体地说是一种用于增加植物中某些类异戊二烯化合物,特别是甾醇的方法。
背景技术
现已提出了多种用于改变植物中类异戊二烯产物的方法。
尽管只有少数几种甾醇存在于动物中,而且胆甾醇显然是其中主要的一种,但是植物中却发现了很多种甾醇。这些甾醇间结构差别是由于侧链中的不同取代以及四元环骨架中双键的数目与位置所引起的。
植物甾醇可以根据一种或多种官能团存在与否分组。例如根据C4上的甲基化水平可将甾醇分类如下4-脱甲基甾醇或终产物甾醇、4-单甲基甾醇和4,4-二甲基甾醇。天然存在的4-脱甲基甾醇包括谷甾醇、豆甾醇、菜子甾醇、Δ7-燕麦甾醇和菜油甾醇。4,4-二甲基甾醇包括环阿屯醇和24-亚甲基环木菠萝烷醇(24-methylenecycloartanol),4-单甲基甾醇包括24-亚甲基4-甲基-7-烯胆甾烷醇(24-methylene lophenol)和2 4-亚乙基4-甲基-7-烯胆甾烷醇(24-ethylidene lophenol)。大多数较高等植物中,带有一个游离3-羟基的甾醇(游离甾醇)是主要终产物。但是,甾醇也会生成偶联形式,例如,当3-羟基被脂肪酸链、石碳酸或糖基酯化生成甾醇酯。在本说明书中甾醇是指游离甾醇和偶联甾醇。但是,在本申请中甾醇水平、量或百分比是指甾醇基团的总重量,而偶联基团如脂肪酸、石碳酸或糖基的重量不计算在内。
迄今为止,大部分以操作植物内甾醇为目的的研究都涉及除4-脱甲基甾醇之外的甾醇,以增强植物对害虫或杀真菌剂的抗性。
WO 98/45457描述了调节植物甾醇组合物以赋予对昆虫、线虫、真菌和/或环境胁迫的抗性,和/或者通过使用双链DNA分子以提高植物的营养价值,这种DNA分子中含有启动子、编码第一种酶的DNA序列和3′非翻译区,所述第一种酶能够结合第一种甾醇从而产生第二种甾醇,所述3′非翻译区可使得RNA 3′末端聚腺苷酸化。优选地,所述酶选自S-腺苷-L-甲硫氨酸-Δ24(25)-甾醇甲基转移酶、C-4脱甲基酶、cycloeucalenol钝叶醇(obtusifoliol)-异构酶、14-α-甲基酶、Δ8-Δ7-异构酶、Δ7-C-5-去饱和酶和24,25-还原酶。该文中唯一提及C-4甲基酶是抑制该酶以其赋予对昆虫的抗性。该文献中没有描述C-4甲基酶在营养方面的用途。US 5,306,862中描述了通过增加编码具有HMG-CoA还原酶活性多肽的基因的拷贝数提高植物中甾醇积聚量从而提高植物对害虫抗性的方法。类似地,US 5,349,126描述了通过增加编码具有HMG-CoA还原酶活性多肽的基因的量提高转基因植物中角鲨烯和甾醇积聚量从而提高转基因植物害虫抗性的方法。
Gondet等在Plant Physiology(1994)105509-518分离出了一种烟草突变种,该突变株叶片组织中的甾醇组合物明显改变,环丙基甾醇(cyclopropylsterols)所占比例明显增加,HMGR活性提高了三倍。
Re等在The Plant Journal(1995)7(5),771-784指出拟南芥(Arabidopsis thaliana)HMG CoA还原酶(HMG 1)的过表达不足以改变植物类异戊二烯途径的大量合成以及终产物积聚量。
植物中,在甾醇转移酶1(SMT1)作用下由环阿屯醇生成24-亚甲基环木菠萝烷醇是类异戊二烯生物合成中的一个步骤。
Bouvier-Nave等在Eur.J.Biochem.256,88-96(1988)中描述了甾醇甲基转移酶(SMTs)的两个家族,其中第一家族(SMT1)作用于环阿屯醇,第二家族(SMT2)作用于24-亚甲基-4-甲基-7-烯胆甾烷醇。
Schaller等在Plant Physiology(1998)118461-169中描述了在烟草中过表达来自拟南芥属的SMT2导致烟草叶片中24-甲基胆甾醇与谷甾醇之间的比例改变。
Diener等在The Plant Cell(2000)12853-870中描述了拟南芥属SMT1基因的功能特性,并且指出缺乏该基因的突变体生长迟缓繁殖力低。
Schaeffer等在Lipids(2000)35263-269中描述了在转基因烟草中表达烟草(Nicotiana tabacum)SMT1和SMT2基因的效果。SMT1的过表达导致叶片中环阿屯醇水平的变化,并且伴随着24-乙基甾醇比例的改变。SMT 2的过表达使得24-甲基胆甾醇与谷甾醇之间比例改变从而导致生长减缓。
WO 01/31027公开了非-反馈调控HMGR基因在甾醇生产中的用途。
WO 01/79513描述了SMT1基因在甾醇生产中的用途。
过量-生成甾醇的烟草变种已经表现出环阿屯醇(CA)、24-亚甲基环木菠萝烷醇(24MCA)和24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)的过量积聚(Maillot-Vernier等.Mol.Biol.Genet.23133-40,1991)。
24MCA转化为cycloeucalenol是发生在甾醇生物合成的过程中的三个C4脱甲基反应中的第一步(


图1)。这其中包括去除甾醇骨架C4位上的α-甲基。另两个去甲基化步骤是去除C4β甲基,将24-亚甲基-4-甲基-7-烯胆甾烷醇(24Mloph)转化为表甾醇(episterol)以及将24Eloph转化为Δ7-燕麦甾醇(
图1)。
在动物和酵母系统中,甾醇C4甲基去除已进行了很好地定性(Faust等.,Biology of Cholesterol,ed.Yeagle,P.L.(CRC,Boca Raton,FL,USA)p.19-38,1988;Bard等.,Proc.Natl.Acad.Sci.USA 93186-190,1996)。酵母中4,4-二甲基酵母甾醇(4,4-DMZ)C4脱甲基中的第一步是被C4甾醇甲基氧化酶(ERG25)催化的,其中包括C4α甲基氧化生成羧酸。在随后步骤中,羧基基团被C4脱羧基酶(ERG26)移去得到C3位置上的酮基(Gachotte等.,Proc.Natl.Acad.Sci.USA,9612655-12660,1999)。最后,C3-酮基还原酶(ERG27)还原酮基得到C3位的醇基(Gachotte等.,Proc.Natl.Acad.Sci.USA,961810 1999)。这些催化步骤重复进行除去甾醇骨架上的C4β甲基。与酵母不同,植物中脱去C4位上两个甲基的机制还未充分阐明。但是,现已查明植物具有至少两种特有的微粒体C4脱甲基化复合体参与了甾醇生物合成(Pascal等,J.Biol.Chem.26811639-11654,1993)。
WO 02/42477描述了将编码特异性HMG-还原酶(HMGR)的基因与编码甾醇甲基转移酶1的基因联合表达可以有益地进一步提高植物的营养价值,特别是其种子的营养价值。具体而言,非-反馈调控的HMGR与甾醇甲基转移酶1的过表达结合使得植物的营养有益甾醇与仅有1种上述基因表达的植物相比进一步提高,例如所述植物的种子。
现已发现用上述技术过表达HMGR和HMGR/SMT1导致积聚量增加的不仅是终产物甾醇,还有一些甾醇中间体。这些中间体中的一部分是C4二甲基或单甲基类型(例如24-亚甲基环木菠萝烷醇,24-亚甲基-4-甲基-7-烯胆甾烷醇和24-亚乙基-4-甲基-7-烯胆甾烷醇(2 4-ethylidene lophenol))。因此如果将这些甾醇中间体也能转化为终产物甾醇(4-脱甲基甾醇)的话将是很有价值的。C4二-或单-甲基甾醇是在三-步骤反应中在三种独立的酶(C4-甾醇甲基氧化酶,C4-甾醇脱羧基酶和C3-甾醇酮基还原酶)催化下脱甲基的。
本发明的目的是改变植物中的甾醇水平,特别是植物种子中的甾醇水平,这种改良能使(有益)甾醇的水平升高或者(次期望)甾醇如胆甾醇的水平降低。
本发明还有一个目的是提高植物中甾醇水平,其中所述甾醇优选为营养学上受亲睐的4-脱甲基甾醇如谷甾醇、豆甾醇、 菜子甾醇、Δ7-燕麦甾醇或菜油甾醇,而且该甾醇优选表达在种子。
本发明的另一目的是通过过表达HMGR和/或SMT1,使经修饰植物中的4-脱甲基甾醇水平与相应野生型植物相比升高。
发明概述本发明提供一种提高植物中4-脱甲基甾醇水平的方法,其中包括增强4-单甲基和4,4-二甲基甾醇的酶促脱甲基化。
另一方面,本发明涉及一种与野生型植物相比4-脱甲基甾醇水平升高的植物,其中4-脱甲基甾醇水平升高是通过本发明的方法实现的。另一方面本发明还提供了可从本发明植物获得的植物物质。
本发明的另一方面是一种转化植物的方法,该方法包括(a)用重组DNA构建体转化植物细胞得到转化后的植物细胞,该DNA构建体中含有编码具有C4SMO活性多肽的DNA节段和驱动所述多肽在所述植物细胞中表达的启动子;(b)使上述转化后的植物细胞再生成转基因植物;以及(c)选取与同种植物野生型株系相比4-脱甲基甾醇水平升高的转基因植物。
本发明的另一方面是一种用于制备含4-脱甲基甾醇的油的方法,该方法包括从本发明所述植物中提取甾醇。
另一方面,本发明提供了一种含有用本发明方法制备的油的产品。
本发明的另一方面是使用表达C4SMO的基因提高植物中甾醇水平。
发明详述类异戊二烯是一个很大的化合物家族,它们存在于较高等的植物,具有不同作用。它们包括甾醇、植物激素赤霉素和脱落酸、促光合作用色素成分、植物抗毒素和多种其他专门的类萜。
甾醇,尤其是4-脱甲基甾醇吸引人们注意力是因为它们决定着水果和蔬菜油的营养品质、口味和颜色。让人特别感兴趣的是营养有益的化合物如脂溶性甾醇。这些甾醇可以有效地减少冠心病,例如,当一些植物甾醇在食物中含量增加时表现出降低血清胆甾醇水平,维生素E可以通过减少LDL氧化减少动脉粥样硬化的斑块。
在植物种子中表达这类化合物,特别是含油种子,具有商业价值,因为从种子中收获这类成分是很方便的,一些情况下,可以将从种子中提取油与提取甾醇结合起来同时进行,得到含高水平甾醇的油,这样的话就可以避免或减少为获得营养价值而单独添加甾醇。
优选的甾醇是4-脱甲基甾醇及其混合物,最优选的是β谷甾醇、谷甾烷醇、豆甾醇、菜子甾醇、异岩藻甾醇(isofucosterol)、菜油甾醇、表甾醇,甚至更优选的甾醇是谷甾醇、豆甾醇、菜子甾醇、avenosterol和菜油甾醇。另外优选地,至少部分甾醇,例如占种子中甾醇总重量至少70wt%的甾醇为甾醇与C10-24脂肪酸生成的酯。
如上所述,现已提出了几种改变植物中类异戊二烯水平的方法。
现已发现可以通过增强4-单甲基和4,4-二甲基甾醇的酶促脱甲基化提高植物中4-脱甲基甾醇的水平。此前还未曾认识到4-单甲基和4,4-二甲基甾醇的脱甲基化是合成4-脱甲基甾醇的限速步骤,因此提高4-脱甲基甾醇产量的其他方法得到的是中间体4-单甲基和4,4-二甲基甾醇而不是期望的4-脱甲基甾醇。
本发明中4-单甲基和4,4-二甲基甾醇脱甲基的增强可以通过多种方法处理和/或修饰植物进行,这些方法使得与未经处理和/或修饰的植物相比脱甲基化增强。该方法还包括,例如,提高负责脱甲基的同源酶的表达和/或活性以及/或者编码脱甲基酶异源基因的表达。
优选地,通过提高植物中C-4甾醇甲基氧化酶(C4SMO)活性来增加酶促脱甲基反应。特别优选的是通过提高C4SMO编码基因的表达来提高植物中C4SMO的活性。
本发明中使用的C4SMO及相关术语是指具有C-4甾醇甲基氧化酶活性的任意多肽,包括酶、该酶的片段或变体(例如,通过插入、缺失或取代1个或多个(例如1-5个)氨基酸残基得到的等位变体或突变体)或前体。测定多肽是否显示C-4甾醇甲基氧化酶活性对于本领域技术人员来说可以很容易完成。
如果本发明的方法包括提高植物中天然存在的C4SMO基因(即同源基因)的表达,那么就改变控制表达的参数及其他因素从而使得C4SMO表达提高,优选植物种子中的表达提高。例如,合适的方法包括将促进分子,如转录因子上调。替代地或追加地,可以强特异性启动子插入植物基因组确保C4SMO基因表达上调。合适方法的另一实例包括增加“同源”C4SMO基因的拷贝数从而增强其表达。
替代地,所述C4SMO基因可以是异源基因,例如源自其它植物、动物和微生物,例如C4SMO基因可以来自拟南芥、烟草或酵母。编码C4SMO的基因优选源自Arabidopsis,例如拟南芥。本发明使用的编码C4SMO的DNA节段可以适当地获自动物、微生物或植物。
替代地,可以从基因文库中分离等价基因,例如通过使用DNA探针的杂交技术。C4SMO及编码C4SMO基因的一实例见图2。
编码C4SMO的基因序列可操作地(即,定位以确保功能)与一个或多个合适启动子连接从而使得该DNA得以被转录。合适的启动子与该基因可以是同源的也可以是异源的,这些可用于植物表达的启动子已为本领域所熟知,例如Weising等,(1988),Ann.Rev.Genetics,22,421-477)中所述的启动子。用于本发明的启动子可以是诱导型的、组成型的或组织特异性的,或者这些特征的各种结合。有用的启动子包括,但不限于,组成型启动子如康乃馨蚀环病毒(CERV)、花椰菜花叶病毒(CaMV)35S启动子,或者更具体地为双倍增强的花椰菜花叶病毒启动子,其中含有前后串联在一起的两个CaMV 35S启动子(称为″双35S″启动子)。
特定情况下可以使用组织特异性或发育调控启动子取代组成型启动子。组织特异性启动子可以使得在特定组织中过表达而同时又不影响其他组织中的表达。例如,一种用于在种子组织中过表达酶的优选启动子为WO 92/18634中所述的ACP启动子。
所述启动子和终止调控区域在宿主植物细胞中发挥作用,它们与植物细胞和基因可以是异源的(即,非天然存在的)或者同源的(源自宿主植物的种)。可以使用的合适启动子如上所述。
终止调控区域可以源自获取所述启动子的那个基因的3′区域或者源自另一基因。可以使用的合适终止区域为本领域熟知,包括根癌农杆菌胭脂碱合成酶终止子(Tnos)、根癌农杆菌甘露氨酸合成酶终止子(Tmas)和CaMV 35S终止子(T35S)。用于本发明的特别优选的终止区域包括豌豆核酮糖二磷酸羧化酶小亚基终止区域(TrbcS)或Tnos终止区域。
合适地可以通过下述操作对所述基因构建体进行活性筛选通过农杆菌转化入宿主植物,然后筛选4-脱甲基甾醇水平升高的构建体。
合适地,基因的核苷酸序列可以取自Genbank核苷酸数据库,寻找不能对其进行切割的限制性酶。可以通过常规方法将这些限制性位点添加入基因,例如将这些位点引入PCR引物或者通过亚-克隆引入。
优选地,可用于本发明的DNA构建体包含在载体内,更合适的是适于在合适宿主(植物)细胞中表达的表达载体。可以理解的是任何可以生产含有导入DNA序列的植物的载体都可以。
合适的载体为本领域技术人员熟知,描述见普通的技术文献如Pouwels等,cloning vector.Alaboratory manual,Elsevier,Amsterdam(1986)。特别优选的合适载体包括Ti质粒载体。
用于将本发明DNA构建体转化入宿主细胞的转化技术为本领域熟知,包括农杆菌介导的转化、显微注射、使用聚乙二醇、电穿孔或者高速弹道穿进(high velocity ballistic penetration)。
植物细胞或植物转化后,已经引入目的DNA的那些植物细胞或植物可以用,例如抗生素抗性、杀虫剂抗性、对氨基酸类似物的耐受或使用表型标记物等方法来筛选。
可以使用各种测定方法测定植物细胞是否表现基因表达的增加,例如,Northern印迹或定量逆转录酶PCR(RT-PCR)。可以通过常规方法从转化后的细胞再生出完整的转基因植物。类异戊二烯水平升高的这类转基因植物可以繁殖并且自体授粉生成纯合系。所述植物生产含具有导入特性基因的种子,可以被培育生产出具有选择表型的植物。
优选地,植物中4-单甲基甾醇和4,4-二甲基甾醇的水平降低。因此, 优选地,与未增加酶促脱甲基反应的植物相比,4-脱甲基甾醇相对于4-单甲基和4,4-二甲基甾醇的比例提高,。
优选地,基于总的甾醇的重量4-脱甲基甾醇的水平,例如植物种子中的水平,与未经根据甾醇总重增加酶促脱甲基化的相应植物中的水平相比高出至少5wt%,更优选高出7wt%以上。基于总的甾醇的重量,4-单甲基甾醇的水平,例如植物种子中的水平,优选低于未经增强酶促脱甲基反应的相应植物中水平的75wt%,更优选低于50wt%。植物种子中4-脱甲基甾醇的总水平优选占甾醇总重的至少80wt%,更优选至少85wt%。
可以使所述植物中甾醇中间体的水平,例如所述植物种子或叶片中的水平相对于野生型植物发生改变。本发明所述植物中环阿屯醇(CA)与24-亚甲基环木菠萝烷醇(24MCA)重量比,例如叶片中,优选为至少3∶1,更优选至少4∶1,甚至更优选至少5∶1,最优选在6∶1-20∶1的范围。
本发明还涉及来自4-单甲基和4,4-二甲基甾醇酶促脱甲基反应已增加的植物的种子。特别优选的含油种子为烟草种子、加拿大双低油菜-卡诺拉(canola)种子、油菜种子、向日葵种子和大豆种子。可以使用任一方法从这些种子中提炼油。
本发明的植物优选为烟草、加拿大双低油菜-卡诺拉、向日葵、油菜或大豆。
本发明方法优选用于提高植物中4-脱甲基甾醇水平,该植物已经修饰与野生型植物相比提高了4-单甲基和/或4,4-二甲基甾醇的产量。例如,所述植物可以具有与野生型植物相比提高了的HMGR活性。
替代提高HMGR活性或再附加,所述植物可以具有与野生型植物相比提高了的SMT1活性。
例如,所述植物已经修饰从而将非反馈抑制的HMGR基因与甾醇甲基转移酶1联合引入,将这种基因联合与本发明方法一起使用,对提高4-脱甲基甾醇水平特别有好处,因为这样可以降低终产物中中间体化合物相对于期望的4-脱甲基甾醇的比例。
所述非反馈抑制的HMG还原酶可以是一种由截短的非植物HMGR基因表达的酶,优选地所述截短导致酶不含膜结合区,但是该基因的HMGR功能优选仍然保留。所述基因的实例是截短的仓鼠或酵母HMGR基因。
非反馈抑制的HMG还原酶的第二个实例是由来自类异戊二烯高产植物的HMGR基因表达的酶,例如橡胶(Hevea brasiliensis)。特别优选的是来自橡胶等类异戊二烯高产植物基因制备的截短形式的HMGR,最优选的截短形式是所述HMGR不含膜结合区。
完整的HMGR酶含有三个区含酶活性位点的催化区、将酶锚定在内质网的膜结合区以及将酶的催化区及膜结合区连接在一起的连接区。
所述膜结合区位于酶的N末端区域,而所述催化区位于C末端区域。大部分植物中的反馈抑制通常需要酶的膜结合区的存在。因此,优选使用表达含有灭活膜结合区或不含膜结合区的酶的HMGR基因,从而优选所述基因用于提高植物组织中,例如植物种子的4-脱甲基甾醇水平。
合适的截短的HMGR基因的描述见WO 01/31027,该文献内容在此引入作为参考。
优选地,所述HMGR基因分离自橡胶。可以使用所述植物基因的特别优选的截短形式。可以将特异性启动子插入植物基因组以确保HMGR基因的表达被上调,优选在植物的种子组织内。
所述植物可已经过修饰以使得SMT1活性升高。SMT1活性升高的植物的描述见WO 01/79513,该文献内容在此引入作为参考。
合适地,所述SMT1基因可以天然存在于植物中。然后改变环境使SMT1的表达升高,优选在植物的种子区域发生表达升高。实现这一点可行的方法是上调促进分子(facilitating molecules),例如转录因子。替代地,可以将特异性启动子插入植物基因组确保SMT1基因上调。替代地,可以增加“同源”SMT1基因的拷贝数从而提高其表达。
替代地,所述SMT1基因可以是异源基因,例如源自其他植物或微生物。例如,所述SMT1基因可源自Arabidopsis、烟草或酵母。
可以修饰植物使之具有提高的HMGR活性和提高的SMT1活性。例如,WO 02/42477(该文献内容在此引入作为参考)公开了将编码特异性HMG-还原酶(HMGR)的基因与编码甾醇甲基转移酶1的基因联合表达的植物。
胆甾醇食物制品中不受消费者欢迎的成分,消费者想要减少其胆甾醇的摄入量。降低血清胆甾醇水平可以减少心血管病的发病危险。因此,本发明优选导致植物组织,特别是植物种子中胆甾醇水平降低,具体为三酰甘油占干重10wt%以上的含油种子。
本发明的植物具有与野生型植物相比水平升高了的4-脱甲基甾醇。优选地,与野生型植物相比所述植物中4-脱甲基甾醇相对于4-单甲基和4,4-二甲基甾醇的比例升高。更优选地,水平和比例的升高发生在叶片和/或种子,特别是种子。
制备本发明所述油的方法包括从本发明所述植物中提取甾醇。用于从植物中提取甾醇的方法已为本领域熟知。优选地,所述油提取自植物种子。所述种子是通过培育该植物一代或多代然后收获种子获得的。
除甾醇外,所述油还含有经常出现于植物中的其他化合物,例如甘油三酯。替代地,可以对所述油进行一步或多步纯化从而提高油中甾醇的含量,特别是4-脱甲基甾醇的含量。
可获自本发明植物的植物物质可以是植物的任一部分,包括根、叶、茎和种子。优选地,所述植物物质是叶或种子,更优选为种子。所述植物物质可以是直接取自植物的叶或种子,或者是经过一个或多个附加处理步骤得到的,例如洗涤、干燥、切削、研磨以及热处理中的一种或多种。
含有本发明油的制品可适合用于多种不同用途中的一种或多种。例如,所述制品可以是食物制品、食品加工中使用的油、润滑油、燃料油或者制备碳氢化合物使用的原料。所述制品中可含有适于该制品所需用途的添加剂,例如,当所述制品是食物制品时为食品防腐剂和/或稳定剂。所述制品可以是单一的油相,或者所述油可以分散、悬浮或乳化于另一种液体,例如,油包水或者水包油乳剂。
现在用下列非限制性实施例对本发明作进一步说明。在实施例和本说明书全文中,提到的百分比除另有说明外都是占总重量的重量百分比。
实施例结合下列附图
图1表示的是环阿屯醇后的甾醇生物合成途径,突出显示C4-脱甲基步骤。实线代表一种的催化转化,虚线代表不止一种的催化转化。
图2表示的是AtC4SMO的推定的开放阅读框以及相应翻译出的蛋白。富含组氨酸的基序用下划线标出。
图3表示的是对代表性选取的NH65品系的叶片组织中AtC4SMO转录水平进行的实时PCR分析。
图4表示的是选取的NH65品系成熟种子中CA24MCA、CA24Mloph和CA24Eloph的比值。误差线表示标准偏差。
图5表示的是对NH65和MH7xNH65品系叶片组织中AtC4SMO转录水平进行的实时PCR分析。
图6A表示的是选取的MH7xNH65品系的成熟叶片组织中CA/24MCA、CA/24Mloph和CA/24Eloph的比值。
图6B表示的是选取的MH7xNH65品系的成熟种子组织中CA/24MCA、CA/24Mloph和CA/24Eloph的比值。误差线表示标准偏差。
实施例实验方法菌株和质粒所有克隆方法中都使用大肠杆菌DH5a(Gibco BRL)作为宿主菌株。37℃下,将大肠杆菌培养于置于旋转摇床上的LB培养基(10g/L胰蛋白胨,5g/L酵母提取物,5g/L NaCl)中,该培养基添加了合适的筛选压力(氨苄青霉素100μg/mL或卡那霉素50μg/mL)。
PCR克隆载体pGEM-T easy获自Promega。双元载体pSJ35是通过用Klenow酶将pGPTV-HYG中的BamHI限制性酶切位点填满制得的(Becker等.,Plant Mol.Biol.20,1195-1197,1992).
质粒pNH2中含有康乃馨蚀环病毒(CERV)启动子和胭脂碱合成酶(NOS)终止子,此前已有描述见WO 01/31027(参见实施例4)。
酶及化学药品限制性内切酶、T4 DNA连接酶、分子标志(X,XIV和XVII)和Taq DNA聚合酶都购自Roche。Pfu DNA聚合酶获自Stratagene。酶的使用遵照供应者的建议。生化药剂购自Sigma Chemical Co.。使用的所有化学药品和试剂都是分析纯的,获自Fisher Scientific UK或BDH。
植物材料烟草SR1(Petite Havana)生长在MS-培养基或堆肥/珍珠岩混合物(2∶1)(Murashige and Skoog,Physiol Plant 15,473-497,1962)。生长室温度保持在22℃,使用的昼/夜循环为16h/8h。光强度为40μmolm-2s-1。
寡核苷酸的合成所有的寡核苷酸都是合成的,汇集于表1。
表1.寡核苷酸引物(按从5′到3′端的方向)
a,引入一个HindIII位点(下划线)。b,引入酵母翻译起始位点(斜体)。C,引入一个EcoRI位点(下划线)。d,Af1III位点(下划线)。e,SacI位点(下划线)。
从拟南芥克隆C4SMO
用来自酵母的ERG25蛋白的一级序列作为BLAST的查询序列搜索Arabidopsis数据库(位于Stanford)中的所有非冗余蛋白。由该方法得到登记号为At2g29390的推定的拟南芥C4SMO。
用Pharmacia QuickPrep micro mRNA纯化试剂盒按照供应商的推荐方法从12日龄的拟南芥(Columbia生态型)幼苗中分离信使RNA。用oligo(dT)包被的纤维素亲和分离mRNA。通过将Poly-A RNA(1μg)与引物RoRidT17(10pmol)混合于11.34μL DEPC处理后的水中,合成出第一链DNA。将混合物在70℃下混合10分钟然后在湿冰上放置2分钟。加入第一链缓冲液(1X)、DTT(0.1μmol)、RNA酶蛋白抑制剂(RNAsin)(22U)、dNTP(20nmol)和Superscript(200U)至终体积20μl。将混合物在37℃下孵育60分钟得到ArabidopsiscDNA库。
使用PCR和基因特异性引物C4S01和C4S02(表1),从Arabidopsis cDNA或基因组DNA库中扩增出推定的AtC4SMO基因。使用如下扩增程序1个循环94℃(2min),5个循环94℃(30s),40℃(30s),72℃(2min),30个循环94℃(30s),40℃(30s),72℃(90s)和1个循环72℃(7min),4℃(存放)。使用校读酶Pfu Turbo DNA聚合酶将引入的错配数目减至最低。将扩增片段(来自cDNA或基因组DNA)克隆入PCR产物克隆载体pGEM-T Easy,按照供应商推荐的方法(Promega)。选取含推定AtC4SMO CDNA或基因组AtC4SMO片段的克隆,使用引物M13/pUC通配正向和反向引物,C4SO1和C4SO2测序。
植物表达载体使用引物对c1C4SOp1/c1C4SOp2通过PCR扩增AtC4SMO,将限制性酶切位点Af1III和SacI分别导入基因的5′和3′末端。该扩增反应在常规条件下进行,使用校读酶Pfu Turbo DNA聚合酶将错配减至最低。将得到的扩增产物纯化,用Af1III和SacI切割,然后插入pNH2,位于康乃馨蚀环病毒(CERV)启动子的下游和胭脂碱合成酶(NOS)终止子上游,得到pNH64。通过消化(HindIII和EcoRI)切割出pNH64中的表达框,然后插入pSJ35的相应位点得到pNH65。使用引物CERV1S、c1C4Sop1、c1C4Sp2和NosAs对载体pNH64测序,使用引物CERV1S和NosAs对pNH65测序,以证实其真实性。
测序测序使用的所有质粒DNA都用Qiagen mini spin试剂盒进行了纯化。测序使用荧光标记核苷酸在ABI 377测序仪上进行。
植物转化用电穿孔方法将二元载体转化入根癌农杆菌LBA4404(Shen andForde,Nucl.Acids Res.17,8385,1989)。烟草cv.SR1使用An等,Plant Physiol.88547-552(1988)中描述的叶盘(leaf disc)法转化。使用引物对CERV1S/NosAs通过PCR筛选含有转化基因的植物。将这些植物转移入土壤。
转录分析使用Rnaqueous试剂盒按照供应商推荐的方法(Ambion,Austin,USA),从幼小(7-8叶期)的NH65和SR1植株中分离总RNA。将总RNA用Dnase处理除去其中污染的任何基因组DNA,然后用获自Gibco-BRL的3′-RACE系统(Life Technologies Ltd.,UK)转化为cDNA。用Primer Express软件设计针对AtC4SMO(TaqC4S1和TaqC4S2)和烟草tac9肌动蛋白(TaqA1和TaqA2)基因的Taqman引物对。这些引物对与Sybr Green(Applied Biosystems,USA)一起用于Taqman PCR反应检测转基因样本和对照样本中AtC4SMO及tac9的转录本水平。按照Applied Biosystems提供的手册,相对于SRI烟草中的转录本水平计算转基因烟草中的AtC4SMO转录本水平。
甾醇分析将成熟的叶片和种子组织冻干,80℃下用氯仿/甲醇2∶1(v/v)抽提。过滤并除去溶剂后,将液态残留物溶于甲苯,然后用甲醇钠浓缩为0.33M。将混合物在80℃下加热30分钟,然后在5.6%(w/v)三氟化硼存在条件下80℃继续加热10min。在二乙醚抽提和水洗涤后,蒸发去醚,通过加入三甲基氯硅烷/N,O-双(三甲基硅烷基)乙酰胺(5∶95)然后50℃加热10分钟将游离甾醇硅烷基化。用装配有BPX5柱的Perkin Elmer 8420 GC进行了GC分析。温度程序为80-230℃的升温速率为45℃/分钟,然后230-280℃的升温速率4℃/分钟,355℃保持6分钟。使用Turbochrom软件对峰值区进行自动计算。使用连接于Quadrapole 5972A MSD的Hewlett Packard 5890 GC鉴定甾醇。
实施例1从Arabidopsis克隆C4SMO用来自酵母(ERG25)的C4SMO的一级序列作为探针对拟南芥蛋白组进行搜索鉴定同源蛋白。发现了一种与ERG25具有37%同一性的推定的C4SMO(At2g29390)。设计PCR引物从cDNA库或基因组DNA扩增出相应的AtC4SMO基因。cDNA克隆含有一个762bp的开放阅读框(ORF),该阅读框编码一253个氨基酸的蛋白质(图2)。AtC4SMO的预期分子量为29.5-kDa。该蛋白不仅与ERG25蛋白(36.5-kDa)类似,而且类似于纯化自大鼠肝的29-kDa C4SMO(Maitra等.,Biochem.Biophys.Res.Commun.108517-525,1982)。AtC4SMO的一级序列含有4个富含组氨酸的基序(H139RILH,H152SVHH,H210CGYH,H232DYHH),表明为非-亚铁血红素的含铁酶(Shanklin等,Biochem.3312787-12794,1994)。此前已提出ERG25属于同一类酶(Bard等.,Proc.Natl.Acad.Sci.USA 93186-190,1996),这进一步支持了AtC4SMO是ERG25的植物同系物。
将基因组序列与推定的AtC4SMO ORF比对,AtC4SMO ORF揭示出拼接模式,其中含有6个外显子和5个内含子。用SeqWeb软件包(Genetic Computer Group Inc)分析AtC4SMO中是否存在信号肽和跨膜结构域。结果发现AtC4SMO具有一可能的氨基-末端信号肽,该信号肽引导多肽迁移至内质网(ER)。但是,羧基末端不含有停留于ER内腔必需的特征性的KDEL基序。用疏水标绘(hydrophobicity plots)没有鉴定出明确的切割位点,但是鉴定出了三个可能的跨膜结构域(第64-86位、第99-121位、154-176位氨基酸)。综合分析,这些论断表明AtC4SMO是一种定位于ER膜的整合膜蛋白(integral membraneprotein)。这与甾醇生物合成中涉及的其他酶的定位一致,例如HMGR(Bach等.,Crit.Rev.Biochem.Mol.Biol.34107-122,1999)。
野生型烟草中的AtC4SMO过表达将AtC4SMO置于位于胭脂碱合成酶(NOS)终止子上游的组成型康乃馨蚀环病毒(CERV)启动子的调控之下,得到二元载体pNH65。用该载体通过叶盘法转化野生型烟草,用潮霉素(25mg/L)筛选转化株。对30个转基因植株进行PCR筛选。用实时PCR对选取的转基因品系中AtC4SMO转录情况进行了分析。如图3所示,被分析的NH65品系都显示AtC4SMO表达升高。最高的表达品系NH6516展现的转录水平比野生型对照平均水平高23倍。
对NH65品系叶片和种子组织中的甾醇含量进行了分析。为了评估AtC4SMO的表达效果,计算环阿屯醇(CA)与24-亚甲基环木菠萝烷醇(24MCA),24-亚甲基-4-甲基-7-烯胆甾烷醇(24Mloph)或24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)的比例。叶片中甾醇的积聚高度地依赖于组织的龄期(Chappell等,Plant Physiol.109,1337-1343,1995;Schaller等,Plant Physiol.118461-469,1995),这在成熟烟草叶片中总甾醇含量不同上得到清楚反映,但是比值计算克服了这一情况。另外,由于CA是第一个甾醇-中间体,所以CA的量能够反映划分给甾醇生物合成的碳的通量。因此,如果C4SMO的任一种底物的相对水平降低的话,那么CA与24MCA、24Mloph或24Eloph的比值将增大。
对5个独立SR1和3个NH65品系的叶片组织中的CA、24MCA、24Eloph及总甾醇进行了测量(表2)。
表2野生型烟草叶片及表达AtC45M O的烟草叶片中环阿屯醇(CA)、24-亚甲基环木菠萝烷醇(24MCA)、24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)和总甾醇的水平
a,根据5个独立SR1植株计算得到的平均偏差和标准偏差。b,干重的%。c,检测下限<0.001%干重。d,使用0.001%干重计算CA24MCA和CA24Eloph之比。
24Mloph的水平低于检测下限(<0.001%干重),因此被排除在外。根据高的AtC4SMO转录水平选择3个NH65品系(图3)。在所有被分析的NH65品系中,24MCA的绝对含量全部降低(表2)。NH65品系的CA24MCA比值为4.5(NH6518)和10.3(NH657),明显高于野生型(SR1)的数值(2.6)。这表明推定的AtC4SMO能够将24MCA转化为下游产物。所有3个NH65品系叶片中24Eloph的量都无法检测(<0.001% of dry weight),而野生型对照的该数值为干重的0.0037%(表2)。当24Eloph无法检测时,使用检测下限0.001%干重估计CA24Eloph的比值。与野生型对照(2.9)相比,NH65品系中的CA24Eloph比值明显增大(达到11.3)(表2)。这表明AtC4SMO还能催化24Eloph转化为下游的甾醇产物。
另外,还对10个独立的NH65品系的种子组织中的甾醇组成进行了分析。如表3所示,在所有10个NH65品系中,24MCA和24Eloph的水平都明显降低,而24Mloph水平却无明显变化。计算CAC4SMO底物之比也反映了这样的变化。CA24MCA之比排名前5位的NH65品系中的这一比值比野生型烟草高出两倍多,排名首位的NH65品系中CA24Eloph之比比野生型高出4倍多(图4)。但是,NH65品系中的CA24Mloph比值却与对照保持不变。
表3野生型烟草和表达AtC4SMO的烟草种子中环阿屯醇(CA),24-亚甲基环木菠萝烷醇(24MCA)、24-亚甲基-4-甲基-7-烯胆甾烷醇(24Mloph),24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)及总甾醇的水平
a,根据5个独立的SR1植株计算处的平均偏差和标准偏差。b,干重的%种子中,AtC4SMO优选催化24MCA和4Eloph的转化,而24Mloph的水平保持不变。叶片中,AtC4SMO还催化24MCA和24Eloph向下游甾醇的转化,但是由于该组织中24Mloph没有达到可检测水平,所以不能确定24Mloph的转化是否发生。
过表达C4SMO的烟草种子中4,4-二甲基-,4-单甲基-和4-脱甲基甾醇的分布发生变化计算野生型(SR1和SJ35)和NH65品系种子组织中含量最丰富的二-,单-和脱-甲基甾醇的相对分布。4,4-二甲基甾醇包括环阿屯醇和24-亚甲基环木菠萝烷醇,4-单甲基甾醇包括24-亚甲基-4-甲基-7-烯胆甾烷醇和24-亚乙基-4-甲基-7-烯胆甾烷醇,而4-脱甲基甾醇包括Δ7-燕麦甾醇、异岩藻甾醇,谷甾醇,豆甾醇,菜油甾醇和胆甾醇。如表4所示,NH65品系种子中4,4-二甲基甾醇的相对水平与野生型相比无明显不同。但是,所有NH65品系中4-单甲基甾醇相对水平与对照水平相比全部降低。另外,25个NH65品系中23个的4-脱甲基甾醇相对水平升高。此外,AtC4SMO转录与甾醇谱之间的强相关表现在NH6516品系上,NH6516品系表现出最低相对水平的4-单甲基甾醇,最高相对水平的4-脱甲基甾醇和最高的AtC4SMO转录水平(图3,表4)。
表4.过表达AtC4SMO的烟草中4,4-二-、4-单-和4-脱甲基甾醇的相对水平
a,根据5个独立SR1和SJ35计算出的平均偏差和标准偏差。b,二甲基甾醇包括环阿屯醇和24-亚甲基环木菠萝烷醇。c,单甲基甾醇包括24-亚甲基-4-甲基-7-烯胆甾烷醇和24-亚乙基-4-甲基-7-烯胆甾烷醇。d,脱甲基甾醇包括Δ7-燕麦甾醇、异岩藻甾醇、谷甾醇、豆甾醇、菜油甾醇和胆甾醇。e,计算为占总甾醇的%。
实施例2C4SMO、tHMGR和SMT1在转基因烟草中的共表达在高甾醇背景中过表达AtC4SMO已经获得了共表达橡胶hmg1截短形式和烟草SMT1的烟草植株,描述见WO 02/42477。
用橡胶hmg1作为模板,克隆出了Hevea HMGR的不含N-末端膜结合区域的截短形式。使用根据公开的序列[Chye等(1991)PlantMol Biol 19473-84]设计的引物克隆Hevea brasiliensis(H.B.K.)Mull.Arg.thmgl。正向引物5′-CCTACCTCGGAAGCCATGGTTGCAC-3′I中引入克隆用的一个新的起始密码子(粗体)和一个Nco I限制酶切位点(下划线)。反向引物5′-CATTTTACATTGCTAGCACCAGATTC-3′含有一个下游亚克隆使用的Nhe I限制酶切位点(下划线)。使用质粒pNH8作为PCR(30个循环)的模板DNA,使用Pfu聚合酶在常规条件下进行,得到预期大小约为1.3kb的片段。得到的thmg1基因编码全长(575个氨基酸)hmg1序列中的第153-575位氨基酸(PCT/EP/00/09374中的
图11b)。按照厂商的说明书,将所述thmg1 PCR产物克隆入pGEM-T载体(Promega),然后测序证实真实性。将H.brasiliensis tHMG1克隆入pNH4(参见PCT/EP/00/009374)多接头中的NcoI和NheI位点之间,得到pMH3,这些酶切位点位于CaMV 35S双启动子(double promoter)和nos终止子之间(参见PCT/EP/00/09374)。通过用Xma CI和Sal I消化分离这种嵌合基因,然后进行纯化并克隆入pNH9中相应的多接头位点,在除去了原先位于该位点的嵌合全长hmg1基因后,随后进行二元载体的纯化。通过首先将来自pNH2的Cerv启动子和nos终止子框插入消化后的pSJ34的EcoRI和XmaI之间,得到二元载体pNH9,然后将烟草甾醇甲基转移酶1型(Ntsmtl-1)的基因置于Cerv启动子的调控之下。所述二元载体pNH9还含有克隆自烟草的smt1基因,该基因被置于CERV病毒启动子的转录调控之下。这种二元构建体命名为pMH7。
将电感受态(Electrocompetent)根癌农杆菌细胞(菌株LBA4404)置于冰上解冻,然后加入5ng载体质粒。然后将加质粒的细胞放置入预冷的电穿孔容器,用Bio Rad Gene Pulser进行电穿孔,参数为25pF电容和600ohms。电穿孔后立即加入950μl的2X TY肉汤,轻轻地混合细胞,然后装入灭菌小瓶中。将细胞在28℃下振摇2小时,然后将25μl的等份置于含利福平50μg/ml和卡那霉素50μg/ml的固体Lennox培养基,28℃下孵育3天。用单个菌落接种到10μl水(用于PCR验证)和500μl含利福平50μg/ml和卡那霉素50μg/ml的Lennox培养基。
将PCR阳性培养物接种10ml含利福平50μg/ml和卡那霉素50μg/ml的Lennox培养基肉汤。将过夜培养物3000g离心,然后重悬于等体积的MS培养基(3%蔗糖)。从生长在组织培养基中的植株的幼嫩烟草叶片切取叶片节段(Leaf segments)。将节段直接置入农杆菌溶液,放置10分钟。然后取出该节段,将上表面朝下放置在培育平板(feeder plates)上(10个/平板),22℃弱光下放置2天。将所述叶片节段,上表面朝上,放置在含头孢氨噻肟500μg/ml和卡那霉素50μg/ml的加激素的烟草发芽培养基上,置于24℃ 16小时光/8小时暗规律的生长室。3周后,将愈伤节段转移到装有烟草发芽培养基的Magenta盆中。新芽一旦形成,立即切取,置于含头孢氨噻肟500μg/ml和卡那霉素50μg/ml的但不加激素的烟草发芽培养基上,生根。然后将生根的植株栽培入50%珍珠岩/50%堆肥混合物,放置入繁殖器。1周后,从繁殖器中取出植株,然后栽培入5英寸的罐中。开花一旦开始,将纸包立即放置在花上防止交叉授粉。当开花结束荚形成的时候,取走纸包,收获成熟的荚。从干的荚收获成熟的叶片和种子,储存用于随后的分析。
得到的转基因烟草品系MH753共表达截短的橡胶HMGR和烟草SMT1。因此,正是这些过量积聚的中间体作为甾醇甲基氧化酶(C4SMOs)的底物,即,24-亚甲基环木菠萝烷醇(24MCA)、24-亚甲基-4-甲基-7-烯胆甾烷醇(24Mloph)和24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)(表5)。
按照上述方法用NH65再-转化MH753叶盘,表达AtC4SMO,根据对潮霉素(25mg/L)的抗性筛选转化体。通过PCR选取20个转基因MH7xNH65植株。用实时PCR对选取的MH7xNH65品系中的tC4SMO转录水平进行分析。如图5所示,所分析的MH7xNH65品系全都表现AtC4SMO表达升高。表达最高的品系是MH7xNH6510,其中表达的AtC4SMO转录本比野生型对照的平均水平高17倍。
表5野生型烟草叶片和共表达tHMGR、SMT1及AtC4SMO的烟草叶片中环阿屯醇(CA)、24-亚甲基环木菠萝烷醇(24MCA)、24-亚甲基-4-甲基-7-烯胆甾烷醇(24Mloph)、24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)以及总甾醇的水平
a,根据5个独立SR1品系和4个独立的MH753品系计算得到的平均偏差和标准偏差。b,占干重的%。c,检测下限<0.001%干重。
叶片组织的分析对高表达C4SMO的两个品系MH7xNH6510和MH7xNH6528的成熟叶片组织中的甾醇含量进行分析。这些品系中的24MCA绝对水平分别为0.137-0.196%干重,远远低于MH753背景的24MCA水平(0.427%干重)(表5)。MH7xNH6510和28的CA24MCA之比明显高于MH753背景(图6A)。24Mloph水平明显低于品系MH7xNH6510但不低于MH7xNH6528(表5)。但是,当通过计算CA24Mloph比值将全部碳通量计算在内时,这两个转基因品系都表现出比MH753背景更高的比值(图6A)。品系MH7xNH6510和MH7xNH6528中的24Eloph绝对含量都明显低于MH753背景(表5)。此外,这些转基因植物的CA24Eloph比值都升高至MH753对照之上(图6A)。
种子组织的分析与亲本MH7品系相比,MH7xNH6510和MH7xNH6528品系的种子组织中24MCA和24Mloph的绝对水平无明显变化(表6)。
表6野生型烟草叶片和共表达tHMGR、SMT1及AtC4SMO的烟草叶片中环阿屯醇(CA)、24-亚甲基环木菠萝烷醇(24MCA)、24-亚甲基-4-甲基-7-烯胆甾烷醇(24Mloph)、24-亚乙基-4-甲基-7-烯胆甾烷醇(24Eloph)以及总甾醇的水平
a,根据5个独立的SR1品系和4个独立的MH7XSJ35品系计算得到的平均偏差和标准偏差。b,占干重的%。
相反,这两个品系中的24Eloph水平明显低于MH7背景。广泛地,CA与C4SMO底物之间的比例在种子和叶片中显示相同模式(图6A和B)。主要的差别在于MH7xNH6510和MH7xNH6518中CA24Mloph的比值明显高于亲本MH7。
综合这些结果表明AtC4SMO可以24MCA和24Eloph向下游植物甾醇的转化。另外,AtC4SMO还能催化叶片中24Mloph的转化,但是不能催化种子中的转化,这一点可以用底物特异性的不同或者下述事实得到解释叶片中甾醇生物合成途径中的全部碳通量高于种子。
共表达EMGR,SMT1和C4SMO的烟草种子中4,4-二甲基-,4-单甲基-和4-脱甲基甾醇的分布发生变化计算野生型(SR1)、NH7和两个MH7xNH65品系(10和28)品系中含量最丰富的二-,单-和脱-甲基甾醇的相对分布。4,4-二甲基甾醇包括环阿屯醇和2 4-亚甲基环木菠萝烷醇,4-单甲基甾醇包括24-亚甲基-4-甲基-7-烯胆甾烷醇和2 4-亚乙基-4-甲基-7-烯胆甾烷醇,而4-脱甲基甾醇包括Δ7-燕麦甾醇、异岩藻甾醇,谷甾醇,豆甾醇,菜油甾醇和胆甾醇。如表7所示,MH7xNH65品系种子中4,4-二甲基甾醇的相对水平近似于MH7背景。但是,两个MH7xNH65品系(10和28)中4-单甲基甾醇相对水平与背景(MH7)相比全部降低。另外,两个MH7xNH65品系中的4-脱甲基甾醇相对水平都升高。此外,表达与甾醇谱之间的强相关表现在AtC4SMO表达最高的MH7xNH6510品系上,MH7xNH6510品系还表现出最低相对水平的4-单甲基甾醇和最高相对水平的4-脱甲基甾醇。
表7.MH7xNH65烟草种子中4,4-二-,4-单-和4-脱-甲基甾醇的分布
a,根据5个独立的SR1品系和5个独立的MH7XSJ35品系计算得到的平均偏差和标准偏差。
权利要求
1.一种用于提高植物中4-脱甲基甾醇水平的方法,该方法包括加强4-单甲基和4,4-二甲基甾醇的酶促脱甲基化。
2.权利要求1所述的方法,其中所述植物中4-单甲基甾醇和4,4-二甲基甾醇的水平降低。
3.权利要求1或2所述的方法,其中所述植物经过修饰,与野生型植物相比提高了4-单甲基和/或4,4-二甲基甾醇的产量。
4.权利要求3所述的方法,其中所述植物具有比野生型植物高的HMGR活性。
5.权利要求3或4所述的方法,其中所述植物具有比野生型植物高的SMT1活性。
6.权利要求1-5中任一项所述的方法,其中所述的4-脱甲基甾醇选自β谷甾醇、谷甾烷醇、豆甾醇、菜子甾醇、campestanol、异岩藻甾醇、菜油甾醇、表甾醇及其混合物。
7.权利要求1-6中任一项所述的方法,其中通过提高植物中C4SMO活性来加强所述的酶促脱甲基化。
8.权利要求7所述的方法,其中通过提高C4SMO编码基因的表达来提高植物中的C4SMO活性。
9.权利要求8所述的方法,其中所述基因为异源基因。
10.权利要求9所述的方法,其中所述的C4SMO编码基因源自拟南芥属(Arabidopsis)。
11.权利要求1-10中任一项所述的方法,其中所述植物为烟草、加拿大双低油菜-卡诺拉(canola)、向日葵、油菜或大豆。
12.一种与野生型植物相比4-脱甲基甾醇水平升高了的植物,其中4-脱甲基甾醇水平的升高是由权利要求1-11中任一项所述的方法实现的。
13.权利要求12所述的植物,其中与野生型植物相比所述植物中4-脱甲基甾醇相对于4-单甲基和4,4-二甲基甾醇的比例升高。
14.一种转化植物的方法,该方法包括(a)用重组DNA构建体转化植物细胞得到转化后的植物细胞,该DNA构建体中含有编码具有C4SMO活性的多肽的DNA节段和驱动所述多肽在所述植物细胞中表达的启动子;(b)使上述转化后的植物细胞再生成转基因植物;以及(c)选取与同种植物野生型株系相比4-脱甲基甾醇水平升高的转基因植物。
15.权利要求14所述的方法,其中4-脱甲基甾醇水平的升高发生在植物的种子中。
16.权利要求14或15所述的方法,其中所述转化后的植物是权利要求12或13所述的植物。
17.一种用于制备含4-脱甲基甾醇的油的方法,该方法包括从权利要求12或13所述植物中提取甾醇。
18.权利要求17所述的方法,其中所述的油提取自植物的种子。
19.权利要求18所述的方法,其中所述的种子是通过培育该植物一代或多代然后收获种子获得的。
20.可从权利要求12或13所述植物获得的植物物质。
21.权利要求20中所述的植物物质为种子。
22.一种产品,其中含有权利要求17-19中任一项所述方法制备的油。
23.权利要求22所述的产品,该产品为食品、食品加工中使用的油、润滑油、燃料油或者制备碳氢化合物使用的原料。
24.表达C4SMO的基因在提高植物中甾醇水平中的用途。
25.权利要求22的产品在权利要求1-11中任意一项所述方法中的应用。
全文摘要
一种用于提高植物中4-脱甲基甾醇水平的方法,该方法包括增强4-单甲基和4,4-二甲基甾醇的酶促脱甲基反应。所述酶促脱甲基反应可以通过使用表达C4甾醇甲基氧化酶(C4SMO)的基因实现。
文档编号A01H5/00GK1668748SQ03816741
公开日2005年9月14日 申请日期2003年6月26日 优先权日2002年7月16日
发明者N·霍姆伯格, R·萨福德 申请人:荷兰联合利华有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1