用于水分配和土壤水分确定的方法和系统与流程

文档序号:20766282发布日期:2020-05-15 18:58阅读:276来源:国知局
用于水分配和土壤水分确定的方法和系统与流程

本申请要求2017年8月14日提交的澳大利亚临时专利申请第2017903250号和2018年5月8日提交的澳大利亚临时专利申请第2018901564号的优先权,其全部内容通过引用合并于此。

本发明的一些方面涉及用于灌溉和/或按照别的方式水分分配的方法和系统。这些方法和系统中的一些依赖于土壤水分含量的估计。本发明的其他方面涉及估计土壤水分。这些其他方面中的一些依赖于太阳强度的指示。本发明的进一步的方面涉及获得太阳强度的指示。

这里仅通过示例的方式参考灌溉来描述本发明。可以在其他上下文中应用其他示例,例如,所公开的水分配方法可以应用于洪水管理。同样,对土壤水分和太阳强度的估计可能对除了水分配之外的其他目的有用。



背景技术:

灌溉通常是陆地淡水的最大消耗者。它还导致最大数量的水浪费。现有的灌溉系统通常具有35%至50%的范围内的水交付效率。也就是说,在从集水区交付水时,只有不到一半量的交付水将到达其最终目的地。

在典型的灌溉系统中,大约30%的水从水坝到运河闸门损耗。损耗可能是由于操作溢出、差测量、泄漏、渗漏、和蒸发引起的。从闸门到农场,存在进一步的50%的水损耗。此阶段的损耗可能是由于差服务、慢交付、变化的流动、和差控制。从农场到植物/农作物存在进一步水损耗,这可能是由于水交付的不精确的定时以及农作物测量(以确定农作物是否需要水)的缺乏造成的。典型地,从集水区分流的水中的仅35%会到达农作物。

另外,现有的灌溉系统无法实现到农场的一贯流速。现有的计算土壤水分蒸散(et)的方法利用卫星数据。但是,由于田地和卫星之间存在间隔,因此从这些现有方法获得的et数据不准确。

本发明的实施例试图提供水分配中的改进和用于水分配的改进;土壤水分、et估计和/或太阳强度指示;或至少为公众提供有用的选择。

不承认该专利说明书中的任何信息是公知常识,也不承认可以合理地预期本领域技术人员在优先权日之前探知(ascertain)或理解这些信息、将这些信息视为相关、或以任何方式组合这些信息。



技术实现要素:

根据一个方面,本发明提供了一种用于在空间上推导要灌溉的灌溉区内选定位置处的土壤水分的方法,所述方法包括以下步骤:

使用系统标识技术基于从以下测量参数的预定选择来产生用于蒸散的算法:太阳辐射光谱、风速、温度、湿度、农作物因素、土壤类型、大气压力、灌溉历史数据、以及来自在多个代表性位置中的每个位置处的太阳能面板的能量测量值;

通过由相应的土壤水分传感器直接测量所述代表性位置中的每个位置处的土壤中的水分,来校准所述算法;和

使用利用所述算法的降雨、土壤类型、灌溉历史数据和农作物因素的测量参数,以推导或内插所述灌溉区内所述选定位置处的土壤水分。

在实施例中,所述土壤类型由地面穿透雷达确定,以开发所述雷达信号与所述土壤的持水容量之间的关系。

在实施例中,所述灌溉历史数据基于灌溉的时间和量,以提供关于所述土壤水分的饱和度数据和/或所述太阳辐射光谱包括可见光和近红外光。

在另一实施例中,还包括灌溉管理系统,用于灌溉所述灌溉区的预定区域,所述灌溉管理系统监视:所述预定区域的所述推导的或内插的土壤水分;到所述预定区域的灌溉水的可用性;以及来自最终用户的对于所述预定区域的定时灌溉的请求;并且允许基于所述监视对于所述预定区域发生请求的灌溉。

在又一实施例中,所述灌溉管理系统监视来自集水区的灌溉输送网络,以将水供给到根据所述最终用户的需求要灌溉的区域。所述灌溉管理系统在所述多个代表性位置处监视所述土壤水分,并监视以下各项中的至少一项或多项:气候预报、来自最终用户的水订单、农作物细节、水位、和所述灌溉区的流量闸门打开测量。

根据另一方面,本发明提供了一种土壤水分确定系统,用于在空间上推导要灌溉的灌溉区内选定位置处的土壤水分,所述系统包括与所述灌溉区内的多个气象站连接的联网计算机系统,以测量来自以下的选择:太阳辐射光谱、风速、降雨、温度、湿度、大气压力、以及来自在多个代表性位置中的每个位置处的太阳能面板的能量测量值,所述联网计算机系统具有对于所述代表性位置处的农作物因素、土壤类型、和灌溉历史数据的数据访问,所述联网计算机系统使用系统标识技术以基于来自气象站测量值的预定选择、以及对于所述代表性位置处的农作物因素、土壤类型、和灌溉历史数据的数据访问,来产生用于蒸散的算法;所述联网计算机系统通过由相应的土壤水分传感器直接测量所述代表性位置中的每个位置处的土壤中的水分,来校准所述算法;并使用利用所述算法的降雨、土壤类型、灌溉历史数据和农作物因素的测量参数,以推导或内插所述灌溉区内所述选定位置处的土壤水分。

在实施例中,所述土壤类型由地面穿透雷达确定,以开发所述雷达信号与所述土壤的持水容量之间的关系。所述灌溉历史数据基于灌溉的时间和量,以提供关于所述土壤水分的饱和度数据。

在另一实施例中,所述太阳辐射光谱包括可见光和近红外光。

在本发明的又一方面中,提供了一种用于灌溉灌溉区的预定区域的灌溉管理系统,包括先前定义的土壤水分确定系统,所述灌溉管理系统监视:所述预定区域的所述推导的或内插的土壤水分;到所述预定区域的灌溉水的可用性;以及来自最终用户的对于所述预定区域的定时灌溉的请求;并且允许基于所述监视对于所述预定区域发生请求的灌溉。

在实施例中,所述灌溉管理系统监视来自集水区的灌溉输送网络,以将水供给到要根据所述最终用户的需求灌溉的区域。所述灌溉管理系统在所述多个代表性位置处监视所述土壤水分,并监视以下各项中的至少一项或多项:气候预报、来自最终用户的水订单、农作物细节、水位、和所述灌溉区的流量闸门打开测量。

在又一实施例中,所述气象站包括有多个所述流量闸门。

根据一个方面,本发明提供一种控制水分配系统的方法,该系统具有至少一条至少主要是自由表面的流动路径,水可从该流动路径交付到土壤;和该方法包括

基于至少以下来控制系统

土壤的水分含量;和

至少一个供给指示器,其中所述至少一个供给指示器是以下至少之一的指示器:

该系统中的至少一个水量;

水向该系统的流入;和

水向该系统的将来流入。

在实施例中,所述控制包括促使水被交付到土壤,以根据以下至少一个来利用土壤接受水的容量:a)响应于水的盈余;和b)预料到水的盈余。该系统优选地包括系统部分,水从所述系统部分被交付。所述方法优选地包括减少系统部分中的水量,以使得系统部分内的存储容量可用于捕获盈余的水。

根据另一方面,本发明提供一种控制水分配系统的方法,该系统具有至少一条至少主要是自由表面的流动路径;并且该方法包括根据交付调度从该流动路径交付水;接收作为以下至少之一的指示器的至少一个供给指示器:

该系统中的至少一个水量;

水向该系统的流入;和

水向该系统的将来流入;和

至少基于所述至少一个供给指示器,影响所述交付调度。

在实施例中,所述流动路径为至少100km长。

在实施例中,所述至少一个供给指示器是以下至少之一的指示器:

该流动路径上游的系统中的至少一个水量;

水向该流动路径上游的系统的流入;和

水向该流动路径上游的系统的将来流入。

在实施例中,所述控制包括控制水向流动路径的供给。

根据另一方面,本发明提供了一种方法,该方法包括利用为装置供电的至少一个光伏的输出作为太阳强度的指示。

在实施例中,该装置是机电装置。该装置可以是例如水控制屏障、泵、流量计、和水位传感器中的一个或多个。

根据另一方面,本发明提供了一种估计土壤的水分含量和来自土壤的蒸散中的至少一个的方法,所述方法包括将逻辑应用于为装置供电的至少一个光伏的输出。

在实施例中,该装置是机电装置。该装置可以是例如水控制屏障、泵、流量计、和水位传感器中的一个或多个。

根据另一方面,本发明提供一种用于估计整个农业区域中土壤水分含量的空间可变估计的方法,包括将逻辑应用于指示至少以下的数据:

气温;

降雨;

风速;

相对湿度;

太阳强度;和

土壤的一种固有特性。

在实施例中,该数据指示与农业区域相关联的灌溉历史。

在实施例中,所述数据指示至少在所述农业区域附近的至少两个点处的气温。

在实施例中,所述数据指示至少在所述农业区域附近的至少两个点处的降雨。

在实施例中,所述数据指示至少在所述农业区域附近的至少两个点处的风速。

在实施例中,所述数据指示至少在所述农业区域附近的至少两个点处的相对湿度。

在实施例中,所述数据指示可见光的能量密度。

在实施例中,所述数据指示近红外光的能量密度。

在实施例中,所述数据指示至少在所述农业区域附近的至少两个点处的土壤的至少一种固有特性。

在实施例中,所述数据包括来自至少在所述农业区域附近的至少一个土壤水分传感器的输出。

根据另一方面,本发明提供了一种估计整个农业区域中土壤水分含量的空间可变估计的方法,该方法包括将逻辑应用于指示至少以下的数据:

来自至少所述农业区域附近的至少一个土壤水分传感器的输出;和

空间可变的卫星数据。

在实施例中,所述数据指示可见光的能量密度。

在实施例中,所述数据指示近红外光的能量密度。

在实施例中,该方法包括将逻辑应用于为装置供电的至少一个光伏的输出。该装置优选是机电装置。该装置可以是例如水控制屏障、泵、流量计和水位传感器中的一个或多个。

在实施例中,所述应用逻辑是应用具有被调整为适合所述农业区域的参数的模型。

在实施例中,所述应用逻辑是应用从系统标识推导出的模型。

附图说明

现在将仅以示例方式参考附图来描述该设备的实施例,其中:

图1以简化的图示表示示出了典型的现有技术的水分配或灌溉系统;

图2示出了本发明的综合集水管理系统的框图;

图3示出了样品时间线中土壤水分与时间的图表;

图4示出了参考图1描述的改进的闸门或调节器的放大图;

图5以简化的图示表示示出了水分配或灌溉系统的实施例;和

图6示出了用于灌溉水供给的自动供给处理。

具体实施方式

优选实施例涉及一种使用用于供水的空间非常大的明渠网络的水分配系统(或灌溉输送网络)。除灌溉外,水分配系统还可用于工业应用、以及用于例如城市部门。这些输送系统主要在平坦的地形中在重力作用下运行,这样,以相对慢的方式运送水(与加压管道的近乎瞬时响应相比)。

在500km长的河流(或其他至少主要是自由表面的流动路径)的上下文中,上游通量(例如暴风雨事件)可能需要花费几天来传播并导致更高水位下游。根据各种现有方法,传播的盈余可能超过可用的干舷(freeboard),这导致溢流和浪费。它也可以穿过通往大海途中的封闭的土壤供给水出口或闸门,在那里其也被浪费了。

系统被配置为避免这种浪费。通过在预料到这样的盈余的情况下打开下游土壤供给水出口或闸门,可以降低流动路径下游部分的水位(土壤供给出口或闸门从该流动路径输送水),以使得下游干舷可用于捕获该盈余。

在预料到盈余的情况下打开出口或闸门有效地利用土壤的存储容量。通过还考虑土壤可用存储容量,可以在捕获盈余和过度浇水(overwatering)之间达成最佳折衷。这里使用的“土壤可用存储容量”和类似术语用作对土壤的存储容量(土壤的固有特性)与土壤的水分含量之间的差异的参考;即用作在土壤饱和之前可以存储多少附加水的参考。同样,可以考虑与农作物对于水的需求或耐受相关联的成本函数。

在预料到通量的情况下,也可以例如响应于集水区域中的降雨预报或响应于预示融化水的涌入的温度预报,而降低流动路径的上游部分中的水位(例如设定点)。

图1是水分配系统或灌溉输送网络100的极为简化的图示表示,该系统包括由河流或小河(未示出)馈送的上部集水区或水坝120;天然载体(例如河流)130和运河池140;从这些自然载体130和/或运河池140中抽取(offtake)的运河160;和用于将水交付到农场180上的农作物190的沟渠170。

系统100将水分配到农作物190和农场180(例如,响应于水订单和/或作为交付调度的一部分)。从上游集水区120通过河流130和运河池140和运河160依次向农场180供给水。基于客户需求、灌溉计划、和分配网络100中可用的水的供给中的一项或多项,将水交付到农作物190和农场180。

水流由闸门或调节器132控制,典型是但不限于,过冲闸门。此类闸门或调节器132的示例在pct申请号pct/au2001/001036的申请人的控制门(公开为wo2002/016698,其内容通过引用合并于此)中示出。考虑到来自河流130和运河池140的水的输出,可以通过图1中示出的多个闸门或调节器132来调节河流130和运河池140中的水。pct申请号pct/au2002/000230的申请人的流体调节(公开为wo2002/071163a1,其内容通过引用合并在此)描述了为水交付或从水潭(basin)到农作物的实际物理水交付提供决策支持的方法和系统。

每个闸门或调节器132由集成到其结构中的电动机驱动,并由与位于基座136上的太阳能电池134耦合的可再充电电池供电。基座136包含所需的电子和通信系统,以使得每一闸门或调节器132能够进行操作,并使得能够收集有关闸门打开位置和流经闸门或调节器132的水量的数据。可以通过无线电或其他电信协议使用天线138以无线方式接收和传送数据,以与远程计算机系统形成网络。

水分配系统100在集水区120的储存库和运河160之间提供至少主要是自由表面的流动路径。此处使用术语和类似技术:

·开放式灌溉沟渠和/或河流是自由表面的流动路径的示例;以及

·道路下方的短的管道部分所破坏的长的开放式灌溉沟渠是主要是自由表面的流动路径的示例。

参考图2,提供了集成的集水区管理系统200。该集成集水区管理系统200说明与水分配系统100相关联的空间和时间特性,以便使得水分配系统中的供给与农场/农作物180的需求相匹配。该集成集水区管理系统200提供了预报和先占(pre-empt)需求和供给状况两者,以便提供更好的操作结果,例如按照农作物所需的及时方式交付水,在交付中没有(或具有最小)水损耗。此外,该集成集水区管理系统在可用时考虑(并利用)供水。通过使得供给和需求匹配,该集成集水区管理系统能够减少用户发生水供给过多(浪费)或水供给不足。

该集成集水管理系统200包括控制布置,例如一个或多个计算机处理器,用于接收和处理与水分配系统100有关的信息。水分配系统的一个或多个处理器另外配置为控制水分配系统的操作或向操作者/农民提供报告。一个或多个处理器可以另外实现用于管理水分配系统的学习算法和自动化。该集成集水管理系统另外提供有用于与分布在水分配系统100上的传感器和致动器进行通信的通信模块。该通信模块优选地支持无线通信,诸如经由无线电传输、wi-fi、蓝牙、和/或任何其他ieee802.11通信标准。

使用数据和模型来代表水分配系统中需求侧和供给侧的层级(tiers),该集成集水管理系统200寻求使需求与供给相匹配。通过建模和分析水分配系统的每一不同层级,系统200能够预报水分配系统的任一侧的供需状况,以提供满足操作目标的最佳决策和结果。从而,使得对农作物190和农场180的水供给过多或水供给不足的风险最小化。

该集成集水管理从农作物根系级别到使用信息的实时(例如,至少每天或至少每小时一次)测量和实时互通的更广泛的水潭级别的所有方面和利益相关者(stakeholder)互相联系起来,并在存在基础设施的任何地方为灌溉区域和农民提供决策支持。此外,该集成集水管理能够采取自主控制动作,以便使得供给与需求相匹配。

该集成集水管理200提供水分配模型220,该模型包括以下子模型来代表水分配系统的不同层级:

·用于上部集水区120的模型222;

·用于自然载体(例如河流)130和储存库140的模型224;

·用于从这些自然载体/储存库中提取的灌溉运河160和沟渠170的模型226。

水分配模型220另外包括与灌溉调度和针对农作物/农场下单的水订单有关的交付调度228。该集成集水管理系统200可以通过提示(或以其他方式提供决策支持)农民(或其他受水者)来影响交付调度。可替代地,可以通过调整水价模型来实施该调度。该集成集水管理系统200的其他变体可以简单地自动改变交货时间。

该集成集水管理系统200从集水区跨越到农作物/农场,并考虑作为系统模型220的输入240的、沿流动路径的空间和时间变化,以便在防止水损耗的同时,最优地匹配整个集水区的需求和供给。

输入240用于水的供给和需求。输入240可以包括:

1.气候预报

2.正式水订单

3.土壤水分数据

4.蒸散(et)数据

5.农作物详情

6.土壤信息

7.在农场级别到集水区级别的水位、流量和闸门打开测量

基于这些输入240,该集成集水管理200提供输出260,以自主地协调和操作现场(field)设备,从集水区到每个农作物/农场操作整个水分配系统,在空间和时间上最佳地匹配需求(下游)和供给(上游)。现场设备包括例如水分配系统中的闸门和/或泵。自主动作可以包括以下一项或多项:

·控制水向流动路径的供给(例如,通过从水坝120或其他上游水库130、140、160释放水);

·控制水向土壤的交付,以响应于水的盈余和/或在预料到进入水分配系统的盈余水的情况下(例如,通过打开出口或来自流动路径的闸门)利用土壤接受水的容量;和

·通过控制闸门来减少水池140中的水量,以释放存储容量,以便捕获盈余水(例如,通过控制出口或来自流动路径的闸门),。

出口或闸门可以是运河160的下游侧的阀门。

此外,该集成集水管理200以决策支持的形式向操作者(或农民)提供输出,以协助从集水区到每个农场最佳地操作整个水分配系统,以在空间和时间上匹配需求(下游)和供给(上游)。

集水管理200的集成性质(考虑沿水分配系统的多个输入并提供一个或多个输出用于控制水分配系统)匹配供给与需求,并因此提高了水分配系统的总体效率。

在可以立即地并且本地地响应于需求的严格控制的水分配系统中,依靠灌溉命令来预测需求可以很好地工作。通过诸如土壤水分、需求图案(灌溉实践)或天气预报等工具对有关需求的信息进行“前瞻性”预报允许采取将先占要发生的可能状况的操作动作。在操作意义中,可能会采取这样的动作,其利用系统中的“弹性”或“平等交换(give&take)”,而不仅仅依靠实际事件。这种弹性通常与系统中的固有存储相关联,无论是与沟渠本身还是与输送网络上的坝或堰等存储设施相关联。通过使用预报数据,可以采取先占操作动作来增加或减少系统中的存储,以更好地响应预报事件。在为集水管理提出的这些模型中,预报概率和与动作相关联的风险是关键参数。

该系统连续地监视数据,并确保利用输送系统中的运输延误和容量、以及农场和农作物的根部区域中的存储来缓冲和错配预测和现实,并通过学习算法不断优化其预测。

集成集水管理200所应用到的水分配系统的流动路径可以具有达到约100km的长度。它受到天气和土壤水分测量、卫星图像和蒸散数据的分辨率的限制。随着分辨率的提高,或者使用更多的仪器来测量蒸散、雨水和干旱事件以及土壤水分,该工具在较小集水区和农场上操作的能力也会提高。天气预报可以集成到系统中,以提供如图1描绘的除了从水订单计算得出的需求之外的、需求的附加推导预先通知。

确定水位、流量和闸门打开测量值

与水位、流量和闸门打开测量有关的输入可以由一个或多个供给指示器提供。供给指示器例如是流量计或水位传感器。供给指示器可以提供有关以下的信息:

·水分配系统中的至少一个水量;或

·水向水分配系统的流入;或

·水向该系统的将来流入。

在上述示例中,在发生降雨(或预报降雨事件)的事件中,(多个)供给指示器将提供上游部分中的水量、水向上游部分的流入、以及预报的上游部分中的水的流入中的一个或多个的指示。

基于对上游部分处的当前水位和上游部分中的当前/预报流入的指示,如果必要的话,水分配系统被操作以将上游部分中的水释放到一个或多个下游部分,以便允许上游部分容纳水的附加流入。

确定土壤水分

就发明人所知,当前尚没有可以在空间尺度上准确地推断水分的局部精确的局部测量值的方案。

存在水分传感器,其可以测量植物根部区域附近的土壤中的水分含量,其可以指示何时应当将水施加到植物。然而,对于较大的农作物种植园,这些传感器仅提供对土壤中水分的点或局部测量。可以存在与土壤水分关联的广泛的空间变化,因为存在几种因素使得土壤水分的测量特定于那个地点,例如;

1.土壤类型,特别是其持水容量

2.农作物类型

3.农作物状况和该植物生长周期的阶段

4.微气候

这些传感器以及传递其关联数据的成本阻碍了在农作物种植园中部署这些仪器的大量分配。

存在可以测量关于所需的必要空间密度的这些参数的传感器(仪器),以为更宽规模的农作物种植提供土壤中水分的更有成本效益的推导。就其提供的总体精度级别而言,该方法可能也是昂贵的。

通过卫星图像和归一化差异植被指数(ndvi)确定土壤水分不足的现有方案不能为水分不足的精度提供保证,因为通过蒸散(et)方案推导该不足的公式依赖于围绕某个数据集校准的经验公式,并且在et的计算中涉及很多近似值。

下面讨论农作物蒸散etc的计算以突出其缺陷。

农作物系数(kc)=f(ndvi)→(1)

etc=eto.kc→(2)

其中

etc=期望表面处的蒸散

eto=参考农作物蒸散

可以使用已知为彭曼·蒙特斯(penman-monteith)公式的以下公式,来计算参考农作物蒸散eto:

其中

δ=饱和蒸汽压曲线的斜率

e=饱和蒸汽压(kpa)

t=日平均温度(℃)

rn=净辐射通量(mjm-2d-1)

g=土壤中可感测的热通量(mjm-2d-1)

γ=心理测量常数(kpa℃-1)

τ=汽化的潜伏热(mj/kg)

ea=通量的汽相输运(mmd-1)

该公式是有缺陷的,原因如下:

·日平均温度t是最高和最低温度的均值((tmax+tmin)/2)。但是,此信息无法捕获一天中温度变化精确分布。

·需要在高于地面2m的位置进行风速测量。通常使用经验公式来调整除了2m之外的高度处的读数。

·饱和蒸汽压曲线的斜率也使用日平均温度t。

·心理测量常数γ需要大气压作为输入。使用经验公式测量海拔高度处的大气压,假设并不总是正确的20℃温度。至少由于这些原因,不能保证通过卫星和天气测量所估计的et(以及因此土壤水分不足)的设定精度。灌溉区域通常跨越大面积(约27,000平方公里)。因此,在估计土壤水分的时空尺度上的累积不准确性可能导致无法在系统内缓冲的巨大的供需失配,从而由于供给过多而造成浪费,或者由于供给不足而使农场挨饿。

图3示出了确定土壤水分及其对农作物的持续影响的重要性。图3示出了样本时间线中土壤水分随时间变化的曲线图。在水分含量10,土壤足够较干燥,需要灌溉以提供健康的农作物。灌溉在线12进行,并在土壤水分达到水分含量14时停止,那里不再需要灌溉。假设没有下雨,土壤将如梯度16所示变干。土壤水分将降至水分含量10,需要再次灌溉。灌溉再次在线18进行,并且当土壤水分再次达到水分含量14时停止,那里不再需要灌溉。土壤将如梯度20所示变干。如果如线22所示发生降雨,土壤水分将增加。在停止降雨时,土壤将再次如梯度24所示变干。因此,灌溉周期28、30之间的时间比灌溉周期26、28之间的时间长。如果在请求农作物灌溉时不考虑这种变化,那么土壤将被过度浇水,导致农作物不必要的灌溉和水的浪费。

为了解决以上和先前标识的缺陷,必须改进在灌溉面积中以空间尺度确定土壤中的水分含量的方法。本发明的方法是对申请人的pct申请号pct/au2012/000907(公开为wo2013/016769a1,其公开内容通过引用合并在此)的demandmanagementsystemforfluidnetworks的改进、以及申请人的pct申请号pct/au2014/050208(公开为wo2015/031954a1,其公开内容通过引用并入本文)的methodofdemandmanagementandcontroloffluidpipenetworks的改进。

基于指示以下列出的一个或多个参数的数据,来确定水分含量。

·气温(例如,至少在农业区域附近至少两点的气温)。可以使用作为灌溉控制系统的一部分部署的设备上的温度传感器,来获得温度数据。

·降雨(例如,至少在农业区域附近至少两个点的降雨)。可以使用降雨传感器获得降雨数据,所述降雨传感器合并了作为灌溉控制系统的一部分部署的设备上的必要密度的降雨传感器。降雨具有强的空间变化(即在给定面积内,降雨在空间上不是均匀的)。

·风速(例如,至少在农业区域附近至少两个点的风速)。可以使用作为灌溉控制系统的一部分部署的设备上的风速传感器,来获得风速数据。风速具有中等的空间变化。

·相对水分(例如,至少在农业区域附近至少两个点的相对水分)。可以通过在作为灌溉控制系统的一部分部署的设备上合并必要密度的降雨传感器,来获得相对水分数据。相对水分具有低的空间变化。

·至少在农业区域附近至少两个点的大气压力。

·近端太阳强度。可以从作为灌溉控制系统的一部分部署的太阳能电池板的输出(即,作为能量测量值),确定太阳强度。

·土壤的固有特性,包括土壤类型和持水容量(例如,至少在农业区域附近至少两个点的土壤的固有特性)。可以通过地面穿透雷达来确定土壤类型,以开发雷达信号与土壤的持水容量之间的关系;

·与农业区域相关联的灌溉历史记录(例如,与向农场提供的每次灌溉相关的历史记录–供给多少水,何时供水,土壤水分在供水后是否达到最大或饱和)。

·卫星数据(例如可见光的能量密度或近红外光的能量密度)。卫星数据可以提供可见光(波长为0.4μm至0.7μm)和近红外光(波长为0.7μm至1.1μm)的太阳辐射光谱的强度(w/m2)的空间可变测量。

图4示出了参考图1所述的改进的闸门或调节器132的放大图。通过与所有闸门或调节器132和水分传感器500(图5)进行通信的膝上型计算机描绘远程计算机系统150。气象站152安装在基座136上,并在每个位置通过太阳能电池板134供电。合适的气象站152是可用的,其可以提供温度、降雨、风速、相对湿度、天气预报和紫外线的测量。气象站152可以很容易地合并到闸门或调节器132的设计中,或者可以对已经存在的闸门或调节器132进行翻新(retrofitted)。气象站的网络增强用于气象学家和农民的天气预报的测量和预测。该网络提供了农民个别使用的气象站网络的概念,但通过联网的气象站群集的概念提供了更广泛的共享网络的一部分。这是通过内插关于气象站网络的信息的能力来实现的。

以上描述的一些传感器可以在农业区域中。

例如,可以从为水控制屏障或闸门、泵、流量计和水位传感器或任何机电装置供电的光伏接收数据。

图5是与图1相似的视图,并且已经使用了相同的附图标记以避免重复描述。每个闸门或调节器132或闸门或调节器组132包括气象站152(图4),气象站152链接至在502处描绘的远程计算机系统。土壤水分传感器500位于农作物190之中。土壤水分传感器500按照有线或无线方式链接到具有闸门和调节器132和气象站152的计算机网络。土壤水分传感器500分布在整个灌溉区,并且数量基本上少于闸门或调节器132。合适的土壤水分传感器在商标aquaspy或sentek下出售。

在确定水分数据时,该方法包括确定并应用具有被调整以适合农业区域的参数的模型。

在应用逻辑时,该方法(附加地/替代地)包括应用从系统标识推导出的模型。使用系统标识技术以产生在空间可变尺度上推导出蒸散的算法,该算法可用于在相同空间可变尺度上确定土壤中的水分。将通过使用分布在整个灌溉区域的、并提供输入数据的空间变化的良好表示的传感器500直接测量土壤中的水分,来实现该算法的校准。

测量的空间密度将取决于特定输入参数的空间变化。可以使用点源测量(例如土壤水分)以使得真相搁浅(groundtruth)、或者校准来自提供高空间变化但不具有高精度级别的卫星的测量值。

存在按照连续/轮廓的基础确定/推导出土地区域的土壤水分的两种方法:

1.从每个个别气象站152和152的原始输入(降雨、温度、水分、太阳辐射、风速、农作物因素、土壤类型、大气压力、灌溉历史数据和来自太阳能电池板的能源)的选择中推导出土壤水分,并然后基于气象站152位于提供土壤水分的良好空间表示的网格网络(密度、间距等)上的事实,对土壤水分进行内插。

2.首先基于气象站152的网格网络对原始输入进行内插(加上农作物因素的卫星空间确定),并然后计算空间土壤水分。

该信息也将被用作帮助灌溉农民确定灌溉他们的农作物的最佳时间。

软件工具将按照实时基础向灌溉者提示建议的灌溉时间的任何变化。该系统将与申请人的pct申请号pct/au2012/000907(公开为wo2013/016769a1,其内容通过引用并入本文)的demandmanagementsystemforfluidnetworks的水订购软件集成在一起,以促进有效的灌溉实践和系统的方便使用

(x,y,t)处的土壤水分=

土壤水分参考地点f(太阳辐射,卫星数据,土壤类型,降雨,风速,灌溉历史数据,温度和湿度,t)

其中

x和y=地理坐标

t=时间

将通过使用利用位于灌溉区域中的现场仪器所收集的实时精确数据,来校准和验证函数f的参数。

可以通过外推在农场的任何其他点进行的土壤水分测量,来确定农场中其他区域的土壤水分。在外推数据时,该方法还在进行测量的点与要确定土壤水分的点之间考虑土壤类型、农作物类型、农作物生长阶段和卫星测量值中的一个或多个。

确定蒸散量

参考图4,本发明提供了一种用于使用在远程区域中可用的间接测量来估计蒸散(et)数据的系统300和方法。特别地,本发明利用用于向整个水分配系统中使用的现有装置(例如闸门或调节器340)供电的太阳能电池板134的阵列的输出。太阳能供电的装置还可以包括一系列装置,包括传感器(例如先前讨论的用于确定土壤水分的传感器500)、水控制屏障、泵、流量计、水位传感器、以及水交付系统中使用的任何机电装置。

确定et的现有方法是基于卫星测量的。因为更靠近农场进行本发明中的测量,所以本发明的方法比现有的确定et的方法更精确。

太阳能供电的装置在农业和灌溉部门中正变得越来越普遍。这些太阳能供电的装置提供了利用太阳能数据用于其他有用目的(包括估计et)的巨大的机会。

太阳能电池将来自阳光中的光子的能量转换为太阳能电池中的电子。太阳能电池吸收的阳光的光子越多,电流输出越大。

光伏电池的电流输出∝太阳强度

然而,

蒸散∝太阳强度因此,

蒸散∝光伏电池的电流输出

可以考虑许多其他因素来改善et计算,包括光伏电池的老化、温度、农作物类型和生长阶段、土壤类型,灌溉事件、风信息。因此,可以从以下公式确定et:

其中

t=时间

将通过现场的光伏电池的实时数据、以及关于温度、农作物类型及其生长阶段和土壤类型的其他输入,来校准函数f的参数。

示例1

现在将参考图6描述本发明的网络集水管理的示例性操作。本发明的集成集水管理系统提供了供给和需求的最佳收敛、以及系统内的弹性/缓冲的公平利用。

在步骤510,集成集水管理系统使用通过对在农场的任何其他点进行的土壤水分测量值进行外推所预测的卫星蒸散数据和/或农场土壤水分数据,以:

·预测农场下次灌溉的最佳日期;

·可选地(通过文本消息或电子邮件)通知客户最佳日期;以及

·基于天气数据以及流量和水位的实况测量值,预测水潭和储存库的未来流入。

然后,该系统在空间和时间两者中建立需求并建立供给;并确保水需求在供给约束之内。在此示例中,“需求”是农场级别的水要求,而“供给”是水潭内的水可用性。在步骤520,该系统接收来自客户的灌溉水请求,然后在水务局的服务器上对该请求进行管理。

在步骤530,如果运河网络中的容量在请求的时间可用、并且客户在其水银行帐户中有足够的水,则自动接受该订单。如果容量不足,则系统将为客户提供备用时间。该系统还将在预料到洪水或短缺的情况下,连续测量水分配系统(池)中的存储、离线存储、以及农作物根区。

在步骤540,系统标识交叉调节器和交付订单所需的农场服务点。此外,系统还会使用备用储存库,来标识池或农场。无线电节点塔接收该信息,并将指令发送到适当的自动闸门交叉调节器以及客户的服务点。

申请人的pct申请号pct/au2012/000907(公开为wo2013/016769a1,其公开内容通过引用合并在此)的demandmanagementsystemforfluidnetworks、以及申请人的pct申请号pct/au2014/050208(公开为wo2015/031954a1,其公开内容通过引用合并在此)的methodofdemandmanagementandcontroloffluidpipenetworks描述了这样的方法和系统,用于确保需求不超过供给,并且确保任何违规行为(即超过供给约束的需求)被适当地重新调度为适合每个灌溉区的操作的每个业务规则,其可以与本发明的实施例一起使用。

然后,系统确保水按照高效率(即,最小水损耗和/或稳定流速)从其源头运送到目的地。在步骤550,系统自动先占运河中的交叉调节器并调节池设定点,以缓冲来自水源的供给中的任何失配。系统将降低池设定点,以在预料到过多流入(或洪水)的情况下创建额外的储存库。可替代地,如果发生短缺预测,则系统将在约束范围内对池追加负荷(surcharge)。客户的农场服务点通常会在调度的时间自动打开,在订单持续时间中交付所请求的流速,并然后自动关闭。在已知过量流入或短缺的已知预测的情况下,将允许操作者/农民将其订单移至较早开始或延迟其订单,以在水分配系统和储存库中创建缓冲区。

在步骤560,沿着水分配系统的自动化闸门立即将其流速调节到:

·使得池达到其新的设定点;

·补充客户的和所有其他并发订单所抽取的水;

·将恒定水位维持在其新的设定点,而不管流量变化。

在步骤570中,当灌溉完成时,软件使用维修点仪表和订购信息来计算向客户供给的水量,并将其从客户的水银行帐户中扣除。将自动为客户开票,并可选地发布对帐单。当洪水或短缺事件完成时,系统会向交叉调节器提供自动命令,以使得其各自的池达到正常设定点。

申请人的pct申请号pct/au2002/000230的流体法规(公开号为wo2002/071163a1,其内容通过引用合并于此)专利号2011903084的fluidregulation、以及申请人的pct申请号pct/au2013/000355(公开为2013/149304a1,其公开内容通过引用合并在此)的supervisorycontrolofautomatedirrigationchannels描述了用于为从水潭到农作物的水交付或实际物理水交付提供决策支持的方法和系统。

由于网络及其实时状态的整体视图可用,因此可以利用运送延迟、输送系统中的备用容量、以及农场和农作物根区的存储,来缓冲预测和现实中的适配。由此,该系统能够减轻诸如洪水和流量短缺之类的极端事件的影响。

预先知道所有农民何时将灌溉也是集成集水管理系统的重要输入和先占需求的能力,以便为集水区内的水网络制定最佳的控制策略。

通过特征方程在空间上外推局部精确读数,该特征方程是土壤类型(特别是其持水容量)、农作物类型、农作物状况和植物生长周期的阶段、天气信息(风、温度、饱和蒸汽压)、和卫星测量值的函数。

何时向农作物施加水的定时是灌溉农业实践中的关键决策处理。确定何时需要补充农作物会影响种植的农作物的总产量以及用水总量。

本发明不同于现有技术,因为其公开了这样的方法和系统,其中数据的内插或推导基于昂贵的土壤水分传感器的实质减少。可确定灌溉区内任何位置的土壤水分,而无需在该位置的土壤水分传感器。土壤水分传感器用于提供对使用气候数据推导出土壤水分的系统的不断进行的完善和校准。

上面仅通过非限制性示例描述了本发明的实施例。在不脱离本发明的范围的情况下,可以对这些实施例进行改变和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1