可穿戴设备的深度接近度分层的制作方法

文档序号:11629192阅读:182来源:国知局
可穿戴设备的深度接近度分层的制造方法与工艺



背景技术:

现代服装和其他可穿戴配饰可以结合计算技术或其他高级电子技术。可以为了各种功能原因而结合这种计算技术和/或高级电子技术或者可以纯粹地为了审美原因而结合。这种服装和其他可穿戴配饰通常被称为“可穿戴技术”或“可穿戴计算设备”。

可穿戴设备以及(具体地)服装被成层地穿戴。例如,在人员躯干上,可以将以下服装分层:汗衫、t恤、春秋衫和夹克。作为另一个示例,在人员手臂上,可以将以下服装分层:手表、长袖衬衫和夹克。在每种情况下,所有这些可穿戴项目可以包括传感器(例如,用于测量温度、用于测量脉搏等)或其他这种可穿戴计算设备。然而,由于对所述项目进行了分层的事实,来自传感器的读数可能不同。常规地,确定关于可穿戴设备的深度和判定哪个传感器读数是“准确的”或者应当用于特定计算或度量是不可用的、不直观的和/或是困难的。

附图说明

图1是框图,展示了根据本公开的至少一个实施例的多个可穿戴设备。

图2是框图,展示了根据本公开的至少一个实施例的用于在可穿戴设备当中确定深度的系统。

图3和图4展示了图1和图2的可穿戴设备和系统的部分的示例。

图5是对可以实施为图1和图2的可穿戴设备或系统的以分层方式穿戴的多个可穿戴设备的图示。

图6和图7展示了根据实施例的逻辑流程的示例。

图8展示了根据实施例的存储介质。

图9展示了根据实施例的处理架构。

具体实施方式

各种实施例总体上涉及一种用于确定关于分层可穿戴设备的深度的系统。换言之,本公开提供了一种用于确定关于可以被分层的多个可穿戴设备的深度的系统。更具体地,可以从各自与不同可穿戴设备相关联的多个传感器接收所测量的量。基于所述所测量的量,可以确定可穿戴设备相对于彼此和/或相对于穿戴者的深度和顺序。如本文中所使用的,深度可以指可穿戴设备相对于彼此或相对于穿戴者的顺序。在一些示例中,可以指定可穿戴设备之一的深度。例如,深度可以包括对最靠近穿戴者、离穿戴者最远、最靠近外部环境等的可穿戴设备的指示。在其他示例中,可以指定所有可穿戴设备的深度。例如,深度可以包括对从指定视角看的可穿戴设备顺序的指示(例如,从穿戴者看的顺序、从外部环境看的顺序等)。

例如,可穿戴设备可以结合到可以成层地穿戴的各种可移除服装项目中。作为特定示例,可穿戴设备可以结合到t恤、系扣领衬衫(buttondownshirt)和夹克中。可以成层的穿戴这些项。这些可穿戴设备中的每个可穿戴设备可以被配置成用于执行各种功能(例如,捕获体温、捕获环境温度、捕获脉搏、捕获音频、发出声音等)。然而,当成层地穿戴可穿戴设备时,判定哪个可穿戴设备执行特定功能取决于可穿戴设备的深度或相对顺序。例如,t恤可以用于捕获体温,而夹克可以用于捕获环境温度。然而,当移除夹克时,系扣领衬衫可以用于捕获环境温度。

作为另一个示例,当穿戴夹克时,夹克可以用于既捕获音频也发出声音。然而,当移除夹克时,系扣领衬衫可以用于既捕获音频也发出声音。

应当理解的是,对人类可能直观的是,哪个可穿戴设备应当执行哪项功能。然而,可穿戴设备本身和/或可操作地耦合至可穿戴设备的计算设备并不知道使用哪个设备来执行这些(或其他)可穿戴设备功能。因此,本公开提供了用于确定可穿戴设备相对于彼此和/或相对于穿戴者的深度以便使可穿戴设备能够指定哪个设备用于进行特定功能。具体地,可穿戴设备可以判定哪个设备用于进行特定功能,而无需用户在给定时间或情形下手动地选择哪个设备是适合的。重要的是,注意,可穿戴设备可以确定深度,或者其他附接的(例如,经由网络、经由物理连接等)计算设备可以确定深度。示例并不局限于本上下文中。

现在参考附图,其中,贯穿附图相同的参考号用来指代相同的元件。在以下描述中,出于解释的目的,阐述了许多具体的细节以便提供对其的彻底理解。然而,可能明显的是,可以在没有这些具体细节的情况下实践新颖的实施例。在其他实例中,以框图的形式示出了众所周知的结构和设备,以便促进对其的描述。本发明将涵盖在权利要求书的范围内的所有修改、等同物和替代方案。

图1是以分层方式示出的(例如,如可以像可移除服装和/或配饰一样穿戴的)多个可穿戴设备100-a的实施例的框图。通常,可穿戴设备100-a中的一个或多个可穿戴设备被配置成用于确定可穿戴设备相对于彼此或相对于用户的深度。重要的是,注意,尽管本文中所描绘的各种示例示出了有限数量的可穿戴设备(例如,可穿戴设备100-1、100-2和100-3),但是可以使用任何数量的可穿戴设备来实施本公开。然而,仅为了呈现和示例的清晰性的目的而选择所示出的设备的数量。此外,值得注意的是,可穿戴设备的数量可以在使用期间(如例如,当用户穿上或脱下可穿戴设备时)发生变化。

可穿戴设备被配置成用于基于来自结合到可穿戴设备中的传感器的各种所测量的量来确定它们相对于彼此和/或用户(例如,见图5)的深度。例如,从一般观点来看,第一可穿戴设备100-1可以在相同方向上看见其他两个可穿戴设备(例如,可穿戴设备100-2和可穿戴设备100-3)。第二可穿戴设备100-2可以看见其他两个可穿戴设备(例如,可穿戴设备100-1和可穿戴设备100-2),但是在彼此相反的方向上。同样地,可穿戴设备100-3可以在相同方向上看见其他两个可穿戴设备(例如,可穿戴设备100-1和可穿戴设备100-2)。基于这一点,可穿戴设备可以确定彼此的相对深度或顺序。此外,基于从传感器捕获的所测量的量和所确定的深度,可穿戴设备可以判定哪个可穿戴设备用于进行特定功能。

重要的是,注意,在一些实施方式的情况下,可穿戴设备中的每个可穿戴设备仅可以“看见”相邻可穿戴设备。例如,可穿戴设备100-1仅可以看见可穿戴设备100-2,而可穿戴设备100-2可以看见可穿戴设备100-1和100-3两者。然而,本公开规定,来自可穿戴设备上的传感器的读数可以用于确定可穿戴设备的相对深度或顺序。

通常,可穿戴设备中的每个可穿戴设备可以结合处理器部件、存储计算机可执行指令的存储器、传感器和用于与其他可穿戴设备无线通信的接口和/或其他计算设备(见图2)。然而,不需要以完全相同的方式来配置和/或实施可穿戴设备100-1、100-2和100-3。此外,为了清晰性的目的,在描述可穿戴设备100-a的示例部件时,仅参考可穿戴计算设备100-1。然而,应当理解的是,可以像本文中所描述的那样配置可穿戴设备100-a中的任何可穿戴设备。

在各种实施例中,可穿戴计算设备100-1结合处理器部件110、存储设备120、一个或多个传感器130和接口140中的一者或多者。存储设备120存储有控制例程121、所测量的量123、深度125和指定可穿戴设备127中的一者或多者。此外,尽管未在此图中描绘,但是可穿戴计算设备100-1可以可操作地耦合至一个或多个其他计算设备(参考图2)。例如,可穿戴设备100-1可以经由网络(其可以是无线的或有线的)与其他设备(例如,其他可穿戴设备、其他计算设备等)通信。具体地,可穿戴计算设备100可以通过网络与其他计算设备交换传递信息(例如,所测量的量、所确定的深度、指定设备等)的信号。

在可穿戴计算设备100-1中,控制例程121结合了在作为主处理器部件的角色的处理器部件110上操作的指令序列以便实施用于执行各种功能的逻辑。在执行控制例程121时,处理器部件110从传感器130接收对所测量的量的指示,并且从可穿戴设备100-2和/或100-3接收对所测量的量的指示。具体地,处理器部件110从对应于第一可穿戴设备(例如,可穿戴设备100-1)的传感器130接收对所测量的量123的一部分的指示,从对应于第二可穿戴设备(例如,可穿戴设备100-2)的第二传感器接收对所测量的量123的一部分的指示,并且从对应于第三可穿戴设备(例如,可穿戴设备100-3)的第三传感器接收对所测量的量123的一部分的指示。

在执行控制例程121时,处理器部件110基于所测量的量确定关于第二可穿戴设备和第三可穿戴设备的深度。例如,处理器部件110可以基于所测量的量123确定深度125。通常,所测量的量可以与传感器(例如,传感器130)用于进行测量的任何度量相对应。例如,所测量的量123可以包括对温度、噪声水平、光水平、无线信号强度或静电测量结果的指示。

在一些实施方式中,在执行控制例程121时,处理器部件110判定对应于第一可穿戴设备的所测量的量是否大于对应于第二可穿戴设备的所测量的量,以及对应于第一可穿戴设备的所测量的量是否大于对应于第三可穿戴设备的所测量的量。处理器部件110可以基于第一所测量的量是否大于第二所测量的量以及第一所测量的量是否大于第三所测量的量来确定深度125。关于图6和图7而描述了确定深度的进一步示例。

在执行控制例程121时,处理器部件110还可以指定第一可穿戴设备、第二可穿戴设备或第三可穿戴设备之一用于可穿戴设备功能。换言之,处理器部件110可以确定指定可穿戴设备127,所述设备可以用于促进或执行可穿戴设备功能(例如,测量温度、发射音频、捕获音频、测量脉搏等)。应当理解的是,可穿戴设备110-a可以被配置成用于执行各种不同功能中的任何功能。本文中的示例不限于特定功能。此外,可穿戴设备功能可以包括向各种传感器、设备、平台部件等发送控制信号和/或从其处接收输出指示,为了清晰性的目的,在附图中未描绘所有所述传感器、设备、平台部件等。在一些示例中,传感器130可以包括温度传感器、麦克风、扬声器、电容传感器、压电传感器等。处理器部件110可以从传感器130接收输出以便包括对传感器读数的指示并且可以将所述输出存储为所测量的量123。具体地,处理器部件110可以将来自传感器130的输出存储为与可穿戴设备100-1相对应的所测量的量。类似地,处理器部件110可以将来自与可穿戴设备100-2相关联的传感器的输出存储为与可穿戴设备100-2相对应的所测量的量。

重要的是,注意,传感器130可以是传感器阵列,并且可以包括任何数量和类型的传感器。此外,可穿戴计算设备100-1可以通信地耦合至其他传感器(例如,接近信标、气象站、物联网等)以便从这种传感器接收输出和信号(例如,包括对传感器读数的指示)从而用于确定深度125和/或验证所确定的深度125。例如,在执行控制例程121时,处理器部件110可以:从第四传感器接收对第四所测量的量的指示,第四传感器与可穿戴设备100-1相关联;从第五传感器接收对第五所测量的量的指示,第五传感器与可穿戴设备100-2相关联;并且从第六传感器接收对第六所测量的量的指示,第六传感器与可穿戴设备100-3相关联。处理器部件110可以将第四所测量的量、第五所测量的量和第六所测量的量存储为所测量的量123。

在执行控制例程121时,处理器部件110可以基于第四所测量的量、第五所测量的量和第六所测量的量验证深度125。以下结合图7更详细地解释这一点。然而,通常,处理器部件110可以使用多个传感器形态(例如,来自麦克风和压电扬声器的输出等)来首先确定深度125并且然后验证所确定的深度125。

更具体地转到图2,示出了用于在可穿戴设备当中确定深度的系统的实施例的框图。如所描绘的,系统1000包括图1的可穿戴设备100-a。另外地,系统1000包括计算设备200。计算设备200通信地耦合至可穿戴设备100-a。具体地,计算设备200经由网络300通信地耦合至可穿戴设备100-1、100-2和100-3。具体地,可穿戴计算设备100-1、100-2和100-3可以通过网络300与计算设备200交换传递信息(例如,所测量的量、所确定的深度、指定设备等)的信号。

通常,计算设备200可以被配置成用于确定可穿戴设备100-1、100-2和100-3的深度。例如,在一些实施例的情况下,可穿戴设备中的多个可穿戴设备可能受处理和/或存储器约束。如此,计算设备200可以用于确定深度。

在一些示例中,计算设备200可以是与可穿戴设备100-1、100-2和100-3同步的设备。例如,计算设备200可以是智能电话、平板计算机、膝上型计算机、基于云的同步系统等。此外,在一些示例中,计算设备200本身可以结合到可穿戴设备中。

通常,计算设备200被配置成用于确定可穿戴设备100-1、100-2和100-3相对于彼此或相对于用户的深度。在各种实施例中,计算设备200结合处理器部件210、存储设备220和接口240中的一者或多者。存储设备220存储有控制例程221、所测量的量123、深度125和指定可穿戴设备127中的一者或多者。

在计算设备200中,控制例程221结合了在作为主处理器部件的角色的处理器部件210上操作的指令序列以便实施用于执行各种功能的逻辑。在执行控制例程221时,处理器部件210从可穿戴设备100-1、100-2和100-3接收对所测量的量的指示。例如,处理器部件210从可穿戴设备100-1的传感器130接收对所测量的量123的一部分(例如,其中的一个或多个所测量的量等)的指示。

在执行控制例程221时,处理器部件210确定可穿戴设备100-1、100-2和100-3相对于彼此、相对于穿戴者或者相对于外部环境的深度。例如,处理器部件210可以基于所测量的量123确定深度125。如以上所指出的,所测量的量123可以与传感器(例如,传感器130)用于进行测量的任何度量相对应。例如,所测量的量123可以包括对温度、噪声水平、光水平、无线信号强度或静电测量结果的指示。

在一些实施方式中,在执行控制例程221时,处理器部件210判定对应于第一可穿戴设备(例如,可穿戴设备100-1)的所测量的量是否大于对应于第二可穿戴设备(例如,可穿戴设备100-2)的所测量的量,以及对应于第一可穿戴设备的所测量的量是否大于对应于第三可穿戴设备(例如,可穿戴设备100-3)的所测量的量。处理器部件210可以基于第一所测量的量是否大于第二所测量的量以及第一所测量的量是否大于第三所测量的量来确定深度125。关于图6和图7而描述了确定深度的进一步示例。

在执行控制例程221时,处理器部件210还可以指定第一可穿戴设备、第二可穿戴设备或第三可穿戴设备之一用于可穿戴设备功能。换言之,处理器部件210可以确定指定可穿戴设备127,所述设备可以用于促进或执行可穿戴设备功能(例如,测量温度、发射音频、捕获音频、测量脉搏等)。应当理解的是,可穿戴设备100-1、100-2和100-3可以被配置成用于执行各种不同功能中的任何功能。本文中的示例不限于特定功能。此外,可穿戴设备功能可以包括向各种传感器、设备、平台部件等发送控制信号和/或从其处接收输出指示,为了清晰性的目的,在附图中未描绘所有所述传感器、设备、平台部件等。例如,如所指出的,传感器130可以包括温度传感器、麦克风、扬声器、电容传感器、压电传感器等。处理器部件210可以从传感器230接收输出以便包括对传感器读数的指示并且可以将所述输出存储为所测量的量123。具体地,处理器部件210可以将来自传感器130的输出存储为与可穿戴设备100-1相对应的所测量的量。类似地,处理器部件210可以将来自与可穿戴设备100-2相关联的传感器的输出存储为与可穿戴设备100-2相对应的所测量的量。

重要的是,注意,传感器130可以是传感器阵列,并且可以包括任何数量和类型的传感器。此外,可穿戴计算设备100-1可以通信地耦合至其他传感器(例如,接近信标、气象站、物联网等)以便从这种传感器接收输出和信号(例如,包括对传感器读数的指示)从而用于确定深度125和/或验证所确定的深度125。例如,在执行控制例程221时,处理器部件210可以:从第四传感器接收对第四所测量的量的指示,第四传感器与可穿戴设备100-1相关联;从第五传感器接收对第五所测量的量的指示,第五传感器与可穿戴设备100-2相关联;并且从第六传感器接收对第六所测量的量的指示,第六传感器与可穿戴设备100-3相关联。处理器部件110可以将第四所测量的量、第五所测量的量和第六所测量的量存储为所测量的量123。

在执行控制例程221时,处理器部件210可以基于第四所测量的量、第五所测量的量和第六所测量的量验证深度125。以下结合图7更详细地解释这一点。然而,通常,处理器部件210可以使用多个传感器形态(例如,来自麦克风和压电扬声器的输出等)来首先确定深度125并且然后验证所确定的深度125。

在各种实施例中,处理器部件110和/或处理器部件210可以包括各种可商购的处理器中的任何处理器。进一步地,这些处理器部件中的一个或多个处理器部件可以包括多个处理器、多线程处理器、多核处理器(无论多个核共存在相同的还是分离的裸片上)、和/或通过其多个物理上分离的处理器以某种方式相联接的其他种类的多处理器架构。

在各种实施例中,存储设备120和/或220可以基于各种信息存储技术中的任何信息存储技术,可能包括需要不间断电力供应的易失性技术,并且可能包括需要使用可以是或可以不是可移除的机器可读存储介质的技术。因此,这些存储设备中的每个存储设备可以包括各种类型(或类型的组合)的存储设备中的任何存储设备,包括但不限于,只读存储器(rom)、随机存取存储器(ram)、动态ram(dram)、双倍数据速率dram(ddr-dram)、同步dram(sdram)、静态ram(sram)、可编程rom(prom)、可擦除可编程rom(eprom)、电可擦除可编程rom(eeprom)、闪存、聚合物存储器(例如,铁电聚合物存储器)、奥氏存储器、相变或铁电存储器、硅氧化氮氧化硅(sonos)存储器、磁性或光学卡、一个或多个单独的铁磁性磁盘驱动器或者组织成一个或多个阵列的多个存储设备(例如,组织成独立盘冗余阵列或者raid阵列的多个铁磁磁盘驱动器)。应注意的是,尽管这些储存设备中的每个存储设备被描绘成单个块,这些存储设备中的一个或多个存储设备可以包括多个存储设备,所述存储设备可以基于不同存储技术。因此,例如,所描绘的这些存储设备中的一个或多个存储设备可以表示程序和/或数据通过其可以在某种形式的机器可读存储介质上存储并传达的光驱或闪存读卡器、用于将程序和/或数据本地地存储相对延长的一段时间的铁磁性磁盘驱动器、以及使得能够相对快速访问程序和/或数据的一个或多个易失性固态存储设备(例如,sram或者dram)的组合。还应当指出的是,这些存储设备中的每个存储设备可以是由基于完全相同的存储技术的多个存储部件构成的,但是由于用途的专门化,所述存储部件可以保持分开(例如,采用某些dram设备作为主存储设备,而采用其他dram设备作为图形控制器的不同帧缓冲器)。

在各种示例中,传感器130可以包括一个或多个传感器,如例如,温度传感器、扬声器、光传感器、加速度计、麦克风、陀螺仪、gps传感器、磁传感器、压电传感器、电容传感器、生物计量传感器等。重要的是,注意,可以将可穿戴设备100-a实施成用于使用传感器来测量各种度量中的任何度量。如此,示例不限于此处给出的示例。

在各种实施例中,接口140和/或240可以采用使计算设备能够耦合至如已经描述的其他设备的各种信令技术中的任何信令技术。这些接口中的每个接口可以包括提供用于使这种耦合成为可能的必需功能中的至少一些功能的电路系统。然而,这些接口中的每个接口还可以至少部分地用由处理器部件中的相应多个处理器部件执行的指令序列来实施(例如,以便实施协议栈或其他特征)。在采用电气地和/或光学地导电线缆的情况下,这些接口可以采用与各种工业标准中的任何工业标准相符的信令和/或协议,包括但不限于:rs-232c、rs-422、usb、以太网(ieee-802.3)或ieee-1394。在需要使用无线信号传输的情况下,这些接口可以采用与各种各样的工业标准中的任何工业标准相符的信令和/或协议,包括但不限于:ieee802.11a、802.11b、802.11g、802.11n、802.16、802.20(通常被称为“移动宽带无线接入”);蓝牙;zigbee;或者蜂窝无线电话服务,比如,具有通用分组无线电服务的gsm(gsm/gprs)、cdma/1xrtt、针对全球演进的增强型数据速率(edge)、仅数据演进或演进数据优化(ev-do)、数据和话音演进(ev-dv)、高速下行链路分组接入(hsdpa)、高速上行链路分组接入(hsupa)、4glte等。

图3和图4是图1和图2的可穿戴计算设备100-1和系统1000的计算设备200的实施例的部分的框图。总体上,图3展示了可穿戴计算设备100-1的操作的方面,而图4展示了系统1000的计算设备200的操作的方面。在各种实施例中,控制例程121和/或221可以包括以下各项中的一项或多项:操作系统、设备驱动程序和/或应用级例程(例如,在光盘介质上提供的所谓的“软件套装”、从远程服务器获得的“小应用程序”等)。在包括操作系统的情况下,操作系统可以是适合于处理器部件110和/或210中的任何相应多个处理器部件的各种可用操作系统中的任何操作系统。在包括一个或多个设备驱动程序的情况中,那些设备驱动程序可以为可穿戴设备100-1和/或控制器200的各种其他部件中的任何部件(无论是硬件部件还是软件部件)提供支持。

更具体地转到图3,控制例程121包括传感器输出采集器1211和深度确定器1212。重要的是,注意,在一些示例中,可以在另一个计算设备上执行对深度的确定(参考图4)。

通常,控制例程121使可穿戴计算设备100-1从传感器(包括传感器130以及与其他可穿戴计算设备相关联的传感器)接收输出以便包括对所测量的量123的指示。控制例程另外确定深度125并且可选地基于所测量的量确定指定可穿戴设备127。

具体地,传感器输出采集器1211从传感器130接收输出。更具体地,传感器输出采集器1211接收与第一可穿戴设备(例如,可穿戴设备100-1)相对应的所测量的量。另外地,传感器输出采集器1211接收与多个其他可穿戴设备(例如,可穿戴设备100-2、可穿戴设备100-3等)相对应的所测量的量。传感器输出采集器1211可以将所接收的输出存储为所测量的量123。

深度确定器1212基于所测量的量确定深度。具体地,深度确定器1212基于所测量的量123确定深度125。例如,深度确定器1212可以确定可穿戴设备100-1、100-2和100-3的层顺序。作为另一个示例,深度确定器1212可以确定最靠近穿戴者、最靠近外部环境等的可穿戴设备之一。

重要的是,注意,深度确定器1212可以确定可穿戴设备100-1、100-2和100-3相对于另一个可穿戴设备的深度。例如,深度确定器1212可以确定可穿戴设备100-1比可穿戴设备100-2更靠近用户。然而,深度确定器1212可能不一定确定绝对深度(例如,每个设备相对于固定点的整体深度)。

此外,深度确定器1212可以基于深度确定可穿戴设备100-a之一来执行可穿戴设备功能。例如,深度确定器1212可以确定深度125包括对可穿戴设备100-1最靠近外部环境的指示,并且确定指定可穿戴设备127包括对可穿戴设备100-1将测量环境温度的指示。

更具体地转到图4,控制例程221包括传感器输出采集器2211和深度确定器2212。总体上,控制例程221使计算设备200从与多个可穿戴计算设备相关联的传感器接收输出。具体地,传感器输出采集器2211可以从与可穿戴设备100-1、100-2和100-3相关联的传感器接收输出,所述输出包括对所测量的量123的指示。控制例程221另外确定深度125并且可选地基于所测量的量确定指定可穿戴设备127。

具体地,传感器输出采集器2211接收对应于第一可穿戴设备(例如,可穿戴设备100-1)的所测量的量,对应于第二可穿戴设备(例如,可穿戴设备100-2)的所测量的量,以及第三可穿戴设备(例如,可穿戴设备100-3)。传感器输出采集器2211可以直接从传感器接收输出并且将所接收的输出存储为所测量的量123。在一些示例中,传感器输出采集器2211可以直接接收所测量的量123。

深度确定器2212基于所测量的量确定深度。具体地,深度确定器2212基于所测量的量123确定深度125。例如,深度确定器2212可以确定可穿戴设备100-1、100-2和100-3的层顺序。作为另一个示例,深度确定器2212可以确定最靠近穿戴者、最靠近外部环境等的可穿戴设备之一。

此外,深度确定器2212可以基于深度确定可穿戴设备100-a之一执行可穿戴设备功能。例如,深度确定器2212可以确定深度125包括对可穿戴设备100-1最靠近外部环境的指示,并且确定指定可穿戴设备127包括对可穿戴设备100-1将测量环境温度的指示。

图5展示了图1至图4的被实施为可移除服装的可穿戴设备100-1、100-2和100-3。具体地,如所描绘的,在夹克中实施可穿戴设备100-1,在毛衣中实施可穿戴设备100-2,并且在t恤中实施可穿戴设备100-3。此外,可穿戴设备100-1、100-2和100-3被示出为成层地穿戴。更具体地,t恤(例如,可穿戴设备100-3)被描绘为被穿戴在最靠近穿戴者或最远离外部环境的层上。毛衣(例如,可穿戴设备100-2)被描绘为被穿戴在中间层中或在t恤与夹克之间。夹克(例如,可穿戴设备100-1)被描绘为被穿戴在或者最靠近外部环境或者最远离用户皮肤的外部层上。应当理解的是,可穿戴计算设备100-1、100-2和100-3可以结合到各种不同类型的可穿戴设备中的任何可穿戴设备中。提供详尽列表是不可行的。如此,为了解释的清晰性的目的提供了本文中的示例,并且其不是限制性的。

图6和图7展示了可由可穿戴设备100-a和/或计算设备200实施的逻辑流程的示例实施例。所展示的逻辑流程可表示由本文中所描述的一个或多个实施例执行的操作中的一些或全部操作。更具体地,逻辑流程可以展示在至少执行控制例程121和/或221时由处理器部件110和/或220执行的操作。尽管参考图1至图5而描述逻辑流程,但是示例不限制在本上下文中。具体地,作为图5中的t恤、毛衣和夹克的示例实施方式用于提供确定深度的各种示例。然而,这并非旨在进行限制。

更具体地转到图6,描绘了逻辑流程600。逻辑流程600可以在框610处开始。在框610处,处理器部件(例如,可穿戴设备100-1的处理器部件110、计算设备200的处理器部件210等)从与第一可穿戴设备相关联的第一传感器接收第一所测量的量。例如,处理器部件可以从可穿戴设备100-1的传感器130接收所测量的量。

继续到框620,处理器部件从与第二可穿戴设备相关联的第二传感器接收第二所测量的量。例如,处理器部件可以从可穿戴设备100-2的传感器接收所测量的量。

继续到框630,处理器部件确定第一可穿戴设备和第二可穿戴设备的深度。例如,处理器部件可以确定可穿戴设备100-1比可穿戴设备100-2更靠近穿戴者。应当理解的是,逻辑流程600可以接收与多个可穿戴设备相关联的所测量的量。此外,可以在使用期间的不同时间重复执行逻辑流程600以便确定可穿戴设备的深度。具体地,可以在以分层方式穿戴第一数量的可穿戴设备(例如,图5的夹克、毛衣和t恤)时以及在以分层方式穿戴第二数量的可穿戴设备(例如,图5的t恤和毛衣)时重复地执行逻辑流程600以便确定深度。

例如,在框610和620处,处理器部件可以接收对由可穿戴设备100-1、110-2和100-3上的传感器接收的传输穿过身体的电容信号或其他信号的指示。在框630处,处理器部件可以基于所接收的信号确定设备的深度。例如,所接收的信号越强,相应可穿戴设备离身体越近。

作为另一个示例,在框610和620处,处理器部件可以接收对由可穿戴设备100-1、110-2和100-3上的传感器测量的温度的指示。在框630处,处理器部件可以基于所测量的温度确定设备的深度。例如,所测量的温度越接近98.6,相应可穿戴设备越靠近身体。

作为另一个示例,在框610和620处,处理器部件可以接收对由可穿戴设备100-1、110-2和100-3上的传感器测量的光的指示。在框630处,处理器部件可以基于所测量的光确定设备的深度。例如,光的相对存在或不存在可以用于确定可穿戴设备的深度。

作为另一个示例,在框610和620处,处理器部件可以接收对由可穿戴设备100-1、110-2和100-3上的传感器测量的环境噪声水平的指示。在框630处,处理器部件可以基于所测量的环境噪声水平确定设备的深度。例如,环境噪声水平越高,相应可穿戴设备越开进外部层。

更具体地转到图7,描绘了逻辑流程700。通常,逻辑流程700可以基于附加传感器读数验证所确定的深度,所述附加传感器读数可以来自替代性传感器形态。逻辑流程700可以在框710处开始。在框710处,处理器部件(例如,可穿戴设备100-1的处理器部件110、计算设备200的处理器部件210等)从与第一可穿戴设备相关联的传感器接收所测量的量。例如,处理器部件可以从可穿戴设备100-1的传感器130接收所测量的量。

继续到框720,处理器部件从与第二可穿戴设备相关联的传感器接收所测量的量。例如,处理器部件可以从可穿戴设备100-2的传感器接收所测量的量。

继续到框730,处理器部件从与第三可穿戴设备相关联的传感器接收所测量的量。例如,处理器部件可以从可穿戴设备100-3的传感器接收所测量的量。

继续到框740,处理器部件基于所测量的量验证针对第一可穿戴设备、第二可穿戴设备和第三可穿戴设备而确定的深度。例如,可以基于由可穿戴设备100-1、100-2和100-3中的每个可穿戴设备上的麦克风测量的环境噪声水平来确定深度125(例如,参照图6)。在框710、720和730处,压电扬声器(例如,在可穿戴设备之一上等)可以以特定频率(例如,20,000hz)振动,并且麦克风可以测量声音。分层可穿戴设备之间的轻微声音差异可能是明显的并且可以用于(例如,在框740处)验证所确定的深度。

图8展示了存储介质800的实施例。存储介质800可以包括制造物品。在一些示例中,存储介质800可以包括任何非瞬态计算机可读介质或机器可读介质,比如,光学、磁性或半导体存储设备。存储介质800可以存储各种类型的计算机可执行指令801,比如,用于实施逻辑流程600和/或700的指令。计算机可读或机器可读存储介质的示例可以包括能够存储电子数据的任何有形介质,包括易失性存储器或非易失性存储器、可移除存储器或不可移除存储器、可擦除存储器或不可擦除存储器、可写存储器或可重写存储器等。计算机可执行指令的示例可以包括任何适当类型的代码,比如,源代码、编译代码、翻译码、可执行代码、静态代码、动态代码、面向对象代码、可视代码等。示例并不局限于本上下文中。

图9展示了适用于实施如之前所述的各种实施例的示例性处理架构2000的实施例。更具体地,处理架构2000(或其变体)可以被实施为可穿戴计算设备100-1、100-2、100-3和/或系统1000的一部分。

处理架构2000可以包括通常在数字处理中采用的各种元件,包括但不限于:一个或多个处理器、多核处理器、协处理器、存储器单元、芯片组、控制器、外围设备、接口、振荡器、定时设备、视频卡、音频卡、多媒体输入/输出(i/o)部件、电源等。如在本申请中所使用的,术语“系统”和“部件”意指在其中执行数字处理的计算设备实体,所述实体是硬件、硬件与软件的组合、软件、或运行中的软件,其示例由所描绘的此示例性处理架构提供。例如,部件可以是但不限于:在处理器部件上运行的进程、处理器部件自身、可能采用光学和/或磁性存储介质的存储设备(例如,硬盘驱动器、阵列形式的多个存储驱动器等)、软件对象、可执行指令序列、执行线程、程序和/或整个计算设备(例如,整个计算机)。通过图示的方式,运行在服务器上的应用程序以及服务器二者都可以是部件。一个或多个部件可以驻留在进程和/或执行线程内,并且部件可以被定位在计算设备上和/或分布在两个或更多个计算设备之间。进一步地,部件可以通过各种类型的通信介质彼此通信地耦合以便协调操作。协调可涉及信息的单向或双向交换。例如,部件可以以通过通信介质传达的信号的形式来传达信息。信息可以被实施为分配给一条或多条信号线的信号。消息(包括命令、状态、地址或数据消息)可以是这种信号之一或者可以是多个这种信号,并且可以或者串联地或者基本上并行地被传输通过各种连接和/或接口中的任一者。

如所描绘的,在实施处理架构2000时,计算设备可以包括至少一个处理器部件950、存储设备960、与其他设备的接口990以及耦接头955。如将要解释的,根据实施处理架构2000的计算设备的各种方面(包括其预期用途和/或使用条件),这种计算设备可以进一步包括附加部件,如但不限于,显示器接口985。

耦接头955可以包括一条或多条总线、点对点互连、收发器、缓冲器、交叉点开关和/或至少将处理器部件950通信地耦合至存储设备960的其他导体和/或逻辑。耦接头955可以进一步将处理器部件950耦合至接口990、音频子系统970和显示器接口985中的一者或多者(取决于同样存在这些部件和/或其他部件中的哪些部件)。由于处理器部件950被耦接头955如此耦合,处理器部件950能够针对上述计算设备中实施处理架构2000的无论哪些计算设备执行以上详细描述的任务中的各种任务。耦接头955可用各种技术中的任何技术或技术组合来实施,通过所述技术光学地和/或电气地传达信号。进一步地,耦接头955的至少一部分可以采用与各种的工业标准中的任何工业标准相符的定时和/或协议,包括但不限于:图形加速端口(agp)、卡总线、扩展工业标准架构(e-isa)、微通道架构(mca)、网络用户总线、(扩展的)外设组件互连(pci-x)、串行总线(pci-e)、个人计算机存储卡国际协会(pcmcia)总线、超传输tm、快速路径等。

如之前所讨论的,处理器部件950(对应于处理器部件110和/或210)可以包括各种可商购的处理器中的任何处理器,所述处理器采用各种技术中的任何技术并且使用以多个方式中的任何方式物理地组合的一个或多个芯来实施。

如之前所讨论的,存储设备960(对应于储存设备130和/或230)可以基于各种技术中的任何技术或技术组合由一个或多个不同的存储设备构成。更具体地,如所描绘的,存储设备960可以包括以下各项中的一项或多项:易失性存储设备961(例如,基于一种或多种形式的ram技术的固态存储设备)、非易失性存储设备962(例如,不需要持续提供电力以保存其内容的固态、铁磁性或其他存储设备)以及可移除介质存储设备963(例如,通过其可以在计算设备之间传达信息的可移除盘式或固态记忆卡存储设备)。认识到在计算设备中的多于一种类型的存储设备的普遍使用使得存储设备960的这种描绘可能包括多个不同类型的存储设备,其中,一种类型提供相对快速的读和写能力使得能够由处理器部件950更快速地操纵数据(但可能使用一种持续需要电力的“易失性”技术)而另一种类型提供相对高密度的非易失性存储设备(但可能提供相对慢的读和写能力)。

给定采用不同技术的不同存储设备的通常不同的特性,使这种不同存储设备通过不同的存储控制器耦合至计算设备的其他部分也是常见的,所述不同存储控制器通过不同接口耦合至其不同的存储设备。通过易失性存储设备961存在且基于ram技术的示例的方式,易失性存储设备961可以通过存储控制器965a通信性地耦合至耦接头955,所述存储控制器为可能采用行和列寻址的易失性存储设备961提供适当的接口,并且其中,所述存储控制器965a可以执行行刷新和/或其他维护任务从而帮助保护存储在易失性存储设备961中的信息。通过非易失性存储设备962存在并且包括一个或多个铁磁和/或固态磁盘驱动器的另一个示例的方式,非易失性存储设备962可以通过存储控制器965b通信性地耦合至耦接头955,所述存储控制设备为可能采用信息块和/或磁道和扇区寻址的非易失性存储设备962提供适当的接口。通过可移除介质存储设备963存在并且包括采用一块或多块机器可读存储介质969的一个或多个光学和/或固态磁盘驱动器的又另一个示例的方式,所述可移除介质存储设备963可以通过存储控制器965c通信性地耦合至耦接头955,所述存储控制器为可能采用信息块寻址的可移除介质存储设备963提供适当的接口,并且其中,所述存储控制器965c可以用专门用于延伸机器可读存储介质969的使用寿命的方式协调读取、擦除和写入操作。

易失性存储设备961或非易失性存储设备962中一者或另一者可以包括机器可读存储介质形式的制品,在所述机器可读存储介质上根据其各自基于的技术可以存储包括可由处理器部件950执行以便实施各种实施例的指令序列的例程。通过非易失性存储设备962包括基于铁磁的磁盘驱动器(例如,所谓的“硬盘驱动器”)的示例的方式,每个这种磁盘驱动器通常采用一个或多个旋转圆形磁盘片,在旋转圆形磁盘片上磁响应性颗粒涂层被沉积并且以不同模式被磁性定向以便存储信息(如指令序列),其方式类似于如软磁盘的存储介质。通过另一个示例的方式,非易失性存储设备962可以由用于存储信息(如指令序列)的固态存储设备组构成,其方式类似于压缩闪存卡。再次,在不同时间在计算设备中采用不同类型的存储设备来存储可执行例程和/或数据是常见的。因此,包括待由处理器部件950执行以便实施各种实施例的指令序列的例程最初可以被存储在机器可读存储介质969上,并且随后在将所述例程复制到非易失性存储设备962上用于更长期的存储而不需要机器可读存储介质969和/或易失性存储设备961的继续存在的过程中可以采用可移除介质存储设备963以使当那个例程被执行时能够由处理器部件950更快速地进行存取。

如之前所讨论的,接口990(对应于接口160和/或260)可以采用对应于各种通信技术中的任何通信技术的各种信令技术中的任何信令技术,所述通信技术可以被采用以将计算设备通信地耦合至一个或多个其他设备。再次,可以采用不同形式的有线或无线信令中的一者或两者以使处理器部件950能够有可能通过网络或网络的互连集与输入/输出设备(例如,所描绘的示例键盘920或打印机925)和/或其他计算设备进行交互。在识别必须经常由任何一个计算设备支持的多种类型的信令和/或协议的经常极不相同的字符时,接口990被描绘为包括多个不同的接口控制器995a、995b和995c。接口控制器995a可以采用不同类型的有线数字串行接口或射频无线接口中的任何接口来接收来自用户输入设备(如所描绘的键盘920)的串行传输的消息。接口控制器995b可以采用各种基于线缆的或无线的信令、定时和/或协议中的任何一者来通过所描绘的网络300(可能是由一条或多条链路、较小的网络或可能互联网构成的网络)访问其他计算设备。接口995c可以采用各种导电线缆中的任何导电线缆从而使得能够使用串行或并行信令传输以将数据传达至所描绘的打印机925。可以通过接口990的一个或多个接口控制器被通信地耦合的设备的其他示例包括但不限于:麦克风、遥控器、手写笔、读卡器、指纹读取器、虚拟现实交互手套、图形输入平板计算机、操纵杆、其他键盘、视网膜扫描仪、触摸屏的触摸输入部件、轨迹球、各种传感器、用于监视人的移动员以接收由那些人通过手势和/或面部表情发送的命令和/或数据的照相机或照相机阵列、声音、激光打印机、喷墨打印机、机械机器人、铣削机器等。

在计算设备通信地耦合至(或有可能实际上结合)显示器(例如,所描绘的示例显示980,对应于显示器150和/或250)的情况下,实施处理架构2000的这种计算设备还可以包括显示器接口985。尽管在通信地耦合至显示器时可以采用更普遍类型的接口,在显示器上视觉地显示各种形式的内容经常需要的稍微专门化的附加处理以及所使用的基于线缆的接口的稍微专门化的性质经常提供令人期望的不同的显示器接口。在显示器980的通信耦合中可以由显示器接口985采用的有线和/或无线信令技术可以利用符合各种工业标准中的任何工业标准的信令和/或协议,包括但不限于,各种模拟视频接口、数字视频接口(dvi)、显示端口等中的任何一者。

更一般地,本文中所描述和描绘的计算设备的各种元件可以包括各种硬件元件、软件元件、或二者的组合。硬件元件的示例可以包括:设备、逻辑设备、部件、处理器、微处理器、电路、处理器部件、电路元件(例如,晶体管、电阻器、电容器、电感器等)、集成电路、专用集成电路(asic)、可编程逻辑器件(pld)、数字信号处理器(dsp)、现场可编程门阵列(fpga)、存储单元、逻辑门、寄存器、半导体器件、芯片、微芯片、芯片组等。软件元件的示例可以包括:软件部件、程序、应用、计算机程序、应用程序、系统程序、软件开发程序、机器程序、操作系统软件、中间件、固件、软件模块、例程、子例程、函数、方法、过程、软件接口、应用程序接口(api)、指令集、计算代码、计算机代码、代码段、计算机代码段、字、值、符号、或其任何组合。然而,判定是否是使用硬件元件和/或软件元件来实施实施例可以根据多个因数而变化,如针对给定的实施方式所期望的,如期望的计算速率、功率电平、耐热性、处理周期预算、输入数据速率、输出数据速率、存储器资源、数据总线速度以及其他设计或性能约束。

一些实施例可使用表述“一个实施例”和“实施例”及其派生词来描述。这些术语意味着结合实施例描述的具体特征、结构或者特性被包括在至少一个实施例中。短语“在一个实施例中”在本说明书中各地方的出现不一定全都指相同的实施例。进一步地,一些实施例可使用表述“耦合”和“连接”及其派生词来描述。这些术语并不必旨在作为彼此的同义词。例如,一些实施例可使用术语“连接”和/或“耦合”来描述,以表明两个或更多元件以直接物理的或电气的方式与彼此接触。然而,术语“耦合”还可以意味着两个或更多元件彼此不直接接触,而仍彼此合作或交互。此外,可以组合来自不同实施例中的方面和元件。

强调的是,提供本公开的摘要以允许读者快速确定本技术公开的本质。基于其将不被用于解释或者限制权利要求书的范围或者含义的理解提交摘要。此外,在前前述具体实施方式中,可以看到,出于将本公开连成一体的目的而将各种特征一起组合在单个实施例中。本公开的方法并不被解释为反映以下意图:所要求保护的实施例需要比每项权利要求中明确表述的特征更多的特征。而是被解释为:以下的权利要求书反映了本发明的主题在于比单个公开的实施例的全部特征少。因此,以下的权利要求书据此被并入详细的说明书中,其中,每项权利要求独立自主地作为单独的实施例。在所附权利要求书中,术语“包括(including)”和“其中(inwhich)”分别用作对应术语“包括(comprising)”和“其中(wherein)”的易懂的英文等价词。此外,术语“第一”、“第二”、“第三”等仅用作标签,且不旨在对它们的对象施加数字要求。

以上所描述的内容包括所公开的架构的示例。当然,不可能描述部件和/或方法的每个可想到的组合,但是本领域的技术人员可以认识到许多其他组合和置换是可能的。相应地,本新颖的架构旨在涵盖落入所附权利要求书的精神和范围内的全部这种变更、修改和变体。详细的公开现在变为提供与进一步的实施例有关的示例。以下提供的示例并不旨在是限制性的。

示例1:一种用于可穿戴计算设备的装置,所述装置被配置成用于确定关于另一个可穿戴计算设备的深度,所述装置包括:第一传感器,所述第一传感器耦合至第一可穿戴设备,所述第一传感器用于生成对第一所测量的量的指示;传感器输出采集器,所述传感器输出采集器用于从所述第一传感器接收对所述第一所测量的量的所述指示并且用于从第二传感器接收对第二所测量的量的指示,所述第二传感器与第二可穿戴设备相关联;以及深度确定器,所述深度确定器用于基于所述第一所测量的量和所述第二所测量的量确定关于所述第二可穿戴设备的深度。

示例2:如示例1所述的装置,所述深度确定器用于:判定所述第一所测量的量是否大于所述第二所测量的量;以及基于所述第一所测量的量是否大于所述第二所测量的量确定关于所述第二可穿戴设备的所述深度。

示例3:如示例1所述的装置,其中,所述第一所测量的量和所述第二所测量的量包括温度、噪声水平、光水平、无线信号强度、静电测量结果或生物特征测量结果。

示例4:如示例1所述的装置,所述传感器输出采集器用于从第三传感器接收对第三所测量的量的指示,所述第三传感器与第三可穿戴设备相关联,所述深度确定器用于基于所述第一所测量的量、所述第二所测量的量和所述第三所测量的量确定关于所述第二可穿戴设备和所述第三可穿戴设备的所述深度。

示例5:如示例4所述的装置,所述深度确定器用于:判定所述第一所测量的量是否大于所述第二所测量的量;判定所述第一所测量的量是否大于所述第三所测量的量;以及基于所述第一所测量的量是否大于所述第二所测量的量以及所述第一所测量的量是否大于所述第三所测量的量来确定关于所述第二可穿戴设备和所述第三可穿戴设备的所述深度。

示例6:如示例1所述的装置,所述深度确定器用于将所述第一设备、所述第二设备或所述第三设备之一指定为用于可穿戴设备功能。

示例7:如示例1所述的装置,包括:第四传感器,所述第四传感器耦合至所述第一可穿戴设备,所述第四传感器用于生成对第四所测量的量的指示;所述传感器输出采集器,所述传感器输出采集器用于从所述第四传感器接收对所述第四所测量的量的所述指示并且用于从第五传感器接收对第五所测量的量的指示,所述第五传感器与所述第二可穿戴设备相关联;以及所述深度确定器,所述深度确定器用于基于所述第四所测量的量和所述第五所测量的量验证所述深度。

示例8:如示例4所述的装置,包括:第四传感器,所述第四传感器耦合至所述第一可穿戴设备,所述第四传感器用于生成对第四所测量的量的指示;所述传感器输出采集器,所述传感器输出采集器用于从所述第四传感器接收对所述第四所测量的量的所述指示,从第五传感器接收对第五所测量的量的指示以及从第六传感器接收对第六所测量的量的指示,所述第五传感器与所述第二可穿戴设备相关联,并且所述第六传感器与所述第三可穿戴设备相关联;以及所述深度确定器,所述深度确定器用于基于所述第四所测量的量、所述第五所测量的量和所述第六所测量的量验证所述深度。

示例9:如示例7所述的装置,其中,所述第四所测量的量和所述第五所测量的量包括温度、噪声水平、或光水平、无线信号强度、或静电测量结果。

示例10:如示例1至9中任一项所述的装置,其中,所述第一可穿戴计算设备、所述第二可穿戴计算设备和所述第三可穿戴计算设备包括待分层的可移除服装。

示例11:如示例10所述的装置,其中,所述第一可穿戴计算设备包括内衣、t恤、纽扣衬衫、毛衣或夹克。

示例12:如示例6所述的装置,包括:第七传感器,耦合至所述第一可穿戴设备,所述第七传感器用于生成对所述可穿戴设备功能的指示。

示例13:如示例1所述的装置,包括:接口,所述接口耦合至所述第一可穿戴设备以便向计算设备传达所述深度。

示例14:如示例1所述的装置,包括:网络接口,所述网络接口耦合至所述第一可穿戴设备以便经由网络传达所述深度。

示例15:一种用于确定多个可穿戴计算设备的深度的方法,所述方法包括:从第一传感器接收对第一所测量的量的指示,所述第一传感器与第一可穿戴设备相关联;从第二传感器接收对第二所测量的量的指示,所述第二传感器与第二可穿戴设备相关联;以及基于所述第一所测量的量和所述第二所测量的量确定所述第一可穿戴设备和所述第二可穿戴设备的深度。

示例16:如示例15所述的方法,包括:判定所述第一所测量的量是否大于所述第二所测量的量;以及基于所述第一所测量的量是否大于所述第二所测量的量来确定所述深度。

示例17:如示例15所述的方法,其中,所述第一所测量的量和所述第二所测量的量包括温度、噪声水平、光水平、无线信号强度、静电测量结果或生物特征测量结果。

示例18:如示例15所述的方法,包括:从第三传感器接收对第三所测量的量的指示,所述第三传感器与第三可穿戴设备相关联;以及基于所述第一所测量的量、所述第二所测量的量和所述第三所测量的量确定所述第一可穿戴设备、所述第二可穿戴设备和所述第三可穿戴设备的所述深度。

示例19:如示例18所述的方法,包括:判定所述第一所测量的量是否大于所述第二所测量的量;判定所述第一所测量的量是否大于所述第三所测量的量;以及基于所述第一所测量的量是否大于所述第二所测量的量以及所述第一所测量的量是否大于所述第三所测量的量来确定所述深度。

示例20:如示例18所述的方法,包括将所述第一设备、所述第二设备或所述第三设备之一指定为用于进行可穿戴设备功能。

示例21:如示例15所述的方法,包括:从第四传感器接收对第四所测量的量的所述指示,所述第四传感器与所述第一可穿戴设备相关联;从第五传感器接收对第五所测量的量的指示,所述第五传感器与所述第二可穿戴设备相关联;以及基于所述第四所测量的量和所述第五所测量的量验证所述深度。

示例22:如示例18所述的方法,包括:从第四传感器接收对第四所测量的量的指示,所述第四传感器与所述第一可穿戴设备相关联;从第五传感器接收对第五所测量的量的指示,所述第五传感器与所述第二可穿戴设备相关联;从第六传感器接收对第六所测量的量的指示,所述第六传感器与所述第三可穿戴设备相关联;以及基于所述第四所测量的量、所述第五所测量的量和所述第六所测量的量验证所述深度。

示例23:如示例22所述的方法,其中,所述第四所测量的量、所述第五所测量的量和所述第六所测量的量包括温度、噪声水平、或光水平、无线信号强度、或静电测量结果。

示例24:如示例15至23中任一项所述的方法,其中,所述第一可穿戴计算设备、所述第二可穿戴计算设备和所述第三可穿戴计算设备包括待分层的可移除服装。

示例25:如示例24所述的方法,其中,所述第一可穿戴计算设备包括内衣、t恤、纽扣衬衫、毛衣、夹克或雨衣。

示例26:至少一种机器可读介质,包括多条指令,所述多条指令响应于在可穿戴计算设备上被执行而使所述可穿戴计算设备执行如示例15至25中任一项所述的方法。

示例27:一种用于可穿戴设备的装置,所述装置被配置成用于确定分层可穿戴设备的深度,所述装置包括:处理器;传感器,所述传感器可操作地连接至所述处理器;以及存储器,所述存储器包括多条指令,所述多条指令响应于由所述处理器执行而使所述装置根据如示例15至25中任一项所述的方法来确定所述装置相对于多个其他可穿戴设备的深度。

示例28:一种用于可穿戴计算设备的设备,所述设备包括用于执行如示例15至25中任一项所述的方法的装置。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1