具有特异机械性能区域的可置入可扩展医疗装置及其制造方法

文档序号:1079172阅读:181来源:国知局
专利名称:具有特异机械性能区域的可置入可扩展医疗装置及其制造方法
技术领域
本发明总的涉及可置入可扩展的医疗装置,更具体说涉及可置入的腔内支架、包覆型支架(covered-stents)、覆膜支架(stent-grafts)和用于在哺乳动物体内恢复和保持解剖通道通畅的管状通道移植物(grafts)。许多腔内可置入医疗装置获得的巨大成功归因于这些装置能采用对患者产生最小侵害性的方法将其置入患者体内,从而显著的减少对患者造成的创伤。尽管已经有许多种在腔内导入的可置入医疗装置,本发明特别涉及到通用的管式装置,该管式装置可从初始适用于最小侵害性置入的较小直径扩展至后来适用于恢复和保持解剖通道通畅的扩展直径。
应用最广泛的可置入可扩展腔内装置是支架,支架通常用于治疗阻塞性和动脉瘤病变或创伤,其骨架一般是由网络状排列的周边组件和纵向组件排列组成的通用管式结构。该周边组件通常允许支架由初始直径放射状的扩展为后来的直径,而纵向组件则提供了支架大纵向可压缩强度和纵向屈曲性。作为支架的派生物,如在该领域中被称作覆膜或包覆型的支架都是由支架或被管状通道移植物包覆的其它结构性骨架组成。覆膜支架是通常用于排逐目的、产生通道的装置,例如排逐腹主动脉瘤;而包覆型支架是通常用于治疗阻塞性疾病的装置,例如冠状动脉疾病以恢复冠状动脉的畅通。常规的覆膜支架和包覆型支架都有聚合物覆盖层,例如聚酯或膨胀的聚四氟乙烯,该覆盖层以类似于鱼钩造型的倒钩方式固定或缝合附着于或粘贴于支架上或相对的置入物的表面上。
最近,于2002年4月29日提交的待审批(co-pending)、拥有相同的专利受托人(commonly assigned)的美国专利申请(系列号10/135,316和10/135,626)中披露了一种具有微孔结构的镍钛记忆性合金薄膜管状通道移植物(nintol thin film graft),该通道可通过微孔的几何变形允许其呈放射状扩大。这两个专利申请亦纳入本文作参考。
对心血管装置而言,应特别注意保持血管的通畅和预防该部分血管的再阻塞。旨在恢复和保持血管通畅的可置入心血管装置有两种主要类型第一种是需要施加外力而实现放射状扩展的球囊可扩展装置;第二种是基于该装置内在的机械或材料特性而实现放射状扩展的自扩展装置,其扩展时不需借助施加的外力来去除束缚,。这类自扩展装置又有两种主要亚型第一种亚型包括由传统的弹性可塑性(elasto-plastic)材料例如316L不锈钢制成的装置,此装置可从用于维持其处于较小的置入直径下的束缚力中实现弹性恢复,与这种传统的弹性可塑性材料相关的归一化变形通常小于1%;第二种亚型包括由形状记忆性或超弹性材料制成的装置,在确定的热-机械条件下能恢复其形状,与这些材料相关的可恢复变形可显著超过1%。
具有讽刺意义的是现有自扩展支架及其设计的主要问题源于支架固有的弹性特性。目前的自扩展支架事实上是可沿其长轴进行纵向弹性变形的,该装置在体内能够以这种方式纵向弯曲和穿过扭曲的内腔通道后被置入指定的目标部位。然而,这些装置固有的高度弹性使其具有内在的弹性偏向,而该装置又希望在正常状态下或直线轴构形时的零张力状态。因此,当这些常规的自扩展支架被纵向弯曲时,该支架呈现正张力并倾向于恢复至未弯曲时的或零张力的正常构型。当将这样的装置放入非线型的血管时,为了顺应血管的几何构型,该置入装置处于有张力的纵向构形,从而对血管壁施加了持续的、分布不均匀的应力。这种施加于血管壁的持续应力可能最终导致血管损伤和威胁到临床预后效果。
常规的支架设计试图通过改变支架的结构性部份的几何构型来控制其内在的纵向弹性偏向。然而至今为止,该领域几乎很少关注在改变用于制造该置入装置选定区域的材料的机械性能方面的研究。通过选择性的改变该装置材料的机械性能,该装置可具有可塑性或假可塑性变形的区域及弹性或假弹性变形的区域。根据上述设想,本发明提出了一种统一的自扩展装置,该装置的某些特定区域可按其预期功能的需要而展示出不同的机械性能。
本文所用的术语“弹性变形”(elastic deformation),定义为由施加的负荷引起传统的金属材料的变形,当去除该负荷时该变形可完全恢复,典型的传统金属的弹性限度低于1%延伸率。
本文所用的术语“可塑性变形”(plastic deformation),定义为由施加的负荷引起的传统的金属材料的变形,但当去除该负荷时由于材料内的晶状结合力被破坏而不能完全恢复。
本文所用的术语“弹性可塑性”(elasto-plastic),意指既能弹性变形又能可塑性变形的材料。
本文所用的术语“假弹性变形”(pseudoelastic deformation),定义为由施加的负荷引起的变形,但当去除该负荷时可完全恢复的变形,该变形的限度显著大于传统金属的弹性限度(如镍钛记忆合金为8%延伸率)。
本文所用的术语“假可塑性变形”(pseudoelastic deformation),定义为由施加的负荷引起的、当去除该负荷外尚需其它某些作用力,如施加热力才能完全恢复的变形。假可塑性变形时,晶状结合力并未被破坏,如在马氏体的镍钛记忆合金中该种结合力得到了重新定向或去扭曲。
本文所用的术语“假金属”和“假金属材料”定义为一种生物相容性的材料,其表现出来的生物学特性和材料特征基本与生物相容性金属相同。假金属材料的例子包括,例如复合材料、陶瓷、石英和硼硅酸盐。复合材料由基质材料与陶瓷、金属或聚合物制成的各种纤维强化而成。强化纤维是该材料主要的负荷材料,由基质材料在纤维与纤维之间传递负荷,有各种方法可实现对基质材料的强化。纤维可以是连续或不连续的,也可以用粒子形式进行强化。复合材料的例子包含由以下纤维制成的材料碳纤维、硼纤维、硼碳化物纤维、碳和石墨纤维、硅碳化物纤维、钢纤维、钨纤维、石墨/铜纤维、钛和硅碳化物/钛纤维。
奥氏体的镍钛记忆合金的应力-应变曲线可分为以下阶段奥氏体弹性变形、奥氏体假弹性变形、应力诱发的马氏体、应力诱发的马氏体弹性变形、应力诱发的马氏体可塑性变形直至断裂,其中当温度高于Af(奥氏体相转换完成温度)时样品易于断裂。而在应力诱发的马氏体可塑性变形发生之前的任何一点,去除负荷将导致原变形的完全复原。
如果使镍钛记忆合金的温度低于Mf(马氏体相转换完成温度)并随后保持低于As(奥氏体相转换开始温度),该材料将处于热诱发的马氏体状态。如果该材料处于其热-诱发的马氏体状态并随后被限制在高于As的温度时被充分变形(大于0.5%应变),该材料仍被认为处于热诱发的马氏体状态而非应力诱发的马氏体状态。马氏体型镍钛记忆合金的应力-应变曲线可分为以下阶段热诱发的马氏体弹性变形、通过去扭曲的热诱发的马氏体假可塑性变形、去扭曲热诱发的马氏体相弹性变形、去扭曲热-诱发的马氏体可塑性变形和断裂。其中当温度低于As(奥氏体相转换完成温度)时样品易于断裂。当加热至Af以上时,在去扭曲热-诱发的马氏体可塑性变形发生之前的任何一点,去除负荷将导致原变形的完全复原。
本领域中用于控制镍钛合金的温度依赖性机械性能的标准程序是采用析出沉积热处理的办法,通过对成形的镍钛合金装置在300~500℃的温度中进行热处理迫使富镍成分从溶液中析出,即由颗粒析出进入晶粒间边界,其结果是钛成分颗粒的净增加和该装置相转换温度的伴随增高。基于预期功能的、选择性的需要来利用析出沉积热处理方法来改变一个装置不同区域的机械性能的应用实例至今还未被采用过。并且根据该装置的预期功能需要,利用真空沉积方法来控制起始材料的局部的化学性质来制造具有预想功能的装置在医疗装置制造领域中仍是未知的。
发明概述常规可置入的腔内装置原理上依赖于该装置结构性组件几何构型的改变来改变其机械性能和预想的功能。与这个常规方法形成明显的对比,本发明彻底改变了分析这个问题的出发点,本发明通过可选择性的改变装置内功能区域的机械性能如应力-应变参数,使其在腔内导入期间和在体内放置位置处时候可改变其行为。通过选择性控制用于制造可置入装置某些区域材料的机械性能,该装置在体内可表现出弹性、假弹性、可塑性和/或假可塑性的行为特征。
本发明的可置入装置的特征在于其具有可塑性变形的或充分的马氏体区域以在体内可表现为假可塑性,以及具有弹性可变形的或充分的奥氏体区域以在体内表现假弹性或超弹性。因此,本发明的装置兼有总体可塑性的功能区域和总体弹性的功能区域。而本领域技术人员非常清楚,本发明可广泛应用于许多不同类型的可置入医疗装置,尽管应用时需要考虑到这些装置的自身一些几何灵活性。为了易于理解,本发明将参照心血管装置,即支架、覆膜支架和管状通道移植物来说明。
例如,在支架、覆膜支架、包覆支架或管状通道移植物的例子中,其每一种必须具有能够在体内扩展的周边及易于腔内导入的纵向可屈曲性。周边可扩展的并有绞接区或联接区的结构性组件可由弹性、假弹性或超弹性材料制成,这些区域允许周边扩展性结构组件的弹性、假弹性或超弹性扩展。另外一种方法是让周边可扩展性结构组件具有低于身体温度(即37℃)或与体温相近的Af值以在体内表现出弹性或假弹性的区域。支架的纵向可屈曲性能是通过毗邻配对的相互连接的周边扩展的结构组件形成的一连串纵向组件提供的。
依照本发明的设想,可置入医疗装置理想的可用具有弹性可塑性、形状记忆功能或假弹性变形性能的金属或假金属材料制造。在本发明的优选方面,可置入装置是由形状记忆合金制造的腔内支架并包含多个相互连接的结构组件,而每个结构组件都是由具有奥氏体区域和马氏体区域的形状记忆合金制造。该马氏体区域是在体内充分表现出马氏体的机械性能的马氏体区域,而奥氏体区域是在体内能充分表现出奥氏体机械性能的奥氏体区域。虽然马氏体区域能够在合适条件下发生相转变成为奥氏体相,但上述的的马氏体区域在体内条件下只表现出马氏体行为。因该马氏体区域是充分的马氏体性质的,因而在体内条件下该马氏体区域不能从变形中恢复。马氏体区域的机械性能可通过选择性退火或选择性控制形状记忆合金的局部化学组成进行调节,使之在体内操作条件下呈现充分的马氏体特性并在体内表现出假可塑性。奥氏体区域在体温情况下表现为充分的奥氏体特性,这样它们基本上能恢复任何变形。
具体参考可置入的腔内支架,支架通常具有排列成几何构型的结构性组件,从而允许支架做可放射状的扩展和某种纵向的屈曲性。目前许多的支架设计是通过与铰接部分相邻的线性组件的重新定向来径向扩大周边结构实现放射状的扩展,而该铰接部分连接了相邻的两组线性组件。现有技术中有各种各样的周边结构的不同几何构型设计,其中包括但不限于锯齿形、正弦形、波状的和开槽构形。一般,纵向屈曲性通过间隔相邻的周边结构来提供,而相邻的邻对周边结构通过相互连接组件相接。再者,本领域中已经有多种的相互连接组件的不同几何构型构型设计,其中包括但不限于线性、正弦形、曲线形、锯齿形或波状构形。
本发明的一个方面提供了一种支架,该支架具有多个以端对端方式排列的铰接支撑组件,形成多个具有锯齿形、正弦形、有峰和谷的波状构形圆环,且多个相互连接组件又相互连接到相邻的圆环对。环状周边的支撑通常由各个线性支撑组件通过U形或V形扩展铰接组件以端对端的方式相互连接组成,各相互连接组件优选的具有属于各相互连接组件对端中间的铰接组件。本发明的支架被配置成其某些铰接区是马氏体区,而其他铰接区则是奥氏体区。这种配置为的是通过使支架支撑节段互相连接时某些铰接区域或转换点具有超弹性性能,同时其他铰接区域具有假可塑性变形性能的设计来实现的。
依据本发明的一种方法,本发明的可置入装置优选地通过选择性热处理该装置的铰接区以影响铰接区域材料的机械性能而制成。本发明的装置可用常规的锻造材料或纳米技术制造,于2002年8月2日提交的同待审批(co-pending)、拥有相同的专利受托人(commonly assigned)的美国专利申请(系列号10/211,489)中对此有更全面的描述,其内容亦纳入本文作参考。例如,装置制造材料的金属和假金属可用真空沉积到基底上形成薄膜材料。该材料薄膜可以在沉积过程中使用图案模具罩网形成图案或在沉积过程后通过光刻技术(photolithography)或蚀刻方法形成图案。马氏体区域可通过对该装置各区域的选择性沉降退火或在真空沉积过程中局部控制该区域的化学计量组成而形成。
扩展铰接的大部分、纵向屈曲铰接的大部分和中间铰接的大部分彼此之间或与支撑组件之间可能均具有不同材料性能和/或机械性能。例如,依据本发明的一个实施例,各相互连接组件铰接被制成充分的马氏体以使它们呈现假可塑性变形,而使该装置被非恢复性地纵轴弯曲,因此最大程度减少了装置对血管不必要的损伤,而扩展铰接是充分的奥氏体以允许该装置自身扩展。
因此,本发明的可置入医疗装置在该装置的不同功能区域拥有不同的材料和/或机械性能。例如,马氏体区允许假可塑性变形而奥氏体区在体内允许形状记忆性或超弹性变形而自身扩展。这些可置入装置的几何构型和功用,像支架、覆膜支架或管状通道移植物等可根据装置的特性来决定该装置的哪些区域在体内需按马氏体特性操作而哪些区域在体内需按奥氏体特性操作。
作为可置入腔内装置具有不同机械性能区域一种尝试的例子,分别在2001年7月24日和2002年7月30日颁布的美国专利号6,264,687和6,425,855中描述了一种具有超弹性铰接区段的球囊可扩展多片结构支架,在上述两个专利′855和′687中描述的是一种具有能够进行可塑性变形的周边支架区段和在毗邻各对周边支架区段之间具有超弹性互相连接区段的球囊可扩展支架。虽然该支架结构是多片的,具有超弹性材料的腔内层和不锈钢的腔外层,在相互连接处,腔外不锈钢层被去除,仅露出一层超弹性材料。超弹性的相互连接区段使该装置具有弹性顺应性,从而使该装置能在血管系统内穿越弯曲通道而易于腔内导入。然而,该装置是不能自身扩展的,采用超弹性成分只是通过在可塑性变形装置中增加弹性成分以提高纵向柔韧性。当该装置被置入到一弯曲部位时,该装置的超弹性的相互连接组件对血管壁仍产生了有害的反作用力。
附图简要说明

图1是本发明处在未扩展直径时的可置入支架的透视图。
图2是未扩展状态下可置入支架的纵向部分平面图。
图3是扩展状态的可置入支架的纵向部分平面图。
图4说明本发明装置的应力-应变行为的应力-应变曲线,包括该装置马氏体区域的曲线M和该装置奥氏体区域的曲线A。
图5是说明本发明可置入医疗装置制造方法的流程图。
优选实施例详述本发明总体上涉及自扩展腔内装置及其生产方法,更具体说涉及可置入自扩展医疗装置,例如腔内支架。所述装置具有由多个结构性支持组件形成的通用管式结构,其中多个结构性支持组件的几何变形可引起该可置入医疗装置的几何扩展。
该腔内装置用生物相容性的金属或假金属制成。优选地,该腔内装置被做成其周边能自身扩展的、并具有纵轴可塑性或假可塑性的柔韧度,且纵向的反作用力可忽略不计,即当该装置沿其纵轴弯曲时弹性反作用力不到20%。本发明可采用的合适的生物相容性的材料包括,例如钛、钒、铝、镍、钽、锆、铬、银、金、硅、镁、铌、钪、铂、钴、钯、锰、钼和它们的合金,例如锆-钛-钽合金、镍钛记忆合金和不锈钢。依据目前为本发明考虑的最佳方式,本发明的可置入医疗装置由形状记忆功能的材料,例如镍钛合金或镍钛记忆合金制造。
图1-3说明了本发明的一种腔内支架10。腔内支架10具有多个支撑组件12,每一支撑组件都与一毗邻的支撑组件12通过一个第一铰接组件14相互连接。大多数支撑组件12由第一铰接组件4以端对端的方式互相连接形成之字形转角、正弦状或波浪形阵列,并由第一铰接组件形成该阵列连续的峰和谷。由第一铰接组件14相互连接的支撑组件12的整个阵列形成周边环组件11。
多个周边环组件11通过互相连接组件16连接相互连接的毗邻各对周边环件11。连接点18将互相连接组件16互相连接至周边环件11的第一铰接组件14。所述互相连接组件可以具有通常的直线形几何构型,也可以是曲线,也可以具有V形或U形形状或可以是正弦形状。至少某些互相连接组件16、优选所有或几乎所有的互相连接组件还具有至少一个沿其长度安置的第二铰接组件20。
依据本发明一个优选实施例,腔内支架10由镍钛合金制造,第一铰接组件14在零张力和体温状态下是充分的奥氏体,可在体内呈现假弹性。在这种情况下,第一铰接组件14在体内可进行周边自扩展,使周边环组件11的直径从图1和2所示的较小导入直径扩展至图3所示的增大直径。第二铰接组件20优选为充分的马氏体,在体内条件下表现为假可塑性和具有高于体温的转换温度As。通过在体内假可塑性变形,第二铰接组件20允许该装置具有纵向柔韧性,有效地分离各毗邻周边环件对之间的应力转换,并在弯曲负荷释放后保持纵向变形的性质。
依据本发明的一个优选实施例,第一铰接组件14在体内条件下是充分的奥氏体,使得该装置的非应变结构恢复至少约90%、优先至少约95%。另外,第二铰接组件20在体内条件下是充分的马氏体以在施加变形负荷时显示小于1%的几乎不可恢复性变形。每一个在那里具有第二铰接组件20的互相连接组件16优选的具有马氏体-奥氏体相位梯度,这样第二铰接组件20通常为马氏体的而互相连接组件16的其余非铰接区通常为奥氏体。应认识到,由于第二铰接组件20可被看作相互连接组件16的一个区域,因而相互连接组件16的长度上具有不同的机械和材料性能。
另外一种可能,把第二铰接组件20的设计为充分的奥氏体,在体内可显示假弹性。在第二铰接组件20表现出假弹性,它们能够进行形状记忆性自扩展,可用于补偿因支架10周边扩展引起的任何缩短。
虽然在附图中描述了腔内支架,但应理解该具体装置以及该装置的具体几何构型只是为了阐述目的,本发明具体考虑了其它类型的置入时需几何变形的可置入自扩展医疗装置,例如包覆型支架、覆膜支架、管状通道移植物、栓子过滤器、瓣膜、封堵器等其他类似的装置。实际上任何类型的腔内自扩展可置入医疗装置将受益于本发明,只要该腔内自扩展装置是依靠周边扩展,并具有利于导入和置入的纵向柔韧性成分和具有可塑性或可假塑性和弹性或假弹性的不同功能区域,这些特性将提高该装置的可导入性、减少该装置对腔内壁的损伤和提高装置的体内性能。本领域技术人员也知道,其他可置入医疗装置的几何排列可根据该装置的具体用途、功能和性能来决定。
图4是恒温下的试验性的应力-应变曲线,说明在相同的应力-应变条件下装置在曲线M内为马氏体应力-应变行为及曲线A区域为奥氏体行为。不难理解,在特定的应力下,马氏体区域的行为和奥氏体区域的行为可导致该材料内产生差别极大的应变。例如,奥氏体相的应力-应变曲线A,在600MPa的负荷平台下加载至8%应变,而在300MPa去负载平台去负载后可完全恢复至0%应变。相反,马氏体相的应力-应变曲线M在约200Mpa的负荷平台和约400~600MPa的峰负荷下表现为负载至8%,而去除该材料的负荷时,在材料内仍有约7%的剩余应变。这样,在相同的应力-应变和温度条件下,马氏体区域表现为假可塑性,而奥氏体区域表现为超弹性。
在图5中说明了本发明的方法50。在本发明的最佳实施方式中,真空沉积形状记忆材料和制造可置入的医疗装置的一般方法在于2002年8月2日提交的待审批、拥有相同的专利受托人的美国专利申请(系列号10/211,489)中有所说明,其内容纳入本文作参考。本发明方法中,将诸如镍钛形状记忆合金材料在步骤52中真空沉积在基底上。真空沉积优选从镍-钛合金靶子或具有镍或钛元素的靶目标通过轰击溅射在基底上,该基底可以是可置入的医疗装置所需的平面形、圆柱形或其他几何构型。在步骤54中将图案被置于基底的薄膜上,该图案既可通过图案掩膜选择沉积,也可选择蚀刻去除沉积薄膜中不想要的区域来形成图案。图案形成后可通过步骤56的热处理或步骤58改变一个区域的化学配比,可在图案中形成马氏体区域。在步骤56中,通过向所需区域施加聚焦的热可实现局部加热处理,如通过电烙铁的点源施加的电阻加热或激光聚焦加热处理。热处理可导致镍从微粒中析出沉积,以425℃热处理约5至10分钟对有效获得最大沉积率有用。反之,可用更高温度加热处理该装置区域,可使镍的析出回入溶液的颗粒结构中,从而改变热处理区域的化学配比和相转换温度。研究发现用高于500℃热处理约5至10分钟将驱使镍析出以镍-钛合金的形式回入溶液中,并降低热处理区域的相转变温度。
另外,区域的化学配比可通过增加该图形中所选区域的钛含量或降低镍含量来改变,以提高该区域的相转换温度和使该装置在操作温度下主要为马氏体相。这可通过对应于所选区域放入一罩网和通过该罩网从富含钛的靶目标真空沉积到基底上来完成。
在沉积期间,控制腔室压、沉积压和处理气体的部分压力以优化所需物质在基底上的沉积。如微电子制造、纳米制造和真空被覆技术领域所知道的那样,反应性和非反应性气体都是被控制的,被导入沉积腔室的气体种类通常是惰性或非反应的气体如氩和氮。基底可以是静止的或可移动的,或围绕其长轴转动或在反应器的X-Y平面上移动,以有利于沉积材料在基底上的沉积或形成图案。沉积材料既可作以均匀固体薄膜形式沉积在基底上,或可通过以下两种方式在基底上形成图案(a)如通过应用至基底表面的蚀刻或光刻技术产生所需图形的正性或负性图像使基底上具有正性或负性图案;或(b)采用相对于基底是静止的或移动的一个或一套罩网来确定沉积到基底上的图案。可采用摹制以实现所得支架的复杂的最终几何构型,此方法不仅可用于图案的空间定向,还可用于沉积薄膜不同区域的材料厚度控制上,例如通过在其全长上改变材料的壁厚度,增厚支架的近端和远端部分,以防止支架放射状扩展时支架末端的向外张开。
当支架通过各种方法中的任何一种方法形成后,可从基底上取出该支架,比如可通过化学方法例如蚀刻或分解、通过消融、机械办法或超声能量来去除基底。或者,用一层可除去的材料例如碳或铝沉积在基底和支架之间,通过熔化、化学方法、消融、机械法或其它合适的方法去除该层材料使该支架从基底释放。
然后对所得的支架进行沉积后加工,例如通过退火修饰其晶体结构,或修饰其表面形貌,例如通过蚀刻来影响和控制支架的血流表面的不均匀性。然而,采用蒸气沉积技术制造该支架,可减少或消除对图案形成后的腔内支架以机械的、电学的、热的或化学的加工或磨光方法修饰该支架的表面所进行沉积后加工的需要。
以物理性的蒸气沉积技术制造本发明中的腔内可置入装置有很多优点,包括,例如,能够制造具有复杂几何构型、具有埃级(Angstrom)超小尺寸误差的支架,控制其疲劳寿命、腐蚀抵抗力、腐蚀疲劳程度、颗粒间和颗粒内沉淀物及它们对腐蚀抵抗和腐蚀疲劳的作用、能够控制原材料的组成、原料和表面材料的性能、辐射不透性,改变横向穿过的能力、Z轴的厚度和支架结构组件X-Y轴表面面积来影响支架的纵向柔韧性、箍环强度、放射状扩展行为和特点。可通过元素分馏(elementalfraction)方法改变原材料合金中的成分组成,这些成分组成在使用常规的金属制造时是不可改变的,用这种方法就可通过改变合金组合物中的成分组成而优化得到具有理想的材料或机械性能的定制合金组合物。例如,显示形状记忆和/或超弹性性能的镍-钛管是采用超过51.5原子百分比的镍制造的,由于该材料显示的高平台应力,采用常规的制造技术不能实现,而采用本发明方法即能制作含有51.5-55原子百分比镍的镍钛合金管。
在本发明的一个优选实施例中,本发明的可置入医疗装置的马氏体区域的As温度宜高于体温以使作用于马氏体区域的应力能产生假可塑性变形。而该装置的奥氏体区域的Af温度宜低于体温以使它们在体内保持为奥氏体相,保留它们的假弹性性能。
当用置入导管导入本发明所述的可置入装置时,理想的是使该装置处在低于Mf的温度和在低于As的温度下装其装载进置入导管内。以这种方式,在体内将是奥氏体的区域在体内导入前是以热诱发的马氏体相存在。
因此,本发明提供了一种可置入的可扩展医疗装置,该装置的所选区域是塑性变形的或在体内可表现出假可塑性的充分马氏体,其它区域是弹性可变形的或是在体内表现出假弹性的充分奥氏体。优选的,该装置负责周边扩展的区域是弹性的或可假弹性变形以实现体内的周边自身扩展,而该装置负责纵向屈曲性的区域是可塑性的或假可塑性变形的,以顺应导入过程中和导入后的解剖学几何构型,而不产生对解剖学几何构型的弹性反作用力。
虽然本发明参考其优选实施例作了描述,该领域技术人员应理解本发明在自身扩展的医疗器械领域中具有广泛的应用范围,该范围包括需要从最初较小的几何构型扩展至后来较大几何构型的可扩展可置入医疗装置及可从该装置的不同区域材料具有不同机械性能的特点受益的那些装置。
权利要求
1.一种可置入的医疗装置,其包括通用的管式组件,该管式组件具有多个空间上分开的相互连接的结构性组件和多个通过该通用管式组件的壁表面的裂隙状开口。该多个相互连接的结构性组件中的至少一部分是以铰接方式相互连接,形成铰接区,以使该通用管式组件能够进行周边性的扩展和纵向的屈曲。其中至少一些铰接区包含能在体内以至少一种弹性或假弹性的方式作周边扩展的第一铰接区,以及至少一些铰接区包含能在体内沿该装置纵轴以至少一种可塑性或假可塑性的方式进行变形的第二铰接区。
2.如权利要求1所述的可置入的医疗装置,其中该通用管式组件还包括镍-钛合金。
3.如权利要求2所述的可置入的医疗装置,其中第一铰接区还包括在体内条件下是充分的奥氏体,以使得该装置的非应变构形能恢复至少约90%。
4.如权利要求2所述的可置入的医疗装置,其中第二铰接区还具有比该通用管式组件其余部分更高的临界转换温度。
5.一种可置入的、几何构型可扩展的、通用管式镍-钛合金医疗装置,其包括a)多个周边可自扩展的组件;b)相互连接毗邻的周边自扩展组件对的多个相互连接组件;和c)形成在多个周边自扩展组件中的每个组件内的多个第一铰接区,多个第一铰接区中的每一个在体内至少可以一种弹性或假弹性变形的方式使得该装置进行可周边性扩展;和d)形成在相互连接组件中的多个第二铰接区,在弯曲负荷的影响下,该铰接区的每一个在体内都可沿该装置的纵轴进行至少一种可塑性或假可塑性变形。
6.如权利要求5所述的装置,其中多个周边自扩展组件中的每个还包括一环件,该环件包括了经由多个第一铰接区中的一个将相对端互接的多个通用线性结构性组件。
7.如权利要求6所述的装置,其中多个通用线性结构性组件中的每个和多个第一铰接区中的每个还包括是以充分的奥氏体相存在的镍-钛合金,这些组件可在体内表现出假弹性。
8.如权利要求7所述的装置,其中多个相互连接组件中的每个具有处于充分的奥氏体相的区域,在体内至少能以一种弹性或假弹性方式起作用。
9.如权利要求5所述的装置,其中多个周边自扩展组件中的每个还包含选自生物相容性金属、金属合金和伪金属(pseudometal)的材料,该材料能够在体内以弹性或假弹性方式起作用。
10.如权利要求9所述的装置,其中多个相互连接组件中的每个还包含选自生物相容性金属、金属合金和伪金属的材料,该材料能够在体内以表现出塑性或假可塑性方式起作用。
11.一种可置入的、几何构型可扩展的、腔内镍-钛支架,其包括a)多个周边支撑组件,每个具有多个通过多个第一铰接组件相互连接的通用线性组件,从而形成通常的正弦阵列;b)多个相互连接组件,其每个具有至少一个相互连接毗邻周边环对的第二铰接组件;c)其中在该支架导入体内时,该支架中的多个第一铰接组件处于充分的奥氏体相,而第二铰接组件则处于充分的马氏体相。
12.如权利要求11所述的腔内支架,其中多个相互连接组件中的每个还包含具有奥氏体-马氏体相位梯度的材料。
13.如权利要求11所述的腔内支架,其多个周边支撑组件中的每个还包含选自弹性或假弹性可变形生物相容性金属、金属合金和伪金属的材料。
14.如权利要求11所述的腔内支架,其多个相互连接组件中的每个还处于充分的奥氏体相中,可在体内表现出假弹性。
15.如权利要求11所述的腔内支架,其多个相互连接组件中的每个还包含形状记忆合金,该形状记忆合金处于充分的马氏体相中可在体内表现出假可塑性。
16.如权利要求11所述的腔内支架,其多个相互连接组件中的每个还包含选自可塑性或假可塑性可变形生物相容性金属、金属合金和伪金属的材料。
17.一种制造具有铰接区域的可扩展几何构型的、可置入医疗装置的方法,该方法包括选择性改变该铰接区机械性能的步骤。
18.如权利要求17所述的方法,其中所述选择性改变铰接区机械性能的步骤还包括选择性热处理该铰接区。
19.如权利要求18所述的方法,其中所述选择性热处理铰接区的步骤还包括向该铰接区中使用聚焦热能。
20.如权利要求17所述的方法,其中所述选择性改变铰接区机械性能的步骤还包括选择性改变铰接区域的总体化学组成。
21.如权利要求20所述的方法,其中所述改变总体化学组成的步骤还包括真空沉积步骤。
全文摘要
一种可置入的可扩展医疗装置,其中一些选择的区域处于马氏体相和一些选择的区域处于奥氏体相。马氏体区域在体内呈现假可塑性的特点并且在体内情况下可以不恢复其变形;相反地,奥氏体区域在体内呈现超弹性的特点,并且在变形时或所施加的应力释放时将恢复其预先设定的形状。
文档编号A61F2/90GK1741772SQ200380109099
公开日2006年3月1日 申请日期2003年11月21日 优先权日2002年11月25日
发明者C·T·伯勒, C·E·巴纳斯, D·马托诺 申请人:先进生物假体表面有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1