具有闭合环路经皮能量传递功率传递调节电路的医疗植入体的制作方法

文档序号:1097109阅读:212来源:国知局
专利名称:具有闭合环路经皮能量传递功率传递调节电路的医疗植入体的制作方法
技术领域
本发明一般地涉及接收经皮能量传递(TET)的医疗可植入式装置,更具体地说,本发明涉及调节功率传递的植入装置。
背景技术
在TET系统中,将电源电连接到位于诸如人体皮肤之类的身体边界外部的初级线圈。次级线圈位于边界的另一侧,如体内。利用皮下装置,初级线圈和次级线圈通常都紧靠皮肤的外层和内层放置。能量以交变磁场的形式从初级线圈传递到次级线圈。在AC磁场中,次级线圈将所传递的能量转化为电能,用于作为次级线圈上的负载的植入装置。
在TET系统中,将初级线圈和次级线圈置于边界或皮肤的不同侧。这种分开通常引起线圈之间相对距离和空间取向的变化。间距的变化有可能引起到达次级线圈的AC磁场强度的改变,从而在植入装置中引起功率波动及浪涌。诸如医疗应用中所采用的植入装置之类的植入装置通常依靠微控制器来执行不同的功能。这些微控制器需要一致、可靠的电源。诸如电压或电流电平的突然改变之类的供电变化有可能使得装置工作不稳定或者根本不能工作。因此,与传统TET系统有关的一个问题是初级线圈或次级线圈相对于最佳耦合位置的物理偏移有可能为供给植入装置的输出功率带来不可接受的影响。此外,当装置执行不同的功能时,次级线圈上的植入体负载可以不同。这些负载变化产生了对TET系统的不同需求,并使得驱动负载所需要的输出功率不一致。因此在TET系统中,需要有精确可靠的系统,用于控制供给负载的输出功率。具体而言,尽管负载或TET线圈之间的偏移有变化,但仍需要调节次级线圈中感应得到的功率以提供精确一致的负载功率。
美国专利No.6,442,434中记载了一种能量传递系统,其中通过使次级电路产生由初级电路检测的可检测信号,在所植入的次级电路中维持稳定的功率。例如,次级电路中的电压比较器检测到接收的TET功率过高,并通过闭合开关使次级线圈短路。次级线圈短路在初级线圈中引起可观察到的电流浪涌。然后,调节初级电路,使得这些浪涌具有较小的占空比,由于这种情况表明次级电路中的电压在电压比较器所采用的基准电压附近周期性地变化,因此实现了调节电压的目的。
尽管这显然是在TET系统中调节功率的有效方法,但在有些应用中仍认为该方法存在缺陷。对于高阻抗次级线圈,以这种方式使次级电路短路会产生额外的发热,特别是初级电路应继续向次级电路提供额外的功率。在′434专利所述的人造心脏的连续TET供电以及其它高功率应用的情况下,这种发热问题受到极大关注,主要重点在于对由初级电路发出的功率进行调制。
在美国专利No.5,702,431中,基于将电容转换成二级谐振电路以改变其效率,控制次级电路中的电流用于电池充电。为了达到该目的,用整流器将AC谐振电路与正在充电的电池分开。将检测到的流经电池的电流用于在两个电容器之间转换,以改变次级线圈的谐振特性。解决问题的途径是,在电池充电的初级阶段提供较高的电流,之后以较低的电流来避免因过热而损坏电池。
尽管这些改良医疗植入装置的TET功率传递特性的方法可以应用于某些场合,但仍希望解决适用于对人造括约肌进行液压控制的双向注入装置对功率的要求。具体而言,例如,与仅对控制电路进行供电所需要的功率相比,为泵送流体而消耗的功率是很高的。而且,只需间歇地为有源泵组件供电。由于希望减小医疗植入体的尺寸,因此适当的做法是省略或显著减少注入装置中存储的功率总量,例如省略电池。
采用TET向有源泵组件、控制电路以及遥测电路供电而没有电池所提供的电隔离,需要功率调节。具体而言,即使功率需求变化,大多数电气组件仍需要相对稳定的电源电压。尽管具有对诸如初级线圈与次级线圈之间的对齐等功率传递的变化进行响应的初级电路是有益的,但仍然希望可植入式注入装置相对不受传递功率变化的影响。如果所植入的医疗装置中快速变化的电源需求变得超出了初级电路检测变化并作出响应的能力范围,上述要求就会变得更加迫切。
因此,非常需要可植入式医疗装置具有能优化从接收经皮能量传递到向有源组件供电的功率传递特性的次级电路。

发明内容
本发明通过提供一种具有接收电路的可植入式医疗装置克服了现有技术的上述缺陷以及其它缺陷,该可植入式医疗装置用于从患者外部的初级电路进行经皮能量传递(TET)。具体而言,接收电路进行足以支持诸如集成电路之类的有源组件的电压调节而无需使用电池。而且,在接收电路自动地根据初级电路调整功率传递的情况下,可植入式医疗装置更不易因为与初级电路形成的电源通道的变化而受到损坏或不能操作。
根据本发明的一方面,可植入式医疗装置包括受益于稳定电源的有源负载,即使电流需求显著不同,该电源的电压也保持在基准电压附近的电压范围内。可植入式医疗装置中的接收电路包括次级线圈,将该次级线圈设置成与患者外部的初级电路的初级线圈所接收到的功率信号的频率谐振。将正弦接收功率整流为电源电功率。通过将去谐电路切换为与次级线圈电连通或者非电连通,电压调节电路对传递到有源负载的电源电功率的电源电压进行响应以控制接收到的功率总量。于是就向有源负载提供了稳定的电源。
根据附图及其说明,本发明的这些以及其它目的和优点将变得明显。


在此引用并构成本说明书的一部分的

本发明的实施方式,并且与上面给出的发明概述以及下面给出的实施方式的详细说明一起用于阐述本发明的原理。
图1是说明根据本发明的示例性能量传递系统的框图;
图2是说明本发明的功率控制系统的第一实施方式的框图;图3是由功率控制系统进行调制的次级谐振电路的输出功率的图解表示;图4是图2所示的功率控制系统的第一实施方式的更详细的电路图;图5A是描述在串联谐振电路中用于功率控制系统的第一示例性切换方案的简化电路图;图5B是描述在串联谐振电路中用于功率控制系统的第二示例性切换方案的简化电路图;图5C是描述在串联谐振电路中用于功率控制系统的第三示例性切换方案的简化电路图;图5D是描述在并联谐振电路中用于功率控制系统的第四示例性切换方案的简化电路图;图5E是描述在并联谐振电路中用于功率控制系统的第五示例性切换方案的简化电路图;图5F是描述在并联谐振电路中用于功率控制系统的第六示例性切换方案的简化电路图;图5G是描述在串联谐振电路中用于功率控制系统的第七示例性切换方案的简化电路图;图6是说明本发明的功率控制系统的第二实施方式的框图;图7是更详细地说明图6的功率控制系统的示意图;图8是说明本发明的功率控制系统的第三实施方式的框图;以及图9是说明本发明的功率控制系统的第四实施方式的框图。
具体实施例方式
现在详细描述附图,其中在这些图中,同样的数字代表相同的元件,图1说明了根据本发明的用于植入装置22的经皮能量传递(TET)系统20。TET系统20包括初级电路24,其包括位于身体边界28外部的电源26。根据TET系统20的具体应用,边界28可以是诸如医疗植入体情况下的人或动物体的皮肤,或者可以是无生命材料或组织的任一其它类型。初级电路24还包括初级线圈30以及一个或多个电容器36。电容器36与初级线圈30并联,以形成初级谐振电路38。将初级谐振电路38电耦合到电源26,以在所期望的功率信号频率上发生谐振。为对电源26提供的输入功率进行响应,在初级线圈30中产生交变磁场32。
以与初级线圈30隔开的方式提供次级线圈34。通常,次级线圈与初级线圈位于边界28的相反侧。在此处的论述中,次级线圈34位于植入装置22中。通过交变磁场32,将次级线圈34电耦合到初级线圈30,在图中以从初级线圈30开始并向次级线圈34延伸的箭头表示交变磁场32。次级线圈34与一个或多个调谐电容器40串联地电连接。选择调谐电容器40,使得线圈34和调谐电容器40在与初级谐振电路38相同的频率上发生谐振。因此,初级线圈30、次级线圈34与相应的电容器36、40形成了一对固定的功率谐振电路,在谐振频率上,该功率谐振电路在电源26和植入体22之间传递的能量最大。
如图1所示,初级线圈30与次级线圈34通常彼此相对地放置,使得次级线圈与交变磁场32的至少一部分相交。当初级线圈30与次级线圈34磁耦合时,这两个线圈通常不是物理耦合的。因此,线圈30、34可以彼此相对地移动,在线圈之间耦合的能量可以随线圈之间的相对偏移而不同。如标号42所示,线圈30、34之间的相对偏移可以是轴向的。同样,如标号44所示,线圈30、34之间的偏移可以是横向的,基本上与轴向偏移成直角。如标号46和48所示,线圈30、34之间的偏移也可以包括一个线圈相对于另一线圈的角向变化。线圈30、34之间的这些不同偏移中的每种偏移都能使到达次级线圈34的交变磁场32的大小发生变化。在次级线圈34中感应出的功率与线圈30、34之间的偏移成反比。线圈30、34之间的偏移越大,在次级线圈34中感应出的功率总量越低。由于初级线圈30相对于次级线圈34移动(例如在医疗植入体的情况下,当医护人员操控初级电路24时),在次级线圈34中感应出的功率可以从极高的电压和/或电流电平骤变至极低。
将次级线圈34电耦合到负载50,并从接收到的磁场32向负载提供输出功率。根据具体的应用,负载50可以代表一个或多个不同的装置,这些装置利用由次级线圈34提供的输出功率来执行不同的操作。负载50可以与某些电阻或阻抗相关联,在某些应用中,在对负载进行正常操作期间,电阻或阻抗有时可以变化,这部分地取决于所执行的具体功能。因此,在对植入装置22进行操作时,负载50所需要的输出功率也可以在不同的极值之间变化。
为了对这些固有的功率变化进行响应并向负载50提供稳定的电源,本发明包括功率控制电路52。功率控制电路52通过接口与次级线圈34和调谐电容器40连接,以控制来自初级线圈30的功率传递。功率控制电路52测量来自次级谐振电路54的功率信号,次级谐振电路54由次级线圈34和调谐电容器40组合而形成,并且基于测量到的值,脉冲宽度对功率信号进行调制,以产生处于植入体负载50可接受的电平的输出电压。
在图2所示的第一实施方式中,功率控制电路52包括开关56,其可以对在次级线圈34中感应出的功率信号进行内部调制,以控制向负载50的功率输出。当向负载50输出的电压超过预定门限电平时,通过选择性地对次级谐振电路54进行去谐,开关56对功率信号进行调制。合适的开关56包括固态开关,诸如三端双向可控硅开关元件(triac)或可控硅整流器(SCR)。通过将开关56置于谐振电路内,并选择性地闭合开关56以使调谐电容器40或次级线圈34短路来对次级调谐电路54进行去谐。使电容器40或线圈34短路使得次级谐振电路54失谐,从而防止能量从线圈34传递到负载50。当负载电压降至低于电压门限时,再次打开开关56以向负载50传递功率。通过对次级谐振电路54进行反复去谐,然后对其进行再调谐,以停止或启动通过次级线圈34的能量传递,功率控制电路52将来自线圈34的输出功率调制成一系列功率脉冲。
本领域的普通技术人员最好进行选择性的去谐以管理功率传递,作为对检测到的负载电流和/或检测到的负载电压的响应。
图3描述了对应于对谐振电路54进行选择性调谐和去谐的示例性的一系列功率脉冲。随着初级线圈30与次级线圈34之间距离的变化,功率脉冲的宽度(如图3中的PW所示)也会变化,以调节向负载50输出的功率。线圈30和34之间的相对偏移越小,产生预期的负载功率输出所必需的功率脉冲越短。相反,初级线圈30和次级34之间的偏移越大,开关56打开的持续时间越长,以传递足够的功率来驱动负载50。随着负载功率要求的变化,脉冲宽度PW也会变化。当例如为了驱动电动机或对植入体22中的元件进行操作,负载50需要增加的功率总量时,脉冲宽度PW或者开关打开时间会增加,以施加更多的功率到负载上。全波整流器62对脉冲宽度调制功率信号进行整流。此外,在将功率信号施加到负载50上之前,图4所示的一个或多个滤波电容器64对该功率信号进行滤波。
为确定感应出的功率信号何时超过负载50的电压门限,功率控制电路52包括了图2所示的比较器66。比较器66将用于负载50的输出电压与预定的门限电压电平70进行比较。门限电压电平70可以是用于植入体负载50的所预期的操作电压的最大值。比较器66输出信号74,其随比较器66的输入,即滤波电容器64的输出电压和基准电压(即电压门限70)之差成正比地连续变化。将比较器输出74耦合到开关56,以基于输出负载电压与门限电压70之间的比较来激活开关56。当比较器66的输出信号74达到开关56的激活点时,表明电压电平的提高超出了可接受的操作范围,开关56被激活,使调谐电路54短路。同样,例如当负载需求增加、线圈30、34之间的相对偏移增加或二者都增加,电容器64的输出电压降至低于植入操作可接受的电平时,比较器66的输出信号74触发开关56使之打开,从而能够通过次级线圈34再次感应和传递功率。
图4提供了本发明第一实施方式的更详细的示例性示意图。如第一实施方式中的图4所示,将开关56与调谐电容器40并联放置,以便在开关56闭合时,使谐振电路54中的电容器短路。将开关56示出为固态继电器,当比较器66的输出信号74到达设定点时,该固态继电器会开启或关掉。在这一示例性的实施方式中,电压整流器62是全波桥式整流器,包括所连接的4个肖特基二极管,以对来自功率电路52的功率信号进行整流或去谐。在将整流后的功率信号施加到负载50上之前,电容器64对该功率信号进行滤波。
如上所述,图4示出开关56为固态继电器,其与用于脉冲宽度调制谐振电路54的电容器40并联。除了这种开关结构,许多其它实施方式也可以用于对次级线圈34和初级线圈30进行选择性去耦合,以调节到植入体的能量传递。在本发明中,可以采用任一可用的电路布局,该电路布局应能够为响应传递能量的变化而对TET线圈30、34进行选择性去耦合。
图5A至图5G说明了可以用于实现本发明的功率调节的几种示例性的电路布局。图5A说明了一个实施方式,用于在线圈和调谐电容器40形成串联谐振电路时,使次级线圈34选择性短路。当在次级线圈34中感应出的电压超过电压门限70时,图5A至图5G中未示出的比较器输出信号74选择性地开启开关56。当开启开关56后,开关56越过次级线圈34形成短路,以对谐振电路54进行去谐并阻止来自次级线圈的能量传递。当关掉开关56后,消除了短路(或去谐),并且次级电路54恢复谐振。
图5B示出当次级线圈34和电容器40形成串联谐振电路时,用于对次级谐振电路54进行选择性去谐的另一示例性的实施方式。在该实施方式中,将开关56与电容器40并联放置,以在开启开关56后,使谐振电路54中的电容器短路。图5C示出当次级线圈34和电容器40是一个串联谐振电路时,使次级谐振电路54短路的第三实施方式。在图5C的实施方式中,将开关56与次级线圈34和电容器40串联放置,以使谐振电路54短路并阻止能量从线圈传递到负载50。由来自比较器66的输出信号来控制开关56,以对从次级线圈34传递到全波整流器62的能量进行脉冲宽度调制。
图5D-5F示出用于对次级谐振电路54进行选择性去谐的几种实施方式,从而在次级线圈34和电容器40连接为并联谐振电路时调节功率传递。在图5D中,将开关56并联地连接在次级线圈34和电容器40之间,以在开启开关56后有效地对电路中的电容器40进行短路。在图5E中,在次级谐振电路54和电压整流器62之间,将开关56并联于次级线圈34和电容器40而放置。由于当开启开关56后,开关56使谐振电路54短路并阻止从次级线圈34到负载50的能量传递,因此该实施方式与图5C中提供的实施方式类似。在图5F中,将开关56与电容器40串联地放置,以在开启开关56后,使谐振电路54中的电容器短路。
图5G示出,当次级线圈34负载过重,而不能采用上述其它实施方式中的一种实施方式来进行短路时,用于对次级谐振电路54进行去谐的另一种示例性电路布局。在该实施方式中,将次级线圈34分成两部分,并将一部分置于H桥86中。将H桥86中的成对开关交替地闭合和打开,以有效地将次级线圈34的一半反转到电路中或电路外。当开关闭合后,次级线圈34的一半相对于另一半是反向的,两个半线圈相互电抵消,当传递能量超过门限电压时,有效地关闭次级线圈34。
图6示出本发明的第二实施方式,其中开关56位于全波电压整流器62和滤波电容器64之间,以对整流后的功率信号进行调制。在上述第一实施方式中,开关56对次级线圈34或电容器40进行短路,以对谐振电路54进行选择性去耦合,从而调节传递功率。在图6所示的第二实施方式中,开关56位于电压整流器62和滤波电容器64之间,以对整流后的功率信号进行脉冲宽度调制。当闭合开关56后,功率从次级线圈34中流出,经整流,并通过滤波电容器64传递到负载50上。当打开开关56后,功率传递电路是开路,并且功率不能从次级线圈中流出。当打开开关56后,滤波电容器64放电并向负载50提供功率。当负载电压降至低于门限电平后,闭合开关56,并恢复功率传递。随着功率从线圈34传递到负载50,滤波电容器64进行再充电。
图7提供了说明本发明第二实施方式的详细示意图。图7中的示意图与图4中的示意图类似,只是开关56的位置不同。如图7所示,在这个示例性的实施方式中,开关56包括全波整流器62和滤波电容器64之间的固态继电器。基于向负载50输出的功率,比较器66的输出信号将继电器开启或关掉。尽管将开关56示出为固态继电器,但也可以采用许多其它类型的开关装置来实现本发明。
图8说明了本发明的功率控制电路52的一个替代实施方式。在该替代实施方式中,用比例积分微分(PID)控制器90代替了闭合环路功率控制系统中的比较器66。PID控制器90激活了开关56,以对功率信号进行脉冲宽度调制。通过首先计算负载输出信号72中的实际电压与电压门限70之间的误差,PID控制器90对功率信号进行调制。将该误差乘以比例增益,然后对时间积分,并乘以积分增益。最后,将该误差对时间微分,并乘以控制器90的微分增益,以产生用于开关56的控制信号74。控制信号74将基于放大器增益连续变化。控制器90在固定的频率上运行,并基于取决于误差信号的增益来确定每一工作循环期间打开和闭合开关的时间长短。由于在固定的频率间隔上运行,PID控制器90迅速地对功率电平的变化作出响应,并且在对功率信号的脉冲宽度调制过程中提供增强的控制。
图9说明了本发明的另一个替代的实施方式,其中利用微控制器100来控制输出信号72与预期的电压电平之差。根据这一差值,微处理器100数字化地控制开关56以对功率信号进行调制。在对次级谐振电路54进行选择性去谐的过程中,微处理器100提供精确的控制,从而提供稳定的负载功率。尽管图9和图10在对谐振电路54进行选择性去谐的第一实施方式的位置上示出了开关56,但PID控制器90以及微处理器100也可以用于上述第二实施方式的闭合环路控制中,其中开关56位于电压整流器62和滤波电容器64之间。
植入装置22的各种负载50最好都可以从调节所传递的功率中受益,以将电压维持在某些参数范围内,并将电流维持在某些参数范围内。这样,除了检测电压,还可以使用检测电流,或将检测电流作为检测电压的替代。
尽管已经通过几个实施方式的描述说明了本发明,并且尽管相当详细地描述了说明性的实施方式,但是申请人的目的不在于约束或者以任何方式将所附权利要求的范围限制为这样的具体细节。其他优点和改良对于本领域的普通技术人员来说是显而易见的。
例如,2004年5月28日提交的四份共同未决并共同拥有的专利申请公开了将受益于增强的TET供能和遥测的可植入式双向注入装置,在此引用这些专利申请的公开内容全文以供参考(1)William L.Hassler,Jr.的题为“PIEZO ELECTRICALLY DRIVEN BELLOWS INFUSER FORHYDRAULICALLY CONTROLLING AN ADJUSTABLE GASTRICBAND”的专利申请,序列号为10/857,762;(2)William L.Hassler,Jr.,Daniel F.Dlugos,Jr.,Rocco Crivelli的标题为“METAL BELLOWSPOSITION FEED BACK FOR HYDRAULIC CONTROL OF ANADJUSTABLE GASTRIC BAND”的专利申请,序列号为10/856,971;(3)William L.Hassler,Jr.,Daniel F.Dlugos,Jr.的标题为“THERMODYNAMICALLY DRIVEN REVERSIBLE INFUSER PUMPFOR USE AS A REMOTELY CONTROLLED GASTRIC BAND”的专利申请,序列号为10/857,315;以及(4)William L.Hassler,Jr.,Daniel F.Dlugos,Jr.的标题为“BI-DIRECTIONAL INFUSER PUMP WITHVOLUME BRAKING FOR HYDRAULICALLY CONTROLLING ANADJUSTABLE GASTRIC BAND”的专利申请,序列号为10/857,763。
权利要求
1.一种在谐振频率上接收来自初级电路的经皮能量传递(TET)信号的可植入式医疗装置,所述可植入式医疗装置包括有源负载,其需要电源;次级线圈,其耦合到电容,选择电容以形成对TET信号进行响应的谐振储能电路,从而产生接收信号;整流器,其将所述接收信号转换为所述有源负载的电源;去谐电路;以及功率控制电路,其对所述电源的检测值进行响应,以将所述去谐电路选择性地切换为与所述次级线圈电连通,以降低所述接收信号的功率传递特性。
2.根据权利要求1所述的可植入式医疗装置,其中所述次级线圈包括第一和第二次级线圈,所述去谐电路包括开关电路,将所述开关电路可操作地设置成使所述第二次级线圈选择性地在第一取向和与所述第一取向电反向的第二取向之间串联地连接。
3.根据权利要求1所述的可植入式医疗装置,其中所述去谐电路包括调谐电容器。
4.根据权利要求1所述的可植入式医疗装置,其中所述功率控制电路还包括电压比较器。
5.根据权利要求4所述的可植入式医疗装置,其中所述调谐电路包括串联地耦合到所述次级线圈的调谐电容器,以形成去谐谐振的状态,所述医疗装置还包括固态继电器,将所述固态继电器可操作地设置为通过越过所述调谐电容器而选择性地短路而对所述电压比较器进行响应,从而使所述次级线圈恢复到谐振频率的状态。
6.根据权利要求4所述的可植入式医疗装置,其中所述电压比较器还包括脉冲宽度调制控制器,将所述脉冲宽度调制控制器设置为当所述去谐电路与所述次级线圈电连通时,调整由序列周期限定的占空比,以降低能量传递特性。
7.根据权利要求6所述的可植入式医疗装置,其中所述脉冲宽度调制控制器包括比例积分微分控制器。
8.根据权利要求1所述的可植入式医疗装置,其中所述整流器和所述去谐电路包括对电压比较器进行响应的开关电路,以将整流后的电源信号选择性耦合到有源负载并使所述次级线圈短路。
全文摘要
一种可植入式医疗装置,例如用于液压控制人造括约肌(例如可调节束胃带)的双向注入装置,受益于通过经皮能量传递(TET)远程供能,不必使用电池。为了对医疗装置中的有源组件进行操作,对由次级线圈接收的正弦功率信号进行整流和滤波。对所传递的功率总量进行调制。在一种方式中,将所得到的电源电压与一个门限进行电压比较,以控制接收到的正弦功率信号的脉冲宽度调制(PWM),实现电压调节。多种方式结合了次级线圈的去谐和去耦合来实现PWM控制,而不会引起医疗装置的过热。
文档编号A61F2/02GK1721013SQ200510079658
公开日2006年1月18日 申请日期2005年6月23日 优先权日2004年6月24日
发明者小威廉·L·哈斯勒, 戈登·爱德华·布卢姆 申请人:伊西康内外科公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1