中枢神经系统磁刺激电路的制作方法

文档序号:1105321阅读:177来源:国知局
专利名称:中枢神经系统磁刺激电路的制作方法
技术领域
本实用新型涉及一种中枢神经系统磁刺激电路。
背景技术
中枢神经系统疾病,被认为是二十一世纪的第一杀手随着生活节奏和压力的增大,越来越多的人患上抑郁症等精神疾病;流行病学调查发现,精神分裂症和抑郁症有着很高的患病率,特别是终身患病率极高。90年代以后,一些特殊群体抑郁障碍的调查结果显示患病率多在千分之10-20。目前,除了药物和心理治疗以外,在物理因子治疗方面,主要由电刺激或磁刺激来实现。其中,磁刺激技术以TMS(时变磁场刺激仪)或rTMS(重复时变磁场刺激仪)为主要发展领域,相对于电刺激的疼痛、抽搐、记忆减退等副作用,由于磁刺激的无痛、无创伤、非接触的特性以及在临床治疗中的疗效被不断发现,应用领域正在扩大。但是,因为磁感应强度是随距离的指数量级衰减,现有仪器难以有效刺激大脑深部,或是使大脑表层接受超强刺激换得深部的有效刺激;虽然,专利(96180330.4)等技术有望满足在深部聚焦磁刺激的需要,但是,产生高能磁场又难以同时实现高频率,目前,rTMS的工作频率一般最高在25Hz。另外,在目前常用于生物医学应用领域的磁刺激装置,通常采用一个或多个平面布置的圆形线圈,使用时是在需要刺激的部位上面单侧使用,因此研究方向都仅局限于磁刺激的聚焦和由此带来的神经电生理意义。
实用新型内容本实用新型要解决的问题是克服聚焦磁刺激的不足,提供一种对大脑全域进行磁刺激的中枢神经系统磁刺激电路。
为解决上述技术问题,本实用新型的目的是通过以下技术方案实现的一种中枢神经系统磁刺激电路,包括顺次连接的控制电路、驱动电源电路和线圈,所述驱动电源电路包括驱动电路、检测电路、主电路,所述驱动电路和检测电路,都分别与所述控制电路和主电路相连,所述线圈与主电路相连。
所述主电路可包括一个转换电路,用于控制所述线圈对的电流方向为同向或反向。
所述主电路可包括至少一个绝缘栅双极型晶体管,所述控制电路产生的PWM信号,通过驱动电路驱动主电路中的绝缘栅双极型晶体管输出时变电流给所述线圈,产生所需的时变磁场。
所述控制电路可包括用作主控芯片的DSP芯片,所述驱动电路包括用于将控制电路发来的控制信号传递给主电路的光耦合器,所述控制电路控制驱动电路和主电路使线圈产生所需的磁场,所述转换电路包括至少一个继电器。
所述主电路可包括一个整流桥(BR1)和五个绝缘栅双极型晶体管(Q1~Q5)、两个电解电容(C2、C3),所述电解电容(C2、C3)并联连接到所述整流桥(BR1)的输出端,所述绝缘栅双极型晶体管(Q1)串接在电解电容(C2)的负极端和整流桥(BR1)之间,触发端与所述驱动电路的一个脉宽调制端(PWM1端)相连,所述绝缘栅双极型晶体管(Q4、Q5)串接在电解电容(C3)的负极端和整流桥(BR1)之间,两个触发端也与所述驱动电路的(PWM1端)相连,所述电容(C2、C3)还与另两个绝缘栅双极型晶体管(Q2、Q3)两端并联,两绝缘栅双极型晶体管(Q2、Q3)的触发端分别与所述驱动电路的另两个脉宽调制端(PWM2和PWM3端)相连,所述第一线圈(L2)连接在所述绝缘栅双极型晶体管(Q2)的发射极和绝缘栅双极型晶体管(Q3)的集电极之间,所述转换电路由一个双刀双掷继电器(K1)构成,所述继电器(K1)的两公共端与所述第一线圈(L2)的两端并联连接,一路常开端与另一路常闭端相连,另一路常闭端与前一路的常开端相连,所述第二线圈(L3)分别连接在所述两连接端上,所述继电器(K1)的线圈与所述控制器两个控制端相连。
以上技术方案可以看出,本实用新型通过控制电路设计并输出波形信号到驱动电源使驱动电源输出相应波形的电流到线圈,通过线圈形状、匝数、尺寸、间距的设计,在成对线圈中间的目标区域产生均匀或近似均匀或线性梯度的时变磁场,作用于整个人脑,使中枢神经系统接受精确波形的、高频率或多种频率组合的、广域的协同磁刺激,实现精神疾病的治疗或脑功能康复及益智。


图1为本实用新型中装置电路框图图2为本实用新型中线圈结构示意图图3为本实用新型中主电路原理图图4为本实用新型中实施例所采用的波形图图5为实施例1中,线圈通以反向电流所产生磁场的磁力线分布示意图图6为实施例1中,线圈通以同向电流所产生磁场的磁力线分布示意图具体实施方式
为更好地理解本实用新型中的技术内容,现对相关技术做简要的介绍从分子生物学、神经生物学和精神医学角度,精确波形的、可调频(含高频)和多种波形/频率组合的广域协同磁刺激可能具有新的意义能够调整神经递质和/或神经调质释放,能够调整受体数量和活性,能够激活静寂突触,能够易化神经突触传递的长时程增强,能够增强突触可塑性,能够调整神经内分泌。并且,通过上述作用的协同或因果联系而带来认知能力和学习记忆能力的提高、精神状态的改善、精神疾病的治疗等效果。原因如下1、由于可引起分裂样症状的物质PCP被发现是兴奋性氨基酸NMDA受体阻滞剂,精神分裂症与该受体的联系正受到越来越多的关注。Kim(1980)首先提出精神分裂症DA释放增加并非原发,而是可能继发于谷氨酸机能低下所致。最近10年,NMDA受体和递质功能与精神分裂症发病机制的研究,特别是与阴性症状、认知症状等缺陷性症状的相关性研究取得了明显进展,形成了精神分裂症的NMDA机能低下假说。
2、NMDA受体是镁离子阻断的电压依赖型兴奋性氨基酸递质门控钙离子通道受体,通过谷氨酸和甘氨酸(通常作为抑制性神经递质)共同作用,在神经细胞膜部分去极化状态下激活,使钙离子内流,完成神经细胞去极化全过程并引起后续级连反应。在学习记忆的细胞和分子机制相关研究中,NMDA受体占有非常重要的位置。特别地,LTP和LTD被认为是突触修饰的内在机制,NMDA受体的参与是其前提条件。
3、徐林等(1997)研究发现应激易化海马LTD,而Michael T.Rogan等(1997)的研究表明应激带来杏仁核的LTP易化。在控制情绪表现的主要通路HPA轴中,海马与杏仁核互为负反馈。李拴德等(2004)研究表明,杏仁核摘除后,神经递质的改变方向与精神病性改变是反向的,提示我们,杏仁核的LTP和/或海马的LTD是否带来神经递质释放的精神病性改变?4、许多精神疾病多多少少与应激等生活事件相关,特别是童年或早期的伤害性经历,因而就有素质——应激假说。那么,为什么是早期或童年的伤害性经历?在此提出一种设想早期的伤害性经历形成了联合型记忆(条件化),与环境形成了广泛的联系,疾病发生既是对伤害性记忆的再提取和强化。青春期开始,NR2A逐步取代NR2B,与精神疾病一般的首发年龄相关,这不是偶然的NR2B较NR2A产生更强的LTP,被替代就弱化了海马LTP。如果,替代的过程,在海马与杏仁核中不同步或不平衡,海马替代先于杏仁核替代,就会使负反馈抑制系统失衡,发生精神疾病。
5、钱卓等(1999)的研究表明,NR2B可以称为聪明基因。在他们的研究中,NR2B过表达的大鼠不仅具有更强的学习记忆能力,也能够更快地适应变化,对伤害性记忆的消退更快(称为再学习能力)。最近,GiovanniMarsicano等(2002)发现,内源性大麻素系统在伤害性记忆的消退中起着关键性作用,加速伤害性记忆的消退;其受体CB不足的基因突变型小鼠的伤害性记忆消退比CB过表达的小鼠慢许多,而CB不足的基因突变型和加CB抗颉剂小鼠的杏仁核LTP易化,LTD弱化或不产生。CB1受体是脑中G蛋白耦联受体中最多的一类,其天然配体尚不确定。
6、神经肽,特别是内源性阿片肽与情绪之间有着极大的相关性。韩济生等研究了不同频率电刺激与神经肽释放的相关性(2004),发现电针刺提高内源性阿片肽的释放,不同频率引起不同种类阿片肽释放增加,既;阿片肽释放具有频率依赖性。还发现(2004)NMDAR抗颉剂克他命在伏隔核注射改善吗啡戒断症状。韩济生在2002年,关于不同频率电刺激对神经肽释放的影响作过系统的论述。
7、在更早的研究中,许多人针对磁刺激影响神经再生所作的研究表明磁刺激促神经再生的作用是频率依赖性的(RUSOVAN,等,1992),而即便是较强的静磁场也不起作用(Cordeiro PG等,1989);电磁场刺激神经对提高神经生长因子NGF的活性和水平有益(Longo FM等,1999),钙络合剂MD600阻断磁刺激神经再生作用(Rusovan A,Kanje M.1992);电刺激神经促释放脑源性神经营养因子BDNF与刺激频率/波形组合以及NMDA受体关联,高频多串列小间隔脉冲波形(0.5ms平台的方波,100HZ,4个波一串,间隔200ms,共75串300个脉冲)而不是持续低频(1HZ,480个脉冲)或高频少串列长间隔(100HZ,100个波一串,10S间隔,共3或6串)促释放BNDF,但被NMDA抗颉剂D-AP-5抑制(Isobel J.Lever等,2001)。这些,都在不断提示钙离子、NGF、BDNF、LTP(LTD)、NMDA受体、电、磁场的频率等因素之间存在某种关联。
8、在精神疾病临床研究中,Rohan M(2004)等偶然发现MRSI的某一序列改善躁郁症患者的情绪,且有非常显著的统计学意义,并且,在此基础上的动物实验验证了这种磁刺激所具有的“抗抑郁药样”作用(2005)。以上的综合与分析,得出两点提示,其一精确波形高频或多种频率组合的磁刺激也许可以成为安全的NMDA受体激动手段,高频磁刺激可能通过NMDA相关LTP途径带来中枢神经系统多方面的深刻改变,从而治疗一些精神系统疾病;这一点,促使我们开发一种适合于临床应用的,可以产生精确波形的高频率或多种频率/波形组合的广域协同磁刺激仪,克服rTMS存在的不足和电刺激的不足,为精神疾病的治疗乃至预防提供新的选择。其二综合研究高频磁刺激和多种波形/频率组合在LTP,学习记忆,神经递质,记忆消退,神经肽释放,突触可塑性等多方面的影响,也许会对人类提高智力,预防精神系统疾病,乃至戒毒等等产生深远的影响。
现以具体实施例对本实用新型内容进行详细的描述。
如图1所示,本实用新型中的装置包括控制电路、驱动电源电路、线圈,所述驱动电源电路包括驱动电路、检测电路、主电路,所述控制电路包括上位机和下位机,所述上位机为通用PC机或工控机,便于实际应用中的操作,并通过RS232接口与所述下位机进行连接和通讯,发送命令和参数,所述下位机采用DSP芯片作为主控芯片,接收来自上位机的命令和参数后,产生相应的PWM信号,再传送给所述驱动电路,所述驱动电路和检测电路,都分别与所述下位机和主电路相连,所述线圈与主电路相连,所述控制电路产生PWM信号,通过驱动电路驱动主电路工作,由主电路中的绝缘栅双极型晶体管(以下简称IGBT)输出时变电流激励所述线圈对,并激励产生时变磁场。同时,所述检测电路采样主电路中的电压与电流值,实时监控主电路的工作状态,并根据需要调节输出的PWM信号,或在过电流产生时及时切断线圈电路,防止线圈损坏。
所述驱动电路包括一个光耦合器,连接在所述下位机与主电路之间,其主要作用是隔离干扰信号和驱动主电路的工作(此部分电路未在图中表示)。
所述主电路如图3所示,包括一个整流桥BR1和五个IGBT Q1~Q5、两个电解电容C2、C3,所述电解电容C2、C3并联连接到所述整流桥BR1的输出端,所述IGBT Q1串接在电解电容C2的负极端和整流桥BR1之间,触发端与所述驱动电路一个的脉宽调制端PWM1端相连,所述IGBT Q4和Q5串接在电解电容C3的负极端和整流桥BR1之间,两个触发端也与所述驱动电路的PWM1端相连,所述电容C2、C3还与另两个IGBT Q2、Q3两端并联,两IGBT Q2、Q3的触发端分别与所述驱动电路的另两个脉宽调制端PWM2和PWM3端相连。所述线圈L2连接在所述IGBT Q2的发射极和IGBT Q3的集电极之间。所述转换电路由一个双刀双掷继电器K1构成,所述继电器K1的两公共端与所述线圈L2的两端并联连接,一路常开端与另一路常闭端相连,另一路常闭端与前一路的常开端相连,所述线圈L3分别连接在所述两连接端上所述继电器K1的线圈与所述下位机的两个控制端相连。所述IGBT可以是分立的IGBT元件,也可以是集成的IGBT模块,所述驱动电路中光耦合器的功能也可以通过集成有驱动功能的的IGBT模块来实现。
所述检测电路采用LEM电压传感器和电流传感器,检测出主电路中电容C2、C3两端的电压和流过两线圈L2、L3的电流,并将检测信号进行放大传送到下位机中。(此部分电路,图中未作标示)所述线圈为一对同轴对称平行放置的相同圆形线圈对,所述其结构如图2所示,取半径为R、间距2a=R,即构成麦克斯维线圈对,并通以反向电流,使所述两线圈之间的目标区域内产生线性梯度的磁场,在通以同向电流时在目标区域产成近似均匀的磁场,所述目标区域的大小与人头部的尺寸相适应。所述线圈通以反向电流,通过这样的线圈设计,在原点为O,半径为0.5a的球形区域产生线性梯度的磁场,尽量使人脑处于该球形区域内,而线圈半径和匝数尽量小以使电感小,从而对驱动电源的硬件难度要求和功率降低、容易实现,使线圈发热也降低,从而适应高频电流产生高频磁场。取R=180mm时,牺牲一点磁场梯度的线性度要求但可以基本得到近似均匀的磁场区域并满足人体工学的要求,因此,这一尺寸作为一种优选实施例。这时,线圈匝数取20,单匝峰值电流取10A,就可以得到中心区域内0.5Gs/cm的磁场梯度。实际应用时,线圈匝数取20,单匝电流可以达到30A,磁场梯度就可以达到1.5Gs/cm,会有较好的治疗效果。同时,通过下位机的控制所述继电器K1,将所述线圈L3的连接方向转换为与原方向相反方向,从而实现改变线圈电流方向的作用,切换线圈电流的方向为同向电流,会在中心区域产生更大的磁场强度,而磁场均匀性提高,梯度降低,能够在实际应用中取得不同于反向电流的效果。
工作过程中,使用者通过上位机设定系统运行的各项参数,并通过串行口传送到下位机,下位机接收到运行命令后,首先发送PWM信号控制主电路Q1和Q4使电容C2和C3上的电压达到计算出的需求值,电容C2和C3上的电压通过检测电路由下位机的AD转换部分得到。当电容C2和C3上的电压达到要求后,下位机通过给Q2、Q3发送不同的PWM信号控制其通断以在L2、L3上产生各种电流波形,从而生成相应的各种时变磁场。主电路的控制可分为三个阶段,即电流的上升阶段、保持阶段和下降阶段。首先是电流的上升阶段,Q2、Q3均一直导通,L2、L3上加上固定不变的电压(其等于C2上的电压),其电流呈现线性上升的趋势,改变C2上的电压即可改变电流的上升斜率,改变阶段的时间即可改变线圈电流的最大值;接着是保持阶段,Q3仍然保持一直导通,Q2则断续的导通和截止,从而使L2、L3的电流基本保持稳定;最后阶段为下降阶段,Q2、Q3均保持截止,电感线圈L2、L3的电流只能通过D2和D3给电容C3充电,电感线圈L2、L3两端相当于加上一个等于电容C3电压的反向电压,电感线圈L2、L3的电流线性下降直到其值等于零,改变C3上的电压即可改变电流的下降斜率。下降阶段后经过一个零电流间隔又从新开始一个新的上升阶段,如此周而复始产生一个固定周期精确波形的时变电流,从而产生了一个周期的精确波形的时变磁场。
在使用过程中,通过对控制电路的设定和控制,产生如图4所示的等腰梯形波,并施加在所述线圈对上,产生相应的时变磁场,通过等腰梯形波的上升沿和下降沿,在目标区域感生出正负方波脉冲电场,从而满足治疗的需要。例如128微秒的上升沿接768微秒平台再接128微秒的下降沿和768微秒的零电流平台,周期1792秒(高频),刺激三分钟后,切换为同样波形间隔500毫秒(低频)刺激三分钟,高低频不断切换,实现预期的治疗目的。
图5为本实用新型在线圈对通以反向电流时,产生磁场的磁力线分布图,(图中仅为半侧)其中可以看出,在目标区域内磁力线分布为线性梯度,其中501为线圈,502为磁力线,503内的区域为所述目标区域,也就是在治疗过程中,将人脑置于其中的区域。
图6为本实用新型在线圈对通以同向电流时,产生磁场的磁力线分布图,其中,可以看出在目标区域内,磁力线分布为近似均匀。其中601为线圈,602为磁力线,603为所述目标区域,也就是在治疗过程中,将人脑置于其中的区域。
除此优选实施例外,本实用新型中所述的线圈对中的线圈还可以采用椭圆形、矩形或包括立体形状在内的其他合理形状的线圈,改变线圈间距、匝数等参数,采用两对或更多对线圈的组合;还可以通过控制电路和驱动电路的控制,实现更多种波形、频率、强度的组合,完成一个磁刺激过程,例如包括等腰梯形在内的更多的电流波形感生的磁场波形,包括不等腰梯形,等腰三角形,不等腰三角形等等;输出电流的频率一般在1000HZ以内,可以多种波形和多种频率组合完成一个磁刺激过程,也可以使高频配合反向电流,低频配合同向电流,还可以实现多种波形和频率的组合。使用者可以通过上位机,根据治疗的需要设定不同的波形、频率、强度以及组合。
以上对本实用新型所提供的中枢神经系统磁刺激电路进行了详细介绍,本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式
及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本实用新型的限制。
权利要求1.一种中枢神经系统磁刺激电路,包括顺次连接的控制电路、驱动电源电路和线圈,其特征在于所述驱动电源电路包括驱动电路、检测电路、主电路,所述驱动电路和检测电路,都分别与所述控制电路和主电路相连,所述线圈与主电路相连。
2.根据权利要求1所述的中枢神经系统磁刺激电路,其特征在于所述主电路包括一个转换电路,用于控制所述线圈对的电流方向为同向或反向。
3.根据权利要求1或2所述的中枢神经系统磁刺激电路,其特征在于所述主电路包括至少一个绝缘栅双极型晶体管,所述控制电路产生的PWM信号,通过驱动电路驱动主电路中的绝缘栅双极型晶体管输出时变电流给所述线圈,产生所需的时变磁场。
4.根据权利要求1或2所述的中枢神经系统磁刺激电路,其特征在于所述控制电路包括用作主控芯片的DSP芯片,所述驱动电路包括用于将控制电路发来的控制信号传递给主电路的光耦合器,所述控制电路控制驱动电路和主电路使线圈产生所需的磁场,所述转换电路包括至少一个继电器。
5.根据权利要求3所述的中枢神经系统磁刺激电路,其特征在于主电路包括一个整流桥(BR1)和五个绝缘栅双极型晶体管(Q1~Q5)、两个电解电容(C2、C3),所述电解电容(C2、C3)并联连接到所述整流桥(BR1)的输出端,所述绝缘栅双极型晶体管(Q1)串接在电解电容(C2)的负极端和整流桥(BR1)之间,触发端与所述驱动电路的一个脉宽调制端(PWM1端)相连,所述绝缘栅双极型晶体管(Q4、Q5)串接在电解电容(C3)的负极端和整流桥(BR1)之间,两个触发端也与所述驱动电路的(PWM1端)相连,所述电容(C2、C3)还与另两个绝缘栅双极型晶体管(Q2、Q3)两端并联,两绝缘栅双极型晶体管(Q2、Q3)的触发端分别与所述驱动电路的另两个脉宽调制端(PWM2和PWM3端)相连,所述第一线圈(L2)连接在所述绝缘栅双极型晶体管(Q2)的发射极和绝缘栅双极型晶体管(Q3)的集电极之间,所述转换电路由一个双刀双掷继电器(K1)构成,所述继电器(K1)的两公共端与所述第一线圈(L2)的两端并联连接,一路常开端与另一路常闭端相连,另一路常闭端与前一路的常开端相连,所述第二线圈(L3)分别连接在所述两连接端上,所述继电器(K1)的线圈与所述控制器两个控制端相连。
专利摘要本实用新型涉及一种中枢神经系统磁刺激电路。本实用新型包括顺次连接的控制电路、驱动电源电路和至少一对同轴、平行、对称放置的相同线圈对,通过控制电路设计并输出波形信号到驱动电源使驱动电源输出相应波形的电流给所述线圈对,在线圈对中间的目标区域产生所需的时变磁场,作用于人脑,使中枢神经系统接受精确波形的、高频率或多种频率组合的、广域的协同磁刺激,实现精神疾病的治疗或脑功能康复及益智。
文档编号A61N2/00GK2834617SQ200520109760
公开日2006年11月8日 申请日期2005年6月15日 优先权日2005年6月15日
发明者郑云峰, 王江 申请人:郑云峰
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1