带有可膨胀部件的细丝状栓塞装置的制作方法

文档序号:1112383阅读:124来源:国知局
专利名称:带有可膨胀部件的细丝状栓塞装置的制作方法
技术领域
本发明涉及栓塞血管动脉瘤及类似的血管异常的方法和装置的领域。更具体地,本发明涉及插入血管部位如动脉瘤内以在其中形成栓塞的栓塞装置以及使用该装置栓塞血管部位的方法。
背景技术
血管的栓塞是多种临床情况所希望的。例如血管栓塞已经被用于控制血管出血,用于闭塞对肿瘤的供血,及用于闭塞血管动脉瘤,尤其是颅内动脉瘤。近年来,使用血管栓塞治疗动脉瘤受到了相当多的重视。现有技术采用了几种不同的治疗方式。例如,Domandy,Jr.等的美国专利4,819,637描述了一种血管栓塞形成系统,该系统使用一种由血管内导管输送到动脉瘤部位的可脱离的气囊。气囊置于导管尖部被带至动脉瘤,然后用一种凝固液体(一般为可聚合的树脂或者凝胶)在动脉瘤内充涨气囊以闭塞动脉瘤。然后通过轻轻牵引导管使气囊与导管脱离。尽管这种气囊式栓塞装置可以对多种劝脉瘤产生有效闭塞,但是凝固液体固定后难于回收或者移动,并且难于成像观察,除非充以造影剂(contrast material)。而且,还存在着在膨胀过程中气囊破裂以及气囊过早地从导管上脱落的风险。
另一种方法是直接向需要闭塞的血管部位注射液态的聚合物栓塞剂。用于直接注射技术的一类液态聚合物是快速聚合的液体,如氰基丙烯酸酯树脂,特别是氰基丙烯酸异丁酯,将其以液体形式输送到目标位置,然后就地聚合。作为选择,还使用一种在目标位置从载体溶液中沉淀下来的液体聚合物。此种类型的栓塞剂的一个例子是与三氧化二铋混合并溶于二甲亚砜(DMSO)中的醋酸纤维索聚合物。另一种类型是溶于DMSO中的乙烯乙烯醇。在与血液接触时,DMSO扩散开,聚合物析出并且快速硬化成与动脉瘤的形状相符的栓塞物。在此种“直接注射”方法中所使用的材料的其它例子公开在下列美国专利中Pásztor等的4,551,132;Leshchiner等的4,795,741;Ito等的5,525,334;和Greff等的5,580,568。
实践证实直接注射液态聚合物栓塞剂难于实施。例如,聚合材料从动脉瘤迁移出来并进入相邻的血管中已经带来问题。此外,栓塞形成材料的成像要求造影剂与之混合,且选择彼此相容的栓塞形成剂和造影剂可能导致决非最佳性能的性能折衷。而且,难于精确地控制聚合的栓塞形成材料的展开,引发定位不适和/或材料过早硬化的风险。而且,一旦栓塞材料展开并固化,则难于移动或回收。
另外一个有前景的方法是使用生成血栓的微型线圈。这些微型线圈可以由生物相容的金属合金(通常采用铂和钨)或者适当的聚合物制成。如果由金属制成,线圈可以带有涤纶纤维以增加血栓生成性能。通过微型导管将所述线圈布置到脉管部位。微型线圈的例子公开于以下美国专利中Ritchart等的4,994,069;Butler等的5,133,731;Chee等的5,226,911;Palermo的5,312,415;Phelps等的5,382,259;Dormandy,Jr.等的5,382,260;Dormandy,Jr.等的5,476,472;Mirigian的5,578,074;Ken的5,582,619;Mariant的5,624,461;Horton的5,645,558;Snyder的5,658,308;和Berenstein等的5,718,711。
微型线圈法在带有细颈的小动脉瘤的治疗中取得了一定的成功,但是微型线圈必须紧密地填入动脉瘤中以避免能够引起再导通的移动。在治疗更大的动脉瘤,特别是那些具有较宽颈的动脉瘤中,微型线圈不太成功。微型线圈的一个缺点是其不容易回收;如果线圈移出动脉瘤就必须进行第二次手术以收回它并且放回到适当的位置。而且,完全使用线圈将动脉瘤完全包裹在实践中也难于办到。
一种获得一定的成功的特殊类型的微型线圈是在Guglielmi等的美国专利5,122,136中描述的Guglielmi可脱离线圈(“GDC”)。GDC使用一种通过焊接固定在不锈钢传送线上的铂丝线圈。在将线圈放置在动脉瘤中后,在传送线上加电流,传送线被加热至足以熔化焊接点,从而使线圈与传送线脱离。施加电流还在线圈上产生正电荷,正电荷吸引带负电的血细胞、血小板和纤维蛋白原,从而增加线圈的血栓形成性能。可以把不同直径和长度的几种线圈装填进动脉瘤,直到动脉瘤完全充满。这样,线圈就会在动脉瘤内产生和保持血栓,防止其移位和破碎。
GDC方法的优点是如果线圈从所希望的位置移开,能够取回并重新安置线圈,并且加强了其促进在动脉瘤内形成稳定的血栓的能力。尽管如此,同常规的微型线圈技术一样,GDC技术的成功使用基本上局限于具有细颈的小动脉瘤。
另一个栓塞异常血管部位的方法是向该部位注入生物相容的水凝胶,例如聚(甲基丙烯酸2-羟乙基酯)(“pHEMA”或“PHEMA”);或者聚乙烯醇泡沫(“PAF”)。例如参见,Horák等人在1986年11月出版的“生物材料”(Biomaterials)期刊第7卷,467-470页发表的文章“用于血管内栓塞形成的水凝胶,II.球形颗粒的临床应用”(“Hydrogels in Endovascular Embolization.II.Clinical Use of SphericalParticles”);Rao等人在1991年出版的“神经系统放射学”(J.Neuroradiol.)期刊第18卷,61-69页发表的文章“由交联的聚甲基丙烯酸甲酯形成的水解微球体”(“Hydrolysed Microspheres fromCross-Linked Polymethyl Methacrylate”);Latchaw等人在1979年6月出版的“放射学”(Radiology)期刊第131卷,669-679页发表的文章“头部、颈部和脊柱的血管和瘤病变的聚乙烯泡沫栓塞”(PolyvinylFoam Embolization of Vascular and Neoplastic Lesions of the Head,Neckand Spine)。这些材料的微粒通过一种注入血管部位的载液进行输送,该过程被证明难以控制。
进一步的发展是将水凝胶材料形成一个预先成型的植入物或栓塞,借助于例如微型导管将植入物或栓塞安装进血管部位。例如参见,Mehta的美国专利5,258,042。这些类型的植入物或栓塞主要设计用于阻塞流经管状脉管或者动脉瘤颈部的血液,但要想将其在气囊状血管结构,如动脉瘤中精确地植入,从而基本上填充此结构的整个内部空间是很不容易的。
Jones等人的美国专利5,823,198公开了在引导线的末端传送至动脉瘤内部的一种可膨胀聚乙烯醇(PVA)泡沫栓塞。该栓塞包含一些在接触动脉瘤内的流体时膨胀成开孔结构的小球或粒子,从而栓塞动脉瘤。用一种可溶于血液的抑制剂涂布小球以维持它们在输送至动脉瘤之前处于压缩状态并连接在引导线上。但是,由于在小球和引导线之间没有机械连接(而是由抑制剂所提供的较弱的临时结合),因此仍然存在部分小球过早地释放和移动的可能。
因此,存在着对动脉瘤的治疗装置和方法的长期的,但是尚末得到满足的需求,这些装置和方法应当能够用血栓生成介质填充具有大尺寸范围、结构和宽颈的动脉瘤,并且动脉瘤的意外破裂或者血管壁受到损伤的风险应尽可能小。还进一步需要能够使介质精确地局部散开,同时使介质从目标部位移开的可能性最小的方法和装置。另外,满足这些标准的方法和装置还应当易于在临床装配中使用。此种易于使用,例如应优选包括在动脉瘤中散开过程中及散开以后装置有良好的显像性。

发明内容
概括地,根据本发明的第一个方面,一种栓塞装置包含一个或多个可膨胀的、亲水的栓塞部件,这些部件不可释放地安装在一种细丝状载体上,沿着该载体的长度方向间隔排列。在一个优选的实施方案中,所述的载体是一段适当长度的非常细的、高柔韧性的镍/钛合金细丝。所述的栓塞部件在载体上由不透射线的间隔物彼此隔开,间隔物是由铂或铂/钨合金制成的高柔韧性的微型线圈的形式,类似于上文所述的现有技术中形成血栓的微型线圈。
在一个优选的实施方案中,栓塞部件由亲水的、大孔、聚合的水凝胶泡沫材料,尤其是大孔固体形式的可膨胀的泡沫基体制成,它含有一种泡沫稳定剂和可自由基聚合的亲水烯烃单体与最高达约10重量%的多烯官能团的交联剂交联的聚合物或共聚物。此种材料在Park等人的美国专利5,750,585中公开,该专利的公开内容在本文中引作参考。可以对材料进行改性,或者加入添加剂,使植入物能够通过常规的影像技术可见。
本发明的第二个方面是栓塞血管部位的方法,在一个优选的实施方案中,该方法包括以下步骤(a)使微导管在血管内通过以致其远端被引入到目标血管部位;(b)使血管闭塞装置穿过微导管到达目标血管部位,使血管闭塞装置呈填充目标血管部位部分空间的三维构型;(c)提供一种血管栓塞装置,该装置包含至少一个与细丝状载体以不可释放方式连接的可膨胀栓塞部件;(d)使栓塞装置穿过微导管,使其从微导管的远端露出并进入目标血管部位;和(e)就地膨胀栓塞部件以实质性地填充目标血管部位的剩余空间,同时维持栓塞部件与载体之间的连接。
优选血管闭塞装置的类型为在初始状态时是通过微导管传送的拉长的、柔韧的细丝状部件,而一旦安装在目标血管部位时呈三维几何结构。一种此类装置是上文描述的GDC(Guglielmi等人的美国专利5,122,136,该专利的公开内容在本文引为参考)。其他此类装置例如在Horton的美国专利5,766,216;McGurk等的美国专利5,690,671和Pham等的美国专利5,911,731中描述,上述专利的公开内容在本文中引为参考。本领域中其他已知类型的血管闭塞装置也可以令人满意地施行该方法。
在本发明方法的一个可选择的实施方案中,该方法包括下列步骤(a)在血管内临近目标血管部位的位置设置一种血管内装置;(b)提供一种血管栓塞装置,该装置包括至少一个与细丝状载体以不可释放方式连接的可膨胀栓塞部件;(c)使微型导管在血管内穿过以致微型导管的远端穿过血管内装置进入目标血管部位;(d)使栓塞装置穿过微导管并使其从微导管的远端露出并进入目标血管部位;和(e)使栓塞部件就地膨胀以实质性地填充目标血管部位的空间,同时维持栓塞部件与载体之间的连接。
应当理解的是,提供栓塞装置的步骤可以在使微导管在血管内穿过的步骤之后。
在这种可选择的实施方案中,血管内的装置可以是在Kupiecki等人的美国专利5,980,514中所公开的类型,该专利的公开内容在本文中引为参考。此种血管内装置包含一种细丝状部件,该部件由微导管引入到动脉瘤等的接合点,然后该部件里与动脉瘤的颈部相邻的线圈结构。
在有些情况下,可以省略使血管闭塞装置或血管内装置穿过微导管到达目标血管部位的步骤。
在优选的实施方案中,栓塞体或部件的起始构型是小的、基本为圆筒形的“微球”形式,并且其具有足够小的外径,以安置在微导管内。所述的栓塞体能够亲水膨胀成膨胀结构,在该结构中栓塞体基本与血管部位相符并将其填充。
本发明具有多个显著的优点。特别是本发明提供了一种能够以优良的定位控制布设在血管部位内的有效的血管栓塞装置,并且与现有技术的装置相比,该装置具有更低的血管破裂、组织损伤或者移动的风险。另外,该栓塞装置在部位内形成能够促进有效栓塞的保形构型,而该装置可穿过微导管被输送至部位的能力有助于精确且高度可控的布置。此外,栓塞装置基本为细丝状的初始构型允许其有效地用于栓塞大尺寸范围、多种结构和(特别是动脉瘤的情况)宽颈的血管部位,其中的细丝状起始构型易于与血管部位的内部尺寸相符。从下面的详细说明可以更充分地理解本发明的这些和其它优点。


图1是按照本发明的一个优选实施方案的一种血管栓塞装置的正视图;图2是沿图1中的2-2线截取的横截面图;图3是沿图2中的3-3线截取的横截面图;图4至图7是表示按照本发明栓塞方法的一个实施方案,栓塞一个血管部位(特别是动脉瘤)的方法的各个步骤的部分示意图。
图8是一种机械结构的详细透视图,优选本发明的栓塞装置通过该结构与布设工具的远端连接。
图9是与图8类似的一个详细透视图,示出了与布设工具分离后的本发明的栓塞装置。
图10、11和12是表示按照本发明栓塞方法的一个优选实施方案,栓塞血管部位的一种方法中除图4-7所示以外步骤的部分示意图。
图13是表示按照本发明栓塞方法的一种可选择的实施方案,栓塞血管部位方法的步骤的部分示意图。
具体实施例方式
栓塞装置。根据本发明,在图1、2和3中示出了一种血管栓塞装置10。在优选实施方案中,栓塞装置10包含多个栓塞体,每个栓塞体的构型是基本为圆筒状的“微球”12,微球沿细丝状载体14间隔放置。微球12的数量可以根据载体14的长度变化,而载体的长度将取决于待栓塞的血管部位的尺寸。对于大的血管部位,例如,可以使用8至12个微球,但是,如果需要,可以使用更多数量的微球。在有些应用中(例如,非常小的动脉瘤),可以仅使用1或2个微球。
载体14还携带了多个高度柔韧的微型线圈间隔物16,每个间隔物置于1对微球12之间并将其隔开。载体14具有一个携带了一个较长的远端微型线圈段18的远端部分,远端微型线圈段18由一个远端保持部件20保持在适当的位置。载体14具有一个携带了一个较长的近端微型线圈段22的近端部分。装置10的近端由一个下文将描述的水凝胶连接部件24封端。间隔物16、远端微型线圈段18和近端微型线圈段22均具有高度柔韧性,优选它们由铂或铂/钨线制成,铂或铂/钨绒具有生物相容性和不透射线的优点。微球12以不可释放方式载在载体14上。可以通过机械方式或适当的生物相容的、水不溶性的粘合剂将它们固定在细丝状载体14的适当位置上,也可以简单地将它们在连续的间隔物16之间松散地串在载体14上。
优选微球12由生物相容的、大孔、亲水的水凝胶泡沫材料,特别是大孔固体形式的水溶胀性的泡沫基体制成,它含有泡沫稳定剂和可自由基聚合的亲水烯烃单体与最高达约10重量%的多烯官能团的交联剂交联的聚合物或共聚物。此种类型的一种适当的材料在Park等人的美国专利5,570,585中公开,该专利的公开内容在本文中引为参考。
另一种用于微球12的合适的材料是多孔水合聚乙烯醇(PVA)泡沫凝胶,该凝胶由聚乙烯醇的混合溶剂溶液制备,所述的混合溶剂由水和一种可与水混溶的有机溶剂组成,例如,在Hyon等人的美国专利4,663,358中的描述,该专利的公开内容在本文中引为参考。其他适合的PVA结构在Jones等人的美国专利5,823,198和Mehta的美国专利5,258,042中公开,该两项专利的公开内容在本文中引为参考。另一种适合的材料是胶原泡沫,在Conston等人的美国专利5,456,693中描述了此种类型的材料,该专利的公开内容在本文中引为参考。另一种适合的材料是如上文引用的文献中讨论的PHEMA,例如参见上述Horák等人和Rao等人的文献。
如上文引用的Park等人的专利描述的优选的泡沫材料具有至少约为90%的空隙率,并且其亲水性能使其在充分水合时具有至少约为90%的水含量。在优选实施方案中,每个栓塞微球12在就地膨胀前具有不超过约0.5mm的初始直径,具有至少约为3mm的膨胀直径。为获得如此小的尺寸,可以将微球12从明显更大的初始结构压缩至需要的尺寸。通过在适当的器具或设备中挤压或卷曲微球12进行压缩,然后通过加热和/或干燥将其“固定”在压缩结构。首先通过从含水溶液(例如体内的血浆和/或注入的盐溶液)中亲水吸收水分子,然后由血液充满其中的孔,每个微球12可溶胀或膨胀至其初始(压缩)体积的许多倍(至少约25倍,优选约70倍,最高约100倍)。而且,可以用水溶性的涂料(未示出),如淀粉涂敷微球12以延迟膨胀。另一种选择方案是使用在正常的人类体温下崩解的温度敏感涂料涂敷微球12。例如参见Stewart等人的美国专利5,120,349和Stewart的美国专利5,129,180。
可以方便地改进栓塞微球12的泡沫材料或向其中加入添加剂,以使装置10通过常规成像技术可以看得见。例如,可以充入水不溶性的不透射线的材料,如硫酸钡,如Thanoo等人在1989年的《微气囊法杂志》第6卷第2期233-244页的“不透射线的水凝胶微球体”(“Radiopaque Hydrogel Microspheres”)中的描述。或者,可以将水凝胶单体与不透射线的材料共聚,如Horák等人在1997年的《生物医学材料研究杂志》第34卷,183-188页的“新型不透射线的聚HEMA基水凝胶粒子”(“New Radiopaque PolyHEMA-Based HydrogelParticles”)中的描述。
微球12可以选择性地包含生物活性剂或治疗剂以促进血栓形成、细胞的向内生长和/或上皮的形成。例如参见Vacanti等人在1999年7月的《柳叶刀》(The Lancet)第354卷,增刊1的32-34页“组织工程学用于外科再造和移植的活体替换装置的设计和制造”(“Tissue EngineeringThe Design and Fabrication of LivingReplacement Devices for Surgical Reconstruction and Transplantation”);Langer在1997年7月的《药物研究》(Pharmaceutical Research)第14卷,第7期,第840-841页的“组织工程学一个新的领域及其挑战”(“Tissue EngineeringA New Field and Its Challenges”);Persidis在1999年5月的《自然生物技术》(Nature Biotechnology)第17卷,第508-510页的“组织工程学”(“Tissue Engineering”)。
优选细丝状载体14是一段镍/钛金属线,例如以商品名“Nitinol”销售的产品。此种合金的金属线具有高度柔韧性,并且具有优良的“弹性记忆效应”,借此,可以将它形成需要的形状,当它变形时它将恢复到该形状。在本发明的一个优选实施方案中,形成载体14的金属线具有大约0.04mm的直径,对其进行热处理形成可以呈各种三维形状,如螺旋状、球形或卵形的多回路结构(例如在Horton的美国专利5,766,219中所公开的内容,该专利的公开内容在本文中引为参考)。优选将载体14的中间部分(即,包含微球12的部分)和近端部分(带有近端微型线圈段22的部分)形成直径约为6mm的回路,而远端部分(带有远端微型线圈段18的部分)可以具有较大的直径(例如,约8-10mm)。载体14可以由单根金属线制成,也可以由多条超细金属线的索式或辫状结构制成。
在另一个实施方案中,载体14可以由一种形成环状结构的适当的聚合物,例如PVA的细丝制成。可以用一种不透射线的材料(例如,硫酸钡或金、钽或铂粒子)充入聚合物中,或者可以在聚合物中封入一个镍/钛金属线的芯。作为选择,可以将载体14制成细聚合物纤维的“索式”结构,该结构间隔性地包含一种可膨胀的聚合物,例如聚乙烯醇(PVA)纤维以形成微球12。
载体14的另一种可选择的结构是一段连续的微型线圈。在此实施方案中,微球12沿载体14的长度方向的间隔附着在载体14上。
如图1、8和9所示,水凝胶连接部件24便利地由与微球12相同的材料制成。实际上,微球12的最近端可以起到连接部件24的作用。连接部件24通过适当的生物相容的粘合剂附着在载体14的近端上。连接部件24的目的是以可拆卸的方式将装置10与布设工具30(图8和9)连接。布设工具30包括一段铂或铂/钨微型线圈外部32,外部32具有一个由相同或类似金属材料制成的柔韧的金属线芯34。布设工具30有一个远端36,微型线圈的外部32在远端36上具有以更大的间隔分布(即,具有更大的间距)的线圈。
如图8所示,装置10首先通过连接部件24与布设工具30连接。特别地,连接部件24以压缩的状态安装,以使其围绕并接合栓塞装置10的近端和布设工具30的远端36。因此,在压缩状态,连接部件24将布设工具30和栓塞装置10连接在一起。如图9所示,并将在下文详细描述,在将装置10布设在血管部位后,连接部件24极大地膨胀,由此放松其对布设工具30的远端36的抓着,并因此通过将布设工具30近端拉开并与连接部件24脱离,使栓塞装置10与布设工具30分开。
栓塞血管部位的方法。图4至7示出了使用栓塞装置10栓塞血管部位的一种方法。首先,如图4所示,通过已知的方法,在血管内穿入微导管40,直至其远端定位在目标血管部位内(此处是动脉瘤42)。简单地说,该穿入操作的进行通常通过首先沿期望的微导管路径引入一根导管引导线(未示出),然后插入微导管40并超过导管引导线直至微导管40到达临近动脉瘤圆顶远端的位置,如图4所示。然后撤走导管引导线。此后,如图5和6所示,使如上文所述与布设工具30的远端相连的栓塞装置10轴向地穿过微导管40,使用布设工具30推动装置10穿过微导管40,直至装置10与微导管40的远端脱离并完全布设在动脉瘤42内(图6),从动脉瘤的远端填充动脉瘤。通过使栓塞装置10显像使布设程序顺利进行,如上文所示,由于装置10含有不透辐射的成分,可以轻易地实现装置10的显像。
处于压缩构型的栓塞体或微球12的最大外径低于微导管40的内径,从而使栓塞装置10能够穿过微导管40。优选在将装置10插入微导管40之前,如上文所述压缩和“固定”微球12。当装置10插入微导管40中时,可以向微导管40内注射一种生物相容的、基本不含水的流体,如聚乙二醇,以防止由于水合作用引起装置10过早地膨胀并减少与微导管40内部的摩擦。
如图6所示,当栓塞装置10从微导管40中露出并进入血管部位42的内部时,栓塞体或微球12以及连接部件24的细孔开始从血管部位42内的血液中吸收含水流体,变为其的“固定”状态,使这些部件呈现膨胀构型。可以通过经由微导管40注射盐溶液增强和促进膨胀。如上所述,连接部件24的膨胀使栓塞装置10与布设工具30脱离,然后可以撤出布设工具30。而且,载体14的弹性记忆效应使得它在从微导管40的限制中释放出来后恢复其最初的回路构型。因此,几乎在栓塞装置释放至血管部位(动脉瘤)42中的同时,栓塞装置即开始占据动脉瘤42的空间中的主要部分。
如果微球12是亲水材料制成的,那么由于材料的亲水水合作用以及血液充满其细孔,微球12将继续就地膨胀。如果栓塞体12由非亲水材料制成,则它们的膨胀仅是由于血液充满其细孔。无论哪种情况,如图7所示,结果都是由膨胀的栓塞体或微球12基本完全充满动脉瘤42的内部,借此形成了基本保形的栓塞植入体44,该植入体实质性地充满动脉瘤42的内部。由载体14不可释放地携带并固定在载体的适当位置上的微球12在其膨胀过程中停留在载体上。因此,降低了微球与载体脱离并迁移出血管部位的机会。
在进行上述程序性步骤之前通过常规方法使动脉瘤42初步显像以获得其体积的大小(或者至少一个近似值)可能是有利的。然后可以选择将膨胀充满所测量或估计空间的、具有适当尺寸的装置10。
参考图10-12和图4-7(上文讨论的)将理解使用栓塞装置10栓塞目标血管部位的一种优选方法。在该方法的优选实施方案中,将微导管40插入血管内直至将其远端引入到目标血管部位(图4)以后,使血管闭塞装置50穿过微导管40进入目标血管部位(例如,动脉瘤42),从而使血管闭塞装置50呈现填充目标血管部位42的一部分内部空间的三维构型,如图10所示。所布设的血管闭塞装置50在动脉瘤42内形成一个“笼”,该“笼”提供了一个用于改进栓塞装置10膨胀的栓塞体或微球12的保持力的基体。之后如上文所述,使栓塞装置10穿过微导管40,并如图11所示进入动脉瘤42内血管闭塞装置50的剩余空间。最后,如上文所述,栓塞体或微球12膨胀,如图12所示,借此形成基本保形的栓塞植入体44′,该植入体基本充满动脉瘤42剩余的内部空间。
优选血管闭塞装置50是在初始状态呈适于穿过微导管传送的拉长的、柔韧的细丝状部件,一旦安装在目标血管部位内,呈三维几何构型(通过弹性特性或形状记忆效应)的形式。此种装置在例如Guglielmi等人的美国专利5,122,136;Horton的美国专利5,766,219;McGurk等人的美国专利5,690,671;和Pham等人的美国专利5,911,731中公开,上述专利的公开内容在本文中引为参考。本领域中已知的其他类型的血管闭塞装置也能够在本方法中令人满意地发挥作用。例如,可以使用类似于Lenker等人的美国专利5,980,554中所示出的展幅型装置。或者,可以将血管闭塞装置50设计或设置成仅仅进入动脉瘤的开口或“颈部”附近的空间。在任何情况下,本方法中的血管闭塞装置50的目的是提供帮助保持栓塞装置10处于目标血管部位内的适当位置的结构框架。
参考图13将理解本发明方法的一种可选择的实施方案。在该可选择的实施方案中,该方法包括在与目标血管部位42相邻的血管62中的一个位置布设一种血管内装置60的预备步骤。在血管内通入微导管40′,以致其远端穿过血管内装置60进入目标血管部位42。使栓塞装置10穿过微导管40′,致其从微导管40′的远端露出并进入目标血管部位42中,然后栓塞部件12如上文所述就地膨胀,基本充满目标血管部位42的空间(如图7和12所示)。
可以理解的是在与目标血管部位相邻的血管中的一个位置布设一种血管内装置的步骤将包括任何此种布设所需要的子步骤。例如,如果血管内装置60是Kupiecki等人的美国专利5,980,514所公开的类型(该专利的公开内容在本文中引为参考),则布设步骤将包括下列子步骤(i)将微导管通入血管内至其远端到达邻近目标血管部位的位置;(ii)使血管内装置穿过微导管直至其从微导管的远端露出;和(iii)使血管内装置在邻近目标血管部位的位置呈三维构型。在此种情况下,可以撤出用于布设血管内装置的微导管,然后使用另一根微导管安装栓塞装置,或者可以重新调整血管内布设微导管的位置,以引入栓塞装置。
在该可选择的方法中,血管内装置提供了一个至少部分阻塞目标血管部位和血管的接合点(例如,动脉瘤的颈部)的阻塞物。因此,血管内装置帮助保持栓塞装置处于目标血管部位内的适当位置。
虽然上文描述了装置10在栓塞动脉瘤中的应用,但很容易就会想到其在其他方面的应用。例如,该装置可以用于治疗各种血管异常,例如动静脉畸形和动静脉瘘。也可以使用本发明通过栓塞血管空间或其他软组织空隙治疗某些肿瘤。
尽管上文描述了本发明的优选实施方案,但所属领域内的普通技术人员也会想到多种变化和修改方案。例如,栓塞体12的初始形状和数量可以变化,载体14的长度也可以变化。另外,可以发现用于栓塞装置10与布设金属线之间可脱离方式连接的其他机制。此类可选择的一种连接机制可以是聚合物过渡连接,该连接在与血液接触或通以低水平电流受热时松弛。这些及其他变化和修改视为包含在所附权利要求书中所描述的本发明的精神和范围之内。
权利要求
1.一种栓塞血管部位的装置,其包含拉长的、细丝状部件;和以不可释放方式固定在细丝状部件上的亲水可膨胀栓塞部件。
2.权利要求1所述的装置,其中的栓塞部件由亲水的水凝胶泡沫材料制成。
3.权利要求2所述的装置,其中的泡沫材料包括一种大孔固体形式的水可膨胀的泡沫材料基体,所述的大孔固体含有泡沫稳定剂和可自由基聚合的亲水烯烃单体与最高达10重量%的多烯官能团的交联剂交联的聚合物或共聚物。
4.权利要求1所述的装置,其中的栓塞部件由选自由聚乙烯醇泡沫、胶原泡沫和聚(甲基丙烯酸2-羟乙酯)所组成的组的材料制成。
5.权利要求1所述的装置,其中的栓塞部件的初始直径不超过0.5mm并可膨胀至直径最小为3.0mm。
6.权利要求1所述的装置,其中的栓塞部件具有一个预定的初始体积,并且可膨胀至是其初始体积的至少25倍的膨胀体积。
7.权利要求1所述的装置,其中的细丝状部件包括一种形成多回路构型的细的、柔韧金属线。
8.权利要求7所述的装置,其中的金属线由具有优良的弹性记忆性能的镍钛合金制成。
9.权利要求1所述的装置,其中的细丝状部件包括一种形成多回路构型的聚合物细丝。
10.权利要求1所述的装置,其中的细丝状部件由具有弹性记忆效应的柔韧材料制成并构造成多回路结构的初始结构。
全文摘要
一种栓塞装置,其包含多个沿细丝状载体间隔排列在细丝状载体上的高度可膨胀的栓塞部件。在一个优选的实施方案中,载体是适当长度的一段非常细的、高柔韧性的镍/钛合金细丝。栓塞部件在载体上由不透射线的间隔物彼此隔开,间隔物是由铂或铂/钨合金制成的高柔韧性的微型线圈的形式。在一个优选的实施方案中,栓塞部件由亲水的、大孔、聚合的水凝胶泡沫材料制成。该装置特别适合栓塞血管部位,如动脉瘤。栓塞体是小的、基本为圆筒形的“微球”形式,其初始结构的外径足够小而可以设置在微导管内。所述的栓塞体能够亲水膨胀成膨胀结构,在该结构中栓塞体基本与血管部位相符并填充血管部位,同时保持与载体连接。
文档编号A61L29/00GK1830397SQ20061000648
公开日2006年9月13日 申请日期2000年9月29日 优先权日1999年10月4日
发明者乔治·R·小格林, 罗伯特·F·罗森布拉思, 布赖恩·J·考克斯 申请人:微温森公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1