减少电极的心电图系统的制作方法

文档序号:1181668阅读:124来源:国知局
专利名称:减少电极的心电图系统的制作方法
技术领域
本发明涉及减少电极的心电图系统。具体来说,本发明涉及用于从使用较少导联的测量中综合标准的十二导联心电图或者类似的系统。

背景技术
心电图仪(或ECG)是心脏病医生可以利用的最重要的非侵入性诊断工具之一。在开发心电图仪期间,已经开发出一组从病人获得心电图的标准方法。这些标准方法包括12导联ECG、9导联ECG、15导联ECG、和矢量心电图。
12导联ECG时至今日还是这些方法中的最为通用的一种方法,因此经常称之为“标准12导联ECG”,或者甚至于叫做“标准ECG”。12个“导联”(或信号)是从一个病人身上使用10个电极获得的,这10个电极放置在病人的皮肤上,在人体上的标准位置就位。每个电极都经过一个对应的导线(或导联)连接到一个信号处理设备上。术语“导联”通常指的是到电极的物理导线,或者指的是ECG信号本身。在这里为了避免混乱,使用单词“导联”总是指ECG信号,而不是电极接线。
标准12导联ECG分为两组肢体导联I、II、III、aVR、aVL、aVF;心前导联V1、V2、V3、V4、V5、V6。
遗憾的是,12导联ECG的应用是存在问题的使用10个电极再加上相关的导线常常使病人感到不舒服,即使在很短的时间范围内亦是如此。放置10个电极可能会花费相当多的时间,特别是对于非专业人员更是如此。此外,电极导线的数量可能会阻碍医务人员在病人身上从事其它的操作,同时,当使用较大数目的电极时将会增加操作的成本。
在“动态”记录的情况下,形势变得更加糟糕。在动态记录期间,病人在进行测量的同时还要自由地来回运动,例如散步、跑步、等等。肢体电极因此可能要经受剧烈的运动和肌肉的作用,从而破坏期望的ECG信号。连接到上臂和腿部的电极还限制了病人的运动以及病人的穿戴。使用很多数目的导线增加了病人运动时这些线中的一根或多根卡住或咬住的可能性,可能使电极脱开或者使电极/皮肤触点变黑。此外,如果相当长的时间配戴,电极/皮肤触点经常变得过敏,显然,配戴的电极的数目越多这个问题越严重。
已经提出了几种减少导联组的方法,使用在仔细确定的电极位置设置的较少的电极来提供近似的标准ECG。例如美国专利4106495、4318412、4850370、5058598、6052615、和6119035中的每一个都使用了涉及在记录的导联和期望导联组之间(典型的或者是标准的12导联ECG或者向量心动图)进行线性变换的方法。所有的这些系统都减小了ECG记录的困难、建立时间、不舒服性、和单位成本。这是对真正的标准ECG记录和综合的替换方案之间必然差异的折衷平衡。如果ECG必须在通信网络上发送,在这里可能必须考虑带宽的可利用性,则使用减少的电极组也是明显值得的。
已知的减少的电极组的问题是综合期望的导联所需要的变换对于不同的病人不是不变的。已知的系统或者使用固定的变换(根据大量的病人确定的)来近似代表所需的变换,或者使用对于每个病人都要计算的特定病人变换,后者所述的计算对于所讨论的病人测量需要期望的导联(一个或多个)和减少的导联组这两者,以此作为初始预备步骤。
另一个问题是,即使是相同的病人,对于人体的各种不同的姿势,综合变换也不是不变的。这是因为当病人的身体姿势变化时,他们的身体形状也要随之变化。如果病人保持相同的单个姿势,例如,病人平躺的经典的“静止ECG”位置,并且对于这种姿势确定导联变换,则不会产生这种姿势效应。然而,自由行走的病人将表现出几种不同的人体姿势,并且,在综合变换中姿势引起的改变变为相关的了。
已有的减少电极的解决方案还可能容易产生误差,这是因为不太熟悉它们正在使用的非标准的ECG位置的缘故,并且,基于相同的理由,这种方案难以验证读数的准确性。


发明内容
本发明试图提供一种系统,其中通过使用在病人身上的减少数目的电极触点来实现标准的12导联ECG的综合。此外,期望所述的系统允许病人自由步行运动。在一个可替换的相容方面,所述的系统几乎不受姿势变化的影响。
在某些实施例中的系统引入并使用一个“临时导联”使用至少一个附加电极产生临时的ECG信号,所述附加电极位于ECG电极组体表位置的外部,只在短的时间周期(一个或多个)进行测量/记录/佩戴。
所述的系统还引入并使用“未测量电极”和“未测量导联”。“未测量电极体表位置”可以定义为由心电图仪体表位置和临时电极体表位置确定的电极组体表位置以外的病人身上的电极体表位置。“未测量导联”可以定义为这样一种导联,即,需要使用至少一个未测量电极体表位置进行直接测量或导出的一个信号。
本发明提供了通用类型的方法,所述方法包括综合心电图(ECG)信号,通过从连接到人体的预先确定的位置的第一组电极接收信号,以获得第一组ECG信号;并且,通过对于所述第一组ECG信号或其子组使用预先确定的变换(一种或多种)以形成期望的一组信号,导出至少一个另外的ECG信号;其中第一组电极包括标准的12导联电极体表位置V2和V5,再加上至少一个电极和至少一个另外的电极,所述的至少一个电极在与V5基本水平的右腋前线上,所述的至少一个另外的电极定位在人体的右侧和左侧中的每一侧上。
所述的方法包括在人体的右手侧和左手侧中的每一侧上与肢体的上部基本水平位置设置所述至少一个另外的电极。
所述的方法中,在人体的右手侧和左手侧上的另外的电极可放置在躯干上,与四肢上部基本上在同一水平面上。
在本发明的第一实施例中,提供一种用于获得以上所述的通用类型的一组ECG信号的方法,其中的电极体表位置定位在 V2标准12导联电极体表位置V2; V5标准12导联电极体表位置V5; V5R在与V5基本水平的右腋前线上; RA标准12导联电极体表位置RA(臂、肩、腕或手);和 LA标准12导联电极体表位置LA(臂、肩、腕或手)。
在本发明的第二实施例中,提供一种用于获得以上所述的通用类型的一组ECG信号的方法,其中的电极体表位置定位在 V2标准12导联电极体表位置V2; V5标准12导联电极体表位置V5; V5R在与V5基本水平的右腋前线上; RC在人体的上胸部,与胸骨柄相同高度,在右边锁骨中线上;和 LC在人体的上胸部,与胸骨柄相同高度,在左边锁骨中线上。
在本发明的第三实施例中,提供一种用于获得以上所述的通用类型的一组ECG信号的方法,其中的电极体表位置定位在 V2标准12导联电极体表位置V2; V5标准12导联电极体表位置V5; V5R在与V5基本水平的右腋前线上; R在人体的右侧区的任何位置,在心脏上方的前上胸和右臂、肩、或手之间; L在人体的左侧区的任何位置,在心脏水平上方的前上胸和左臂、肩、或手之间。
在本发明的另外的实施例中,提供一种用于获得以上所述的通用类型的一组ECG信号的方法,其中的电极位置V2由电极位置Vc代替,电极位置Vc直接定位在胸骨上,在标准电极体表位置V1和V2之间。
在一个实施例中,所述方法包括从临时电极导出一个ECG信号,临时电极在整个ECG测量期间不都进行连接。
所述方法进一步还包括产生特定病人的变换或变换组,所述的变换是作用在综合临时电极信号的ECG信号上。
所述的方法还包括产生特定病人的变换或变换组,所述的变换或变换组在断开所述临时电极之后作用在ECG信号上以综合所述临时电极信号的表示。
在晚些时间,临时电极可能会重新激活或者重复施加,以便重新确定特定病人的变换。
所述方法还包括从下面的选顶之一为每个临时电极确定一个参考电位ECG电极的电位、不同临时电极的电位、或由ECG电极(一个或多个)和/或临时电极(一个或多个)的组合形成的电位。
临时ECG信号可以定义为临时电极的电位和它的参考电位之间的电位差。
所述的方法还可以包括从第一组ECG信号和临时ECG信号这两者获得一组ECG信号。
所述的方法还可以包括只使用第一组ECG信号从人体上获得第二组ECG信号。
可以通过使用对于第二组ECG信号的特定病人的变换来综合临时信号(一个或多个)。
使用预先确定的变换或变换组可以导出另外的ECG信号,所述变换或变换组或者作用于包括第二组ECG信号和至少一个综合的临时电极信号的组,或者作用于从第二组ECG信号和至少一个综合的临时电极信号选择出来的子集。
临时电极(一个或多个)可以定位在右臂、肩、或手上的任何一点。
临时电极(一个或多个)可以定位在左臂、肩、或手上的任何一点。
临时电极(一个或多个)可以在与下面时间不同的时间连接第一组ECG信号获得或者等价地被临时激活时、以及在回溯地计算特定病人的变换时。
在初始使用后,可以使用临时电极完成除提供心电图仪信号数据外的其它功能,否则停止作为心电图信号电极进行操作,或者可以完全去除不用。例如,可以用于测量整个胸廓阻抗。
在下一个实施例中,用于从ECG电极(一个或多个)获得信号的连接到测量装置或设备的输入连接端具有第二种用途,即从临时电极获得信号。
在下一个实施例中,所述方法可以包括在分开的操作模式之间切换电极,其中在第一模式所述电极测量ECG信号,在第二模式电极在病人和ECG测量装置之间形成参考电连接。
在下一个实施例中,所述的方法还包括如下步骤 在病人身体上施加多个电极以便为这个病人测量一组ECG信号; 检测病人的人体姿势(例如,使用在病人身体上的姿势传感器、在装置内的姿势传感器、在装置上的姿势选择开关、或者任何其它合适的装置);和 对于一组或一个子组的被测ECG信号进行一组变换以便形成一组期望的ECG信号,其中按照病人被测姿势的测量值选择或修改所述的这组变换。
人体姿势传感器可以包括加速装置、倾斜传感器、或手动开关。
人体姿势可通过加速度计、倾斜传感器、或手动开关检测。
在下一个实施例中,所述方法还包括如下步骤 从第一组数据或其子组为至少一个临时信号计算一个模拟矩阵; 向第二组ECG信号施加模拟矩阵以产生模拟的临时信号; 向第二数据组再加上模拟的信号施加固定的导出矩阵以确定未被测量的ECG导联; 其中所述方法适于补偿特定病人的姿势和运动的变化。
导出未测量的ECG信号的方法还可以包括形成一个矩阵R,其中的R包含来自被测ECG信号的数据点。类似地,从临时电极信号可以算出解答矩阵A。
使用sX(i)=R*A(i),可以计算矩阵sX。
从第一组ECG信号再加上模拟的临时电极信号可以形成矩阵M。
所述方法还包括形成导出的矩阵dL(x)=M*B(x),在这里,B(x)是一个预先确定的解答矩阵,dL(x)模拟的是在一个未经测量的电极体表位置观察到的数据。
在一个实施例中,所述的方法包括测量第一组ECG信号、处理所述信号导出标准的12导联ECG、和实时显示所述标准的12导联ECG。
在另一个实施例中,记录并存储第一组ECG信号,以便随后进行处理以导出标准的12导联ECG。
所述方法还包括显示导出的标准的12导联ECG信号。
在本发明的下一个独立的方面,本发明提供用于获得通用类型的一组ECG信号的方法,所述的方法包括综合心电图(ECG)信号,通过从连接到人体的预先确定的位置的第一组电极接收信号,以获得第一组ECG信号;并且,通过对于所述第一组ECG信号或其子组使用预先确定的变换(一种或多种)以形成期望的一组信号,导出至少一个另外的ECG信号;其中第一组电极包括至少定位在下述体表位置的电极 R和L分别定位在右和左臂上或其附近;和 Vc放在胸骨上。
体表位置R和L具体可以包括体表位置RC和RL,体表位置RC和RL分别位于右和左锁骨中线上与胸骨柄相同水平的地方。可以处理来自这些位置的信号,使其与标准部分RA和LA近似相同,但在动态模式中具有较少的不方便性。
或者,体表位置R和L具体可以包括体表位置RA和LA,体表位置RA和LA分别在右臂和左臂上,例如在腕上。
体表位置Vc可以直接定位在胸骨上,在标准电极位置V1和V2之间。
在本发明的下一个方面,提供一种用于获得通用类型的一组ECG信号的方法,所述方法包括综合心电图(ECG)信号,通过从连接到人体的预先确定的位置的第一组电极接收信号,以获得第一组ECG信号;并且,通过对于所述第一组ECG信号或其子组使用预先确定的变换(一种或多种)以形成期望的一组信号,导出至少一个另外的ECG信号;其中所述第一组电极至少包括定位在下述体表位置的电极 Vm标准12导联电极体表位置V4、V5、V6之一(m=4、5、或6); VnR分别在与标准电极体表位置V4、V5、V6之一(n=4、5、或6)水平的右锁骨中线、右腋前线、或右腋中线上; Vc在胸骨上。
在一个优选实施例中,m=n,从而VnR在右腋前线上并在Vm的对面,因此容易放置。在一个优选实施例中,m=n=5,因此,体表位置Vm和VnR分别是V5和V5R。
Vc可以直接定位在标准电极体表位置V1和V2之间。
在本发明的优选实施例中,以上已经描述的以及在具体附图中将要进一步说明的,通过组合本发明的这两个方面,可以选择至少5个电极体表位置,但这不是必要的。
在下一个实施例中,所述的方法包括从临时电极导出一个ECG信号,所述临时电极不是在整个ECG测量期间都连接的。
在下一个独立的方面,本发明提供用于获得一组心电图仪(ECG)信号的方法,所述方法包括 从连接到人体的预先确定的位置的第一组电极接收信号以获得第一组ECG信号; 通过使用对于所述第一组ECG信号或其子组的预先确定的变换(一种或多种)来综合至少一个另外的ECG信号,从而形成经过综合的一组ECG信号,每个综合的信号对应于人体的一个位置(以下称之为综合位置); 检测人体姿势;和 根据检测的人体姿势选择和修改在所述综合步骤中使用的变换,从而可以减小在每个综合信号和实际信号之间由于姿势引起的误差,所述的实际信号是在综合位置并且在指定的姿势测定的。
在一个实施例中,人体姿势使用加速度计、倾斜传感器、或手动开关进行检测。
除了在本发明的第一部分规定的并且在这里具体描述的方法以外,本发明的这一部分还可以应用到减少电极的ECG方法。
本发明还提供用于综合ECG数据的设备,所述设备包括用于接收测量的ECG信号的装置和用于执行按照以上所述的本发明的任何方面的方法步骤的信号处理装置。
本发明还提供了一种用于测量ECG信号的系统,包括以上所述综合设备,该设备与用于存储来自一个所述电极子组的信号的装置结合,可以操作以处理来自所述电极子组的存储的信号,以获得标准12导联ECG。
本发明提供的系统还可包括具体地对应于所述电极子组的一组导联,该电极子组用于获得用于存储和处理的所述信号。
在一个实施方式中,用于存储信号数据的装置包括可移动的存储介质。
本发明还提供一种用于测量ECG信号的系统,其中设置有一个子组的标准12导联ECG电极,以及存储和处理来自所述电极子组的信号以便获得标准12导联ECG的装置。
所述设备可以包括一个模拟到数字转换器,用于数字化来自所述电极子组的信号。
可以对于信号处理装置进行安排,以便实现线性组合处理阵列,用于处理所述数字化的信号,导出标准12导联ECG。不用说,所述的装置可以用专用的硬件实施,或者用在通用微处理器上或者数字信号处理器电路上运行的软件实施。
所述设备可以包括分开的单元,用于处理和显示ECG信号,用于连接分开的单元的装置,其用于处理和显示ECG信号。按照另一种方式,用于处理和显示ECG信号的装置可以集成在一起。
用于存储所述信号数据的装置可以是便携式介质格式,如闪存卡存储器。
本发明还提供携带程序指令以便使通用微处理器或信号处理器电路能够实施如以上所述的方法的存储装置。这可能是使用现有的ECG和/或计算机硬件在实施本发明当中的应用。



现在参照附图并借助于实例来描述本发明的实施例,在附图中 图1说明在标准12导联心电图系统中的电极位置; 图2说明使用减少的电极组获得一组心电图导联的系统; 图3说明使用固定的预先确定的矩阵导出未测导联的步骤; 图4说明确定临时导联的步骤; 图5说明用于临时导联的自适应模拟矩阵的计算; 图6说明使用先前确定的自适应矩阵对于临时导联进行的模拟; 图7说明未测导联导出的混合方法; 图8较详细地说明图7信号处理的混合方法; 图9表示用于心电图系统的不同操作模式的电极体表位置定位; 图10表示用于心电图系统的不同操作模式的可替换的电极体表位置定位; 图11表示一个两用的电极连接; 图12是适合于记录姿势敏感的心电图的设备的方块图; 图13是表示用于测量心电图的设备的元件之间的信息流动的方块图; 图14是表示用于测量心电图的设备中各种计算之间的关系的方块图; 图15是导出的12导联记录器实施方案的方块图; 图16是使用临时电极测量心电图的设备的特定病人应用的流程图; 图17是使用一个子组永久电极模拟临时电极的用于测量心电图的设备的特定病人应用的流程图; 图18是使用可切换的参考电极测量心电图的设备的特定病人应用的流程图;以及 图19说明使用临时电极测量心电图的一个系统。

具体实施例方式 图1说明在本领域中众所周知的标准12导联心电图(ECG)系统,其中,12“导联”(或信号)是从一个病人身上使用放在皮肤上的10个电极获得的。这些电极放在如下所述的标准化位置电极RA在右腕上;电极LA在左腕上;电极LL(或F)在左踝关节上;电极RL(或参考电极)在右踝关节上;电极V1在胸骨右缘第四肋间处;电极V2在胸骨左缘第四肋间处;电极V4在左锁骨中线的第五肋间处;电极V3在V2和V4之间;电极V5在与V4水平的左腋前线上;电极V6在与V5水平的左腋中线上。要说明的是,肢体电极经常放在病人的上臂和大腿,这种移动对于标准12导联ECG只产生极其微小的变化。然而,当病人需要行走运动时,例如在“应力测试”期间,这时要求病人在ECG记录期间进行体育锻炼,肢体电极要移动到躯干,以便避免在ECG信号中出现运动和肌肉的假象。电极位置的这种激烈的移动将使所观察的ECG出现显著变化。
标准12导联ECG分为两组肢体导联和心前区导联。肢体电极的组合形成肢体导联这些导联称之为I、II、III、aVR、aVL、aVF。在6个“V”电极之一和RA、LA、LL的平均位置(也称之为Wilson终端)之间形成每个心前区导联。心前区导联称之为V1、V2、V3、V4、V5、和V6。
图2表示适合于使用减少的电极组综合一组ECG导联的一个新的系统,所述的一组ECG导联在这种情况下是上述的标准12导联ECG。
在这里表示的是固定到病人身体100上的一系列电极V2、V5、V5R、RA、和LA。
电极体表位置定位在 V2标准12导联电极体表位置V2 V5标准12导联电极体表位置V5 V5R在与V5基本水平的右腋前线上 RA标准12导联电极体表位置RA(臂、肩、腕、或手) LA标准12导联电极体表位置LA(臂、肩、腕、或手)。
图中还表示出一个任选的参考导联105,参考导联105可以连接到由仪器产生的仪器参考电位110。来自各个电极的信号加入到差分放大器115内,产生信号A、B、C、D,这些信号输入到模拟到数字信号转换器120。经过转换的信号输入到多路分配器125,并且进入线性组合处理阵列130。在这里,为清楚和说明起见,只表示出这个阵列的3个元件T1、TV5、Tn,但在实践中,可以使用适合于这项任务的任何数目的元件。将阵列的输出综合成如图所示的导联。
每个阵列元件的输出是 outn=Tn(A,B,C,D) =(A*ka)+(B*kb)+(C*kc)+(D*kd) 因此,每个Tn是{A,B,C,D}的一个线性组合,在这里,Tn具有一个确定的权重组{ka,kb,kc,kd}。
这个系统可以用作综合ECG导联的方法的基础,在所述的综合中使用预先确定的变换(一个或多个)作用于由5个电极收集的ECG数据构成的组或者从5个电极收集的ECG数据组中选择的一个子组。
系统的描述将引用“未测导联”和“临时导联”。“未测导联”定义为标准12导联组(或者其它期望的组)中需要使用至少一个“未测电极体表位置”来直接测量或导出的一个导联。“未测电极体表位置”定义为在病人身上由ECG和临时电极体表位置确定的一组电极体表位置之外的标准组中的一个电极体表位置。于是,人们使用从减少的电极组收集的ECG数据就可以导出未测导联。对于临时导联,使用只在短时间周期连接或测量的ECG电极体表位置的外部的至少一个附加电极就可产生临时ECG信号。
图3表示使用固定的预先确定的矩阵导出未测的导联。
在此例中,使用来自一组ECG导联的数据200来形成矩阵R 205。R包含来自所用这组测量的导联的数据点。矩阵R与预先确定的衍生矩阵B(x)210相乘215,产生一个导出的导联矩阵dL(x)215,其中包含对于未测导联数据的数据U(x)的近似。
已测导联组不限于图2中表示的以及以上所述的那些。现在描述几种变化和改进。这些变化和改进可以应用到不同的操作模式,下面对此还要参照附图9、10进行具体描述。
可能用其它的电极代替以上组的电极并且对于导联进行综合。例如,可能用下面的可替换的安排代替电极RA和LA RC在人体的上胸部,与胸骨柄相同高度并在右侧锁骨中线上; LC在人体的上胸部,与胸骨柄相同高度并在左侧锁骨中线上。
人们可以从这些电极收集一组ECG数据,并且如以上所述使用预先确定的变换(一种或多种)导出RA和LA电极的新的ECG导联数据。
电极位置V2还可以由电极位置Vc代替,电极位置Vc直接定位在胸骨上,在标准电极体表位置V1和V2之间。
Vc直接放在骨骼上虽然这被认为是对于静止ECG(病人静止不动)稍有不利,但对于动态ECG(病人在运动)的结果较好。另外的因素可能影响Vc相对于V2的选择,例如病人的心理状态或者可能妨碍电极放置的伤害的存在。
使用类似的技术还可以确定“临时导联”。首先向病人身上施加至少一个“临时电极”,在这里,临时电极定义为在整个ECG测量期间没有用来连续获得ECG数据的电极。当没有用作心电图信号电极时,这种情况在ECG测量之前、之中、之后可能发生一次、或多次,临时电极可以除掉、断开、禁止操作、忽略、和/或用于执行除提供心电图信号数据外的其它操作,或者按照另一种方式停止作为心电图信号电极的操作。
图4表示临时导联的定义。
从ECG电极收集一组数据225。还要从临时电极E(i)收集数据230,并且可以选择地,还要从另外的临时电极E(x,x≠i)收集附加数据235。
对于每个临时电极,确定一个参考电位240,或者从ECG导联电极225的电位确定、或者从不同的临时电极235的电位确定、或者从通过ECG导联电极225(一个或多个)和/或临时电极235(一个或多个)的组合245形成的电位确定。
从这3个可能的选择选择数据250,并且计算参考电位R(i)240。从来自临时电极E(i)235的数据和参考电位R(i)240计算差值255,以便综合每个临时电极,在这里,临时导联T(i)260定义为临时电极的电位和它的参考电位之间的电位差。
可以产生作用在ECG导联上的特定病人的变换或变换组,综合临时导联的表示。同一个变换或变换组保持应用到使用指定ECG导联组的指定病人。这样,在收集第二组ECG信号时,可以在任何指定的时间使用作用在第二组ECG数据上的特定病人的变换或变换组来综合临时导联。
使用以上所述的用于临时导联的方法,可以从下述的电极体表位置取得的数据来综合ECG导联 V2标准12导联电极体表位置V2; V5标准12导联电极体表位置V5; V5R在与V5基本水平的右腋前线上; R在人体的右侧区的任何位置,在(心脏水平的上方)前上胸和右臂、肩、或手之间; L在人体的左侧区的任何位置,在(心脏水平上方)前上胸和左臂、肩、或手之间。
进而,电极位置V2可以由电极位置Vc代替,电极位置Vc直接定位在胸骨上,在标准电极体表位置V1和V2之间。
电极体表位置R和L具有一个附加的优点它们容易定位。不需要有关人的解剖学的任何特殊的知识。
在右或左臂、肩或手上的任何一点都可以定位临时电极(一个或多个)。临时电极(一个或多个)可以在晚些时候施加,或者等效地,临时激活,以及回溯地计算特定病人的变换。可以在晚些时候重复激活或重复施加临时电极(一个或多个),以便重复确定特定病人的变换。
还可以配置到测量装置的输入连接,所述测量装置用于从ECG导联(一个或多个)获得数据,以便作为从临时电极获得数据的装置进行二次临时应用。
还可以修改以上所述的电极设备,使其可以在不同的操作模式之间切换。在第一种操作模式中,电极附件连接到在病人身上的信号电极,用于测量来自所述病人ECG信号。在第二种操作模式中,电极附件连接到在病人身上的参考电极(这个电极可以与第一种操作模式中的电极相同,或者可以不同),以便在病人和ECG测量装置之间形成参考电连接。
虽然标准12导联ECG在上述描述中是作为一个例子使用的,但应该清楚,这种方法可以应用到任何ECG导联组。要说明的是,按照测量/记录设备的特定技术,可以将参考电极固定到病人身上。在一般情况下,在记录或测量设备中可以包括附加的输入电路,以便可以从临时电极收集数据。
操作模式 可以按照许多模式使用以上所述的系统和方法。现在描述3种主要的操作模式非动态模式、普通动态模式、和特定病人模式。在非动态模式,认为病人是静止不动的(不移动),而在普通动态模式和特定病人模式,认为病人有某种程度的运动自由。
在非动态模式,在电极设置系统中包括两个臂电极。在动态模式,由于运动和肌肉的作用结果,这种肢体电极是不适用的。因此,可以将臂电极移动到上胸部的固定位置,并且修改用于综合标准导联的变换。
图5表示的是临时导联的自适应模拟矩阵的计算。
从一组ECG导联记录数据270,使用所述数据形成矩阵R 275。收集临时导联T(i)的数据280,使用所述数据形成矩阵X 285。使用矩阵R和X计算模拟矩阵A(i)290。矩阵A(i)290包含只使用ECG导联收集数据270模拟(295)T(i)所需的线性系数。
图6表示的是使用先前确定的自适应矩阵对于临时导联的模拟。来自一组ECG导联的数据300是为了形成矩阵R 305。按照图5所示的方式从临时导联计算模拟矩阵A(i)。从矩阵R和A(i)计算一个新的矩阵sX(i)315。新的矩阵sX(i)包含所有的模拟的导联数据320。
图7表示未测导联导出的混合方法。
这个附图表示如何使用固定的预先确定的矩阵和自适应临时导联矩阵这两者导出未测导联,其中使用了特定的ECG电极组350和临时电极355。确定导联组360,并且从这些电极收集第一数据组“A”(362)。接下去,去除这个临时电极(365)。
现在,在期望的时间长度记录第二数据组“B”370。在模拟数据中,需要一个完整的心脏搏动的最小值,即,约为2秒的记录数据。然而,人们的期望是对于多次心脏搏动进行测量,以使噪声效应最小并且改进变换稳定性的置信度。这平衡了对病人的较大不方便的代价。实际上,8-10秒足以收集足够多的数据,不会使操作变得过长。
将两个数据组A和B都传送到例如一台计算机以便进行处理375。从数据组A或它的子组为临时导联计算模拟矩阵380。然后将这个模拟矩阵加到数据组B上以产生临时导联的模拟近似385,在记录数据组B时可能观察到所述的临时导联。确定未测ECG导联390,即,进行直接测量的导联需要使用由ECG形成的362、370电极体表位置组和临时电极体表位置350、360组之外的一个电极体表位置的导联。
最后,通过向数据组B再加上模拟的临时导联施加固定的导出矩阵以便近似得到在未测的ECG导联已经观察到的电位,可以计算出电位值395。
图8较详细地表示出图7的混合方法的信号处理。
有一个预定的解答矩阵B(x),并且从ECG导联收集数据405。从临时导联T(i)计算出解答矩阵A(i)410。从数据405形成第一矩阵R 415。从R和A(i)计算出一个矩阵sX(i)420。矩阵sX(i)包含模拟的T(i)数据425。使用ECG导联再加上(k+1)个模拟的导联形成第二矩阵M 430。
使用矩阵B(x)400和M 430形成矩阵dL(x)435。矩阵dL(x)435包含导出的数据,导出的数据与在未测的电极体表位置U(x)观察到的数据近似。
在普通动态模式和非动态操作模式,固定的变换作用在确定的导联组上,从而可以产生需要的标准ECG导联。如果使用上述的方法,还可能实现特定病人的动态模式。
特定病人的动态模式是对于普通动态操作模式的明显改进,因为它消除了导联综合中的许多可变性,这种可变性是由不同病人体形的变化引起的。它还允许有关病人电极错位的较大的误差。
非动态模式 在非动态模式,研究中的病人是静止的,在一般情况下或者是坐或者是躺。在非动态模式,在电极放置系统中包括两个臂电极。
图9A表示心电图系统的非动态模式的电极体表位置定位。如图9A所示,在病人身上放置5个电极。这些位置包括标准12导联电极体表位置RA、LA、V2、V5,再加上体表位置V5R(在与V5水平的右腋前线上)。
标准12导联ECG的导出过程如下 模拟的左腿电极 mLL=1.083*(V5R-V2)-0.309*(RA-V5) Wilson中间接点 W=(RA+LA+mLL)/3 肢体导联 I=LA-RA II=mLL-RA III=mLL-LA aVR=RA-(LA+mLL)/2 aVL=LA-(RA+mLL)/2 aVF=mLL-(LA+RA)/2 心前区(胸)导联 V1=0.495*(V2-W)-0.279*(V5-W) V2=V2-W V3=0.780*(V2-W)+0.512*(V5-W) V4=0.324*(V2-W)+0.922*(V5-W) V5=V5-W V6=-0.126*(V2-W)+0.737*(V5-W) 普通动态模式 普通动态模式考虑到病人的运动,但不是对于特定病人的。
图9B表示心电图系统的普通动态模式的电极体表位置的定位。将两个臂电极移动到上胸部前面的固定位置,如图3B所示的。电极RC和LC分别放置在右侧和左侧锁骨中线上与胸骨柄相同的高度。由于这些电极的位置移动,要使用固定的变换来模拟电极RA和LA。
模拟的RA电极 mRA=RC+0.012*(RC-V5)-0.428*(RC-V5R) 模拟的LA电极 mLA=LC-0.274*(LC-V5)-0.222*(LC-V5R) 然后如以上所述为非动态模式导出标准12导联ECG,其中使用模拟的电极mRA和mLA作为真正的电极RA和LA的直接替换。
特定病人模式 特定病人动态模式使用与普通动态模式相同的电极组,但是另外还临时加上臂电极(或者,如果长期加上臂电极,只是临时使用臂电极来测量心电图数据)。临时电极提供用来确定在心电图导联和临时电极电位之间的特定病人变换的数据。这些特定病人变换允许在任何时间只使用从ECG导联收集的数据来综合临时电极体表位置的电位。
使用包括ECG导联和综合的电极电位这两者的组来产生一个左腿电极的模型,其中使用了一个固定的预定变换组。
使用初始的ECG导联再加上从综合的电极的以及模拟的左腿电极产生的附加信号可以综合出标准的ECG导联,其中使用了一个固定的预定变换组。
特定病人模式形成了在固定变换系统和完全的病人自适应的变换系统之间的一个混合方法。就前者而论,混合方法最好产生真正的标准ECG导联(一个或多个)的更佳表示。就后者而论,混合方法对于在此过程的任何点上要进行测量的指定病人来说最好不需要真正的标准ECG导联(一个或多个)。
例如,优先于真正的电极连接,使用左腿电极的模拟模型。这样做明显简化了病人安装电极的过程,因为衣物和病人的羞怯经常会妨碍对于左腿的接近。
为了消除人体姿势对于所需的变换引起的变化,在病人身上要设置一个姿势传感器。然后使用姿势的测量结果从一组预定的选项或者特定病人的选项中选择适当的变换。在特定病人操作模式,可能需要使用病人的多个姿势(站立、仰卧、右侧卧)来确定特定姿势变换组。
图9C表示心电图系统的特定病人操作模式的电极体表位置的定位。按照普通动态模式放置电极。在病人身上放置固定的电极以后,如图所示进行到病人的左和右臂(或者理想地到腕和手)临时连接TR和TL。这不需要同时进行,或者不需要按指定顺序进行。可以看出,临时连接是简单的握在病人手里的金属触点,因此对于病人来说只有很少的或者没有任何的不方便。还可以使用常规的电极或者肢体夹具。
在特定病人操作模式中与普通动态模式相比放置电极RC的LC所需的准确性不那么重要,这是因为通过使用特定病人的变换就可以消除许多错位误差。这是混合系统的期望的优点,混合系统是为了使电极施加过程很容易而设计的。
使用被测导联的一个子组来综合临时电极。所选的子组使到ECG测量装置的输入导线之一是自由的。这个“自由的输入”用作进行临时电极连接(一个或多个)的装置。因为不再需要给ECG测量装置附加的输入(一个或多个),这个方法是非常方便的。
在一个可替换的实施例中,加入一个参考电极,在心电描记测量期间,使用参考电极在病人和测量装置之间建立一个参考电连接。然而,在心电图测量之前(或者之后),参考电极连接的功能变为如以上所述“临时电极”连接的功能,允许为特定病人操作模式收集数据。再一次地,其方便地不再需要到ECG测量装置的附加输入。然而,在收集为特定病人变换测量的数据时,失去了参考电极抑制噪声的好处。
在所述方法的另一种改进中,两个电极的功能可以临时切换第一从参考连接切换到信号连接,第二个从信号连接切换到参考连接。如果初始的参考电极设置在期望的临时电极体表位置,则这个开关允许综合临时电极电位的“自由输入”方法,不要求用户改变电极连接。于是,可使上述的过程可以自动化。在从临时电极体表位置读出所需的信号数据之后,电极的功能返回到它们原始的状态。在实践中,这种切换只需要执行一次,从“临时”切换到“参考”。
通过求解下面的矩形方程,可以确定为了产生电极RA的综合的等效物所需的特定病人的变换 确定矩阵R为 列0=RC-V5,列1=RC-V5R 确定矩阵X为 列0=RA-RC 并且如以下所述计算解答矩阵 A=(RT*R)-1*(RT*X) 从而得到综合的RA电极 sRA=RC+A0*(RC-V5)+A1*(RC-V5R)。
类似地,通过求解矩阵方程可以确定电极LA的综合的等效物 确定矩阵L为 列0=LC-V5,列1=LC-V5R 确定矩阵Y为 列0=LA-LC 并且如以下所述计算解答矩阵 B=(LT*L)-1*(LT*Y) 从而得到综合的LA电极 sLA=LC+B0*(LC-V5)+B1*(LC-V5R)。
然后,使用这些特定病人的综合电极来替换为上述的非动态系统确定的变换中的真正的RA和LA电极。
姿势灵敏度 通过加入有关病人身体姿势的数据可以改善导出的ECG数据的质量。在病人身上使用姿势传感器可以测量有关病人身体姿势的数据。按照另一种方式,可以使用在心电图导联设备中的姿势传感器并且在操作模式之间切换所述的设备。
可以根据病人身体姿势、使用所选的这组变换作用于ECG导联数据导出的ECG导联、和/或从这些ECG导联导出的数据,选择并修改一组变换。
除了ECG测量外,还使用病人身体姿势测量装置来消除在这组所需的变换中姿势变化引起的改变。使用在任何时间测量的病人身体姿势(例如站立、右侧卧、等)来选择对于指定姿势合适的一组变换。
对于非动态操作模式和普通动态操作模式,在它自已的固定的一组变换中分配每个可分辨的病人身体姿势。
在特定病人操作模式,每个可分辨的病人身体姿势都需要产生一个特定病人变换组,而病人采取所讨论的姿势。实现这个过程需要的时间在实践中可能是不方便的。可能预先确定病人身体姿势的子组,例如全都是躺下的姿势,并且分配一组特定病人变换。这样,当收集用于产生特定病人变换所需的数据时,病人需要采用的所有可分辨姿势的数目是有限的。从姿式变换系数的有限子组中,可以利用在所测的有限数目的子组之间的内插来形成具有附加精度的一个较大的组。
在一种可能的操作模式中,病人身体姿势测量只能分辨两种姿势躯干是水平的(躺下)和躯干是垂直的(直立)。姿势测量设备可以是一个一维的加速度计,当所述病人处在直立姿势时所述加速度计与病人躯干的垂直轴对齐。当这个设备所测的重力加速度小于0.5g时,认为病人处在躺下的姿势。否则,认为病人处在直立的姿势。
下面将要确定对于这两种姿势状态(躺下和直立)所需的变换组。
姿势敏感的非动态模式 当病人直立时,变换是如上详细描述的对于标准非动态模式的变换。
当病人躺下时,变换是除以下各项以外的如以上所述的对于标准非动态模式的变换 mLL=1.065*(V5R-V2)-0.281*(RA-V5) V1=0.445*(V2-W)-0.215*(V5-W) V3=0.713*(V2-W)+0.622*(V5-W) V4=0.252*(V2-W)+1.031*(V5-W) V6=-0.093*(V2-W)+0.713*(V5-W)。
姿势敏感的普通模式 当病人直立时,所述变换是如上所述的对于标准非动态模式的变换。
当病人是躺下时,所述的变换是 mRA=RC+0.019*(RC-V5)-0.398*(RC-V5R) mLA=LC-0.194*(LC-V5)-0.274*(LC-V5R), 在上述的躺下的非动态模式过程中,用mRA和mLA代替RA和LA。
姿势敏感的特定病人模式 在这种模式中,计算用于综合临时电极RA和LA的两组特定病人变换。当病人躺下时计算第一组,当病人坐下或直立时计算第二组。如以下所述导出标准12导联ECG。
当病人直立时,使用特定病人变换来综合电极sRA和sLA。在上述的直立非动态模式过程中,用导联sRA和sLA代替导联RA和LA。
当病人躺下时,使用特定病人变换来综合电极sRA和sLA。在上述的后靠非动态模式过程中,用导联sRA和sLA代替RA和LA导联。
可替换的电极体表位置 图10A-10C表示对于心电图系统的不同操作模式的可替换的电极体表位置。当由于动态的限制使V2难以使用的时候,用电极体表位置Vc代替V2,电极体表位置Vc直接定位在胸骨上,在如图所示的标准电极体表位置V1和V2之间。mRA、mLA、sRA、和sLA全都与V2或Vc的选择无关;不使用术语V2。因为特定病人模式只使用普通情况的心前区方程,其中使用略有不同的W(由于使用的是sRA、sLA而不是mRA和mLA),所以对于普通情况的描述已经足够。
电极体表位置位置的这种变化对于上述的变换引起如下的变化。
图10A表示非动态模式的情况。
当病人直立时,对于此情况的变换是除以下各项外如上所述的变换 mLL=1.096*(V5R-Vc)-0.288*(RA-V5) V1=0.607*(Vc-W)-0.116*(V5-W) V2=1.269*(Vc-W)+0.291*(V5-W) V3=0.997*(Vc-W)+0.723*(V5-W) V4=0.420*(Vc-W)+1.015*(V5-W) V6=-0.155*(Vc-W)+0.704*(V5-W) 当病人躺下时,对于此情况的变换是除以下各项外如上所述的变换 mLL=1.089*(V5R-Vc)-0.271*(RA-V5) V1=0.619*(Vc-W)-0.096*(V5-W) V2=1.440*(Vc-W)+0.246*(V5-W) V3=1.009*(Vc-W)+0.786*(V5-W) V4=0.359*(Vc-W)+1.095*(V5-W) V6=-0.126*(Vc-W)+0.693*(V5-W) 图10B和10C分别表示用于普通模式和特定病人模式的情况。这里的变化是对于非动态模式的可替换的电极体表位置的如以上所述的变化,只是参照改进了的Vc非动态模式的过程。
两用模式 图11表示的是一个两用的电极连接。这种安排与图2所示的类似,只是增加了由CPU505控制的切换矩阵500。这样就控制了组合的参考和临时电极510以及组合的V2和参考电极515。图中还表示出一个存储设备520,它能记录ECG数据。
两用电极510、515的两用组的这种用法的优点是,在任何时候总是进行参考电极连接,并且在任何指定的时间可以读出相同数目的输入通道。
这种安排允许测量病人的心电图,其中加入可以在独立的操作模式之间进行切换的电极附件。在第一种操作模式,电极附件连接到在病人身上的信号电极,用于测量来自病人的ECG信号。在第二种模式,电极附件连接到在病人身上的参考电极,从而在病人和ECG测量装置之间形成一个参考电连接。在第二种模式,电极可以是或者可以不是与第一操作模式相同的电极。
图12是适合于记录ECG的设备的方块图,其中更加详细地表示出如图2所示的基本设备以及对于这种基本配置产生的可能的变化,以所述允许进行如以上所述的测量。类似的标号表示类似的元件。
除了由电极连接530、ECG放大器15、处理器130组成的基本设备以外,还提供显示器535、外部计算机接口、和便携式存储介质接口545。外部计算机可以是任何合适的计算机,例如微型计算机或个人计算机。便携式存储介质类似地可以是任何合适的存储介质,用于存储所产生的大量数据,例如闪存卡。
所述的设备还可以具有执行附加功能的部件,用于允许按照以上所述的方法测量ECG。例如,可以将一个姿势传感器555连接到多路转换器120上。还可以提供工业标准“被驱动的”参考电极555。
人们可以扩展所述的设备,使其可以包括如图11所示的以及如以上所述的切换矩阵,以便可以在不同的模式使用这些电极。
图13是在用于测量ECG的系统的元件之间的信息流动的方块图。
提供一种用于记录和显示ECG数据的ECG记录器/监视器560。还可以提供计算机565、便携式介质570、用于ECG记录器/监视器560的接口575、产生ECG扫描线所需的相关数据的数据库580。
可以按照任何合适的格式保存产生ECG需要的信息,所述的信息包括病人识别信息、非动态的、普通的、或特定病人的变换系数、和记录的ECG数据。
非动态的和普通的系数都是固定的和已知的,并不严格要求在外部存储。然而,在这样做时允许对于导出的12导联计算的所有3种情况都采用相同的操作过程。
ECG记录器/监视器560可以从多个不同的源并且经过不同的路径导出用于显示ECG扫描线的数据,这取决于所用的配置。
例如,可以将病人识别信息和变换系数放在便携式存储介质565上,例如在致密闪存卡上,同时在这个设备的外部,因此当将其插入设备中并且得到用户的确认时,所述病人识别信息和变换系数将由所述设备作为有效数据接收。
按照另一种方式,病人数据可以由计算机560检索,并且借助于适当的接口例如IEEE1394(Firewire)、USB、或无线协议将其直接输入到ECG记录器/监视器560。还可以使用ECG记录器/监视器560并且使用接口575直接输入病人数据。
在优选实施例中,要尽可能长时间地保持ECG数据在它的原始形式。从减小的导联组到较大的导联组的变换只增加了存储器的存储容量或所需的输出信号带宽。
对于下述的情况在设备内发生导联变换在设备内计算特定病人系数、在设备本身的显示器上观察当前的/先前的经过变换的导联数据、向通用设备(例如为ECG数据的12个导联的标准输入设计的12导联ECG显示屏)输出当前的/先前的经过变换的导联数据。
当从设备提供的数据离线地计算特定病人的变换系数的时候,在一个分开的计算机上发生导联变换。因为“分开的”计算机必须包含与设备的变换方案兼容的软件,这个计算机在这时有效地成为这个设备的一个扩展部分。
当从计算机直接下载数据时,可以在计算机内部执行所需的矩阵变换,并且直接向ECG记录器/监视器560输出所导出的12导联ECG数据。
类似地,来自ECG记录器/监视器560的数据可以下载到便携式存储介质,并且,所述的数据可以上载到计算机内。计算机可以执行所需的计算,以产生导出的12导联ECG数据,然后将这个数据输入到这个记录器/监视器。
图14是说明在用于测量ECG的设备内的计算路径的方块图。这个图表示的是使用预先确定的特定病人系数590处理来自ECG记录器/监视器560的ECG信号数据585以便计算导出的12个ECG数据600的一个计算机565,所述特定病人系数590保存在病人数据库或文件内。
虽然在监视/记录过程的建立期间或者在此之前访问指定病人的特定变换系数是有益的,但并不是必要的。可以在晚些时候给出确定特定病人系数并且可以回溯地将其施加到已经记录的数据上,只要使用相同的(或者极其接近相同的)电极位置就成。
因为预先确定特定病人系数需要附加的建立时间,因此有益的作法可能是,如果在记录以后病人没有报告相关的症状,某些病人筛选过程就不要花费时间来确定这些系数。如果病人报告了相关的症状,则可以在记录完成后确定所述特定病人系数。在计算出特定病人系数的这个时间之前一直使用普通的系数。
例如,可以放大并数字化来自病人的ECG信号,以便直接存储在便携式存储介质内,如致密闪存卡中。在这种情况下,进行记录但不进行特定病人变换。未经变换的ECG数据与普通的变换系数一起都存储在小型闪存卡上。
为了进行重复的筛选,病人可能已经有了一组特定病人变换系数。如果每次记录使用这一组系数而不去计算新的系数,就可能节省时间。如以上所讨论的,在记录之前可以将预先确定的系数上载到设备内,或者可以访问这些系数,并且将这些系数加到在外部计算机中的ECG数据内,所述计算机包含与设备变换方案兼容的软件。
图15是一个可替换的导出的12导联ECG记录器的方块图。这个记录器类似于如图14所示的实施方案,只是这里的计算机部件600明显地加入监视器设备内,实时地计算导出的12导联数据,并且在监视器的显示器上显示所述数据。可以将导出的12导联输出按类似的方式输出到适当的装置605,以便进行分析、记录、和/或输出到打印机、数据库、通过内部网或因特网传输、或存储。
设备的操作 图16是用于使用临时电极测量ECG的设备的对特定病人应用的流程图。
这个图表示的是在使用临时电极的附加输入以及离线的特定病人系数计算的设备中所用的步骤。
在第一步,首先在图中所示的位置上放置电极。黑色圆点代表“永久性的”电极,白色圆点代表临时电极。临时电极可以放在所探讨的臂/手上的任何位置。
在第二步625,将ECG记录器/监视器设备的电缆连接到固定电极和右臂的临时电极上。记录器/监视器630用于“学习”右臂电极体表位置,即,所述设备记录所有的ECG信号,用于晚些时候的分析和系数确定。一个可替换的实施方案可以是在设备内实时地导出这些系数。
在第三步640,从右臂电极上断开电缆,并且将其重新连接到左臂电极上。记录器/监视器630用于“获得”左臂电极体表位置,即,所述设备记录所有的ECG信号,用于晚些时候的分析。
在第四步650,断开临时导联电缆,并且从病人身上除去临时电极。
在一个实施例中,使用可重复使用的“袖口”电极。还可以使用握在手里的金属触点。将临时电缆连接到这个电极上,并且在临时电极体表位置位置之间移动整个的电极和电缆组件。
图17是通过使用一个子组的永久电极模拟临时电极来测量ECG的一个设备的特定病人应用的流程图。
在这种情况下,使用一个子组的“永久”电极来模拟临时电极体表位置的电位,并且进行离线的特定病人系数计算。这样做的优点是,不需要任何到设备的附加电缆连接。
在第一步660,首先在图中所示的位置上放置电极。再一次地,黑色圆点代表“永久性的”电极,白色圆点代表临时电极。临时电极可以在所探讨的臂/手上的任何位置。
在第二步,将记录器/监视器的电缆连接到如图所示的固定电极的一个子组和右臂临时电极上。记录器/监视器670“学习”右臂电极体表位置,即,所述设备记录所有的ECG信号,用于晚些时候的分析和系数确定。一个可替换的实施方案可以是在设备内实时地导出这些系数。
在第三步675,从右臂电极上断开电缆,并且将其重新连接到V5电极上。断开V5R电极的电缆,并且将其固定到左臂电极上。记录器/监视器670“学习”左臂电极体表位置。
在第四步685,重新连接从右臂电极到V5R电极的电缆,并且从病人身上除去临时电极。
图18是使用可切换的参考电极测量ECG的设备的特定病人应用的流程图。
这个附图表明的情况是,所述的设备使用“可切换的”参考电极并且使用一个子组“永久性的”电极来模拟临时电极体表位置的电位(并且进行离线的特定病人系数的计算)。这样做的优点是不需要任何到设备的附加的电缆连接,并且还有参考导联的正常噪声抑制方面的优点。
在第一步685,在图中所示的位置上放置电极。臂电极可以在所探讨的臂/手上的任何位置。在此例中,只有右臂电极是临时的,左臂电极用作临时信号电极并且还用作记录的参考电极。
在第二步695,将设备的电缆连接到所示电极的一个子组,其中包括右臂的临时电极。“学习”右臂电极体表位置。所述设备将参考导联设置到V5R上,并且记录ECG信号用于晚些时候分析和系数确定。在这里,用一个“靶心”符号702表示所述的参考导联。
在第三步705,从右臂电极上断开电缆,并且将其连接到左臂电极上。所述设备“学习”左臂电极体表位置所述设备将参考导联设置到-V5R上,并且记录ECG,用于晚些时候的分析。
在第四步715,除去临时的右臂电极,并且记录ECG。所述设备将参考导联设置在左臂720上并且记录ECG。如果期望,一旦参考(左臂)电极作为产生临时信号导联的功能已经完成,就可以将所述参考(左臂)电极移动到人体的任何位置。
图19说明使用临时电极测量ECG的一个系统。这个系统利用了以上所述的方法。
这个附图表示病人750、与用于记录ECG信号的记录设备760相连一组附着电极755、和一组临时电极765。
在第一步770,将固定电极755附着到病人750身上,并且连接到记录设备760。所示的两个临时电极765还包括它们到输入塞孔的接线。当连接到记录设备760时,所述设备自动地检测所述的连接,并且进入特定病人系数的学习模式。临时电极可以是金属“手柄”的形式。
在第二步755,两个临时信号同时输入到设备,病人在每只手内握紧一个金属触点以形成临时电极触点。这样就可以建立右和左臂临时电极连接这两者。这样就产生了一种极其快速的、简单的、和廉价的方法,因为这个方法可以重复使用临时电极并且与病人的连接是极其快速和容易的。
当病人手握手柄时记录设备760使用标准的导联电阻电路可以自动地检测,并且可以自动地启动用于计算特定系数所需信号的获得和记录,从而能够复制两个临时的“臂”触点。按照另一种方式,还可以从输入到设备的数据确定变换系数。
然后将金属触点拨出780。这将触发所述设备离开学习模式。然后手动启动记录785,或者自动启动。
显然,在这个实施方案中的临时“电极”可以用许多其它的简单替换物替换,例如臂或腕带电极或者手指夹具电极。
还可以为图中所示的记录设备760提供一个附着于其上的位置传感器790。位置传感器可以实施为附着到病人750身上的一个加速度计,用于检测移动并向设备760发送姿势的变化。线性处理阵列130的输出现在是outn=Tn(A、B、C、D),每个Tn都有一组权重{ka(P)、kb(P)、kc(P)、kd(P)},它是姿势值P的函数。
可以将用于记录ECG数据的完整的系统可以很方便地装配到一个很小的便携式装置内,所述的便携式装置在记录期间可由病人携带,固定到皮带、吊带等物品上。所述的便携式装置可以包括用于传送记录的数据的合适的接口,例如通过传送到闪存卡或者通过无线连接进行这样的传送。
权利要求
1.一种用于获得一组心电图ECG信号的设备,所述设备包括
输入,所述输入用于从连接到人体的预先确定的位置的第一组电极来接收信号以获得第一组ECG信号;
综合器,所述综合器对于所述第一组ECG信号或其子组使用预先确定的变换来综合至少一个另外的ECG信号,以形成一组综合的ECG信号,每个综合的信号对应于人体的一个位置,以下称之为综合位置;以及
传感器,所述传感器用于检测人体姿势;
所述综合器适于基于检测的人体姿势而选择或修改使用的所述变换,从而减少在每个综合信号和实际信号之间由姿势引起的误差,所述实际信号是以所述检测的人体姿势在所述综合位置测定的。
2.根据权利要求1所述的设备,其中所述传感器包括加速度计或倾斜传感器以自动检测人体姿势。
3.根据权利要求1或2所述的设备,其中所述综合器被安排成实施一个线性组合处理阵列,用于处理所述第一组ECG信号以导出作为所述综合信号的标准12导联ECG。
4.根据权利要求1、2或3所述的设备,其中所述综合器是在软件控制下使用通用微处理器或数字信号处理器电路来实施的。
5.根据权利要求1、2、3或4所述的设备,其中所述设备包括分开的单元和连接装置,所述分开的单元分别用于处理和显示ECG信号,所述连接装置用于连接用于处理和显示所述ECG信号的所述分开的单元。
6.一种用于获得一组心电图ECG信号的方法,所述方法包括
从连接到人体的预先确定的位置的第一组电极来接收信号以获得第一组ECG信号;
对于所述第一组ECG信号或其子组使用预先确定的变换来综合至少一个另外的ECG信号,以形成一组综合的ECG信号,每个综合的信号对应于人体的一个位置,以下称之为综合位置;
检测人体姿势;以及
基于检测的人体姿势选择或修改在所述综合步骤中使用的所述变换,从而减小在每个综合信号和实际信号之间由姿势引起的误差,所述实际信号是以所述检测的人体姿势在所述综合位置测定的。
7.根据权利要求6所述的方法,其中使用加速度计或倾斜传感器自动检测人体姿势。
全文摘要
从一个新的减小电极的组中综合心电图(ECG)信号,如标准12导联。从连接到人体的预先确定的位置的一组电极接收信号,并且,对于所述第一组ECG信号使用预先确定的变换(一种或多种)(130)导出至少一个另外的ECG信号。这就形成一组期望的信号。这组电极可以包括标准的12导联电极体表位置V2和V5,再加上至少一个电极和至少一个另外的电极,所述至少一个电极在与V5基本水平的右腋前线上,所述至少一个另外的电极定位在人体的右侧和左侧中的每一侧上。在一个可替换的安排中,电极位置V2由电极位置Vc代替,电极位置Vc直接定位在胸骨上,在标准电极体表位置V1和V2之间。本发明还公开一种方法,其通过检测人体姿势并修改变换来改进综合信号的准确性。
文档编号A61B5/103GK101766482SQ20101011174
公开日2010年7月7日 申请日期2004年8月2日 优先权日2003年7月31日
发明者斯图尔特·唐纳德-拜恩 申请人:太空实验室保健有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1