光学纤维力感测导管的制作方法

文档序号:1198920阅读:221来源:国知局
专利名称:光学纤维力感测导管的制作方法
技术领域
公开的发明总体上涉及一种能够判定力矢量的大小和方向的力感测装置。更具体地,本发明涉及力感测末端,该力感测末端用来帮助用于人或动物体中的导管的定位,或者用作机器人手术系统中的反馈元件。
背景技术
许多年来,使用基于导管的诊断和治疗系统使得各种器官或脉管的探查和治疗已经成为可能。这种导管通过通往要被探查或治疗的器官的腔脉管而被引入,或者选择性地可以通过在器官的壁中制出的切口被直接引入。以这种方式,病人避免了典型地与开放式外科手术程序相关的外伤和延长的复原时间。为了提供有效的诊断或疗法,经常有必要首先绘制要以高精度治疗的区域。例如, 当希望选择性地切开心脏内的当前路径以治疗心房纤维性颤动时,可以执行这种绘制。通常,由于遍及心动循环的心脏的周期性运动,绘制程序被定位要被治疗的区域的困难复杂化。例如,在美国专利No. 6546271和No. 6226542中描述了用来绘制脉管或器官的内部的先前已知的系统。那些专利中描述的导管使用电磁的、电的、磁的或声学的传感器来绘制空间中的导管的远侧端部的位置并且随后构造脉管或器官内部的三维可视化。这种先前已知的绘制系统的一个缺点是,它们依靠导管和/或阻抗测量的手动反馈来确定导管何时适当地布置在脉管或器官中。那些系统不测量与脉管或器官壁的接触力或检测由导管施加在器官或脉管壁上的接触力,该接触力可能修改真实的壁位置。替代地, 依赖于临床医生的技艺,先前已知的绘制方法是费时的,并且不能补偿过大接触力产生的人为现象。因此,将希望提供用来检测和监视绘制的导管和器官或脉管的壁之间的接触力以允许更快且更精确的绘制的设备和方法。也将希望提供允许该过程自动化的设备和方法。一旦绘制完脉管或器官的剖析图,相同或不同的导管就可以用于实现治疗。取决于要施加到脉管或器官的具体治疗,导管可包括多个端部执行器中的任一个,该端部执行器诸如但不限于RF消融电极、旋转或剪切作用切割头、激光消融系统、注射或缝合针、流体传送系统、镊子、操纵器、绘制电极、内窥镜视觉系统和诸如基因注入装置的治疗剂递送系统。例如,在美国专利 No. 6120520,6102926,5575787,5409000 ^P 5423807 中描述了示例性系统。这种端部执行器的有效性通常取决于端部执行器与器官或脉管的壁的组织接触。 许多先前已知的治疗系统包括可扩展的篮状物或钩,该篮状物或钩使与该组织接触的导管的远侧末端稳定。然而,由于器官或脉管的运动,这种布置可能是固有地不精确的。此外, 先前已知的系统不提供感测由组织壁的运动施加到套管的远侧末端的载荷的能力。例如,在心脏消融系统的情况下,在一个极端情况下,治疗系统的端部执行器和组织壁之间的间隙的产生可能使得治疗无效,并且不足地消融组织区域。在另一种极端情况下,如果导管的端部执行器以过大的力接触组织壁,它可能意外地刺穿该组织,导致心包压
O考虑到上述情况,将希望提供一种基于导管的诊断或治疗系统,该诊断或治疗系统允许感测施加到导管的远侧末端的载荷,该载荷包括起因于器官或组织的运动的周期性载荷。还将希望具有载荷感测系统,该载荷感测系统被联接以控制端部执行器的操作,使得端部执行器仅当接触力被检测到落在预定范围内时被手动地或自动地操作。美国专利No. 6695808提出数个解决方案来测量起因于与组织表面的接触的力矢量,包括机械的、电容的、感应的和电阻的压力感测装置。然而,这种装置的一个缺点是,它们相对复杂并且必须被密封以防止血液或其它液体干扰测量。此外,这种载荷感测装置可导致导管的远侧末端的插入轮廓的增大。另外,那个专利中描述的类型的传感器可能受到电磁干扰。用来处理医疗环境中的可能电磁干扰的一种先前已知的解决方案是使用基于光的系统而不是电测量系统。授予Bosselman美国专利No. 6470205中描述了一个这种基于光的系统,该美国专利描述了一种用来执行外科手术的机器人系统,该机器人系统包括通过铰接接头联接的一系列刚性连杆。多个布拉格光栅布置在铰接接头处,使得每个接头的弯曲角度可以例如通过使用干涉仪测量被布拉格光栅反射的光的波长的变化被光学地确定。授予Bucholtz的国际公开No. WO 01/33165描述了一种可供选择的空间取向系统,其中在光学纤维应变传感器的三元组中测量的波长变化用于计算导管或其它医疗器械的空间取向。虽然Bucholtz公开了应变传感器可以封装在可变形的护套内,如也在 Bosselman中描述的,但是弯曲角度的计算未被描述为需要可变形的护套的材料性质的特性。因此,将希望提供诸如导管或导线的诊断和治疗设备,该诊断和治疗设备允许感测施加到该设备的远侧末端的载荷,但不会明显增大该设备的插入轮廓。还希望提供诸如导管和导线的诊断和治疗设备,该诊断和治疗设备允许计算施加到该设备的远侧末端的力,并且基本上不受电磁干扰影响。导管技术的最近发展已经包括当端部执行器放置成与脉管或器官的内壁接触时使用光学纤维力传感器来检测端部执行器的远侧末端处的反作用力。例如,由Katholieke Universiteit Leuven,Belgium 公幵的题为"Design of an Optical Force Sensor for Force Feedback during Minimally Invasive Robotic Surgery,,的 J. Peirs 等人的文章描述了用来在机器人手术系统中产生力反馈系统的三轴力传感器。该设备包括多个光学纤维,该光学纤维将光引导到布置成邻近该装置的远侧末端的镜像表面上。从镜像表面反射的光的强度被测量并且可以与施加预定量的弯曲到远侧末端所需的力关联。该文章描述了可用于响应于使该结构变形的接触力而产生光强度变化的柔性且紧凑的结构。授予Leo等人(Leo)的国际公开No. WO 2007/015139公开了一种用来判定施加到导管的远侧端部的力矢量(大小和方向)的装置和方法。Leo公开了将光学纤维应变元件用于导管中,该光学纤维应变元件基本上维持与导管相同的轮廓,该导管不感测接触力并且基本上不受电磁干扰影向。授予Leo等人的美国专利申请公开No. 2007/0060847公开一种力感测导管系统,该力感测导管系统利用光纤布拉格光栅应变传感器的变形来推断作用在导管的末端上的力。授予Aeby等人的美国专利申请公开No. 2008/0009750公开了具有可变形的结构的三轴力传感器,该三轴力传感器隔离施加在导管的远侧端部上的力引起的挠曲,并且其中光学纤维辐射和接收来自可变形的结构的反射光,接收的反射光的强度根据施加的力而变化。授予Leo等人的美国专利申请公开No. 2008/0294144公开了一种光学纤维接触感测导管,该光学纤维接触感测导管利用干涉测量原理来检测应变感测组件的结构变形以推断力。授予Leo等人和Aeby等人的上述公开被转让给本申请的受让人,并且特此通过引用整体并入(除了其中包含的明确定义外)。已有的光学纤维应变感测导管典型地被限制到将力决定到力的近似士 Igm内。此外,三轴力传感器倾向于涉及复杂的加工和制造以实现希望的隔离效果。具有较大敏感度 (较高分辨率)并且相对容易制造的光学纤维接触感测导管将是受欢迎的。

发明内容
本发明的各种实施例包括结构构件,该结构构件以超过已有光学纤维应变感测导管高达一个量级来改善力分辨的敏感性。一些实施例还被表征为具有相对于已有装置减小的轮廓。在结构上,本发明的各种实施例的弯曲部包括一横截面,该横截面的关于第一轴线的刚性(面积惯性矩)大约是垂直于第一轴线的第二轴线的刚性的1/20。关于第一轴线的相对小的刚性引起该弯曲部由于绕第一轴线的力矩而优选地弯曲,而绕第二垂直轴线的弯曲最小,因此将绕第二垂直轴线的扭转力传递到结构构件的其它部分上。这样,该弯曲部实现关于第一轴线的力矩和力矩力的隔离。在各种实施例中,结构构件限定纵向轴线并且包括沿该纵向轴线以串联方式布置成彼此相邻的多个段。相邻的段可在其间限定间隙,每一个间隙由弯曲部桥接。多个光学纤维与结构构件可操作地联接。该弯曲部可在垂直于纵向轴线的平面上限定横截面,该横截面限定面积质心,并且第一惯性轴线和第二惯性轴线可以被限定为穿过该面积质心。第二惯性轴线可以垂直于第一惯性轴线并且与结构构件的纵向轴线相交。关于第二惯性轴线的面积惯性矩可以是关于第一惯性轴线的面积惯性矩的至少10倍。本发明的某些实施例包括具有近侧端部和远侧末端的柔性细长本体。光学纤维力感测组件可以在柔性细长本体内布置成接近该远侧末端,光学纤维力感测组件包括结构构件,该结构构件具有外表面并且限定纵向轴线。结构构件也可包括沿纵向轴线以串联方式布置成彼此相邻的多个段,该段被位于相邻的段之间的弯曲部桥接。该弯曲部中的每一个弯曲部可限定结构构件的外表面的一部分。该多个段还可限定多个间隙,该多个间隙中的每一个间隙位于所述多个段的相邻段之间。多个光学纤维可以布置在结构构件上,多个光学纤维中的每一个光学纤维具有远侧端部,该远侧端部布置成邻近多个间隙中的一个间隙并且取向成用来发射光到邻近多个间隙中的一个间隙的段上并且用来收集从邻近多个间隙中的一个间隙的段反射的光。光学纤维的远侧端部和邻近多个间隙中的一个间隙的段之间的距离具有一尺寸,当接触力施加在结构构件上时,该尺寸响应于结构构件的变形程度而变化。所述光学纤维的远侧端部和邻近所述多个间隙中的所述一个间隙的所述段可限定用于挠曲距离的推断的干涉测量共振器。


图1是本发明的实施例中的应变感测系统的块图;图IA是用于本发明的实施例中的干涉测量光学纤维传感器的示意图;图IB是用于本发明的实施例中的光纤布拉格光栅光学传感器的示意图;图2是具有本发明的实施例中的光学纤维力感测组件的导管组件的远部分的局部剖视图;图3是本发明的实施例中的使用强度或干涉测量的光学纤维力感测组件的放大立体图;图4是图3的光学纤维力感测组件的正视图;图5到8是图4的光学纤维力感测组件的剖视图;图9是本发明的实施例中限定圆形段的弯曲部的放大剖视图;图10是图3的光学纤维力感测组件的局部放大视图;图IlA和IlB分别描绘在轴向载荷和横向载荷下图3的光学纤维力感测组件的挠曲;图12是本发明的实施例中的使用法布里-珀罗(Fabry-Perot)应变传感器的光学纤维力感测组件的放大透视图;图12A是图12的法布里-珀罗应变传感器的剖视图;图13是图12的光学纤维力感测组件的正视图;图14到16是图13的光学纤维力感测组件的剖视图;图17是本发明的实施例中的使用光纤布拉格光栅应变传感器的第二光学纤维力感测组件的立体放大局部剖视图;图18是图17的光学纤维力感测组件的正视图;并且图19到21是图18的光学纤维力感测组件的剖视图。
具体实施例方式参考图1,根据本发明描绘应变感测系统70的实施例。应变感测系统70可包括电磁源72、耦合器74、接收器76、与微处理器78操作地联接的操作员控制台77和存储装置79。电磁源72输出性质上基本呈稳态的电磁辐射的发射辐射80,诸如激光或宽带光源。 诸如纤维光缆的传输线82将发射辐射80运送到耦合器74,该耦合器通过传输/接收线84 并且通过包含在柔性的细长的导管组件87内的光学纤维元件83(图1A)将发射辐射80引导到光学纤维感测元件90。导管组件87的光学纤维元件83和发射/接收线84可通过连接器86联接,如图1中描绘的。导管组件87可具有适合插入到身体脉管或器官中的宽度和长度。在一个实施例中,导管组件87包括近侧部分87a、中间部分87b和远侧部分87c。远侧部分87c可包括端部执行器88,该端部执行器可容纳光学纤维感测元件90。取决于应用,导管组件可以为空心构造(即具有内腔)或为非空心构造(即没有内腔)。参考图1A,干涉测量光学纤维应变传感器90a被描绘为本发明的实施例中的光学纤维应变感测元件90。在这个实施例中,发射辐射80进入干涉测量光学纤维应变传感器 90a内的干涉测量间隙85。进入干涉测量间隙85的辐射的一部分返回到导管组件87的纤维光缆作为调制波形89a。干涉测量光学纤维应变传感器90a的各种部件可包括与光学纤维元件83成一体的结构(例如,图12A)。替代地,光学纤维元件83可以与它安装到其上的结构相配合以形成干涉测量间隙85 (例如,图10)。参考图1B,光纤布拉格光栅应变传感器90b被描绘为本发明的实施例中的光学纤维应变感测元件90。在这个实施例中,发射辐射80进入光纤布拉格光栅91,其光栅典型地与光学纤维元件83成一体并且仅仅反射中心波长λ附近的发射辐射80的一部分89b。该部分89b被反射的中心波长λ根据光纤布拉格光栅的光栅之间的间隔而定。因此,中心波长λ指示相对于一些参考状态的光纤布拉格光栅应变传感器90b上的应变。是调制波形89a或反射部分89b的反射辐射89通过发射/接收线84被传输回接收器76。应变感测系统70可以以IOHz的示例性的且非限制性的速率查询光学纤维应变感测元件90。接收器76被选择成与所用的应变感测元件90的类型对应。就是说,描绘的实施例中的接收器被选择用来检测用于干涉测量光学纤维应变传感器90a的调制波形89a的频率,或者用来决定用于布拉格光纤光栅应变传感器90b的反射部分89b的中心波长。接收器76操纵且/或将到来的反射辐射89转化为数字信号以便由微处理器78进行处理。参考图2,包括消融头部88a并且包括光学纤维力感测组件92的端部执行器88的例子在本发明的实施例中被描述。光学纤维力感测组件92可以构造成由施加在导管的远侧末端94上的力F引起的结构构件102中的结构变形,例如当远侧末端94接触身体脉管或器官的壁时。理解到,诸如在该领域中已知用于脉管或器官的诊断或治疗的例如绘制电极或消融电极的不同类型的一个或更多个端部执行器88可用于本发明。例如,导管组件87可以构造为电生理学导管以便执行心脏绘制和消融。在其它实施例中,导管组件87可以构造成用来将药物或生物活性剂递送到脉管或器官壁,或执行微创手术,诸如心肌血运重建或冷冻消融。参考图3到10,包括结构构件102和多个光学纤维104的光学纤维力感测组件92 在本发明的实施例中被描绘。在这个实施例中,结构构件102限定纵向轴线110并且包括外表面112。结构构件102被分成多个段116,该多个段在图3到10中被标识为基部段118、 近侧段120、中间段122和远侧段124。段116可以沿纵向轴线110以串联布置彼此相邻。段116可以被单独地标识为弯曲部分U8a、128b和128c的多个弯曲部分128桥接,因此限定单独地标识为中性轴线130a、130b和130c的多个中性轴线130。每一个中性轴线130构成当经受沿任何方向的纯弯曲时应力为零的相应弯曲部分128内的部位。在一个实施例中,段116的相邻的构件可限定多个间隙136,每一个间隙具有分立尺寸。为了清楚起见,间隙136被标识为136a到136c。间隙136^13 和136c的分立尺寸可以为相同的近似大小(如示出的)或者为不同大小(未示出)。另外注意,虽然间隙 136的分立尺寸被描绘为一致的,但分立尺寸可以跨越给定的间隙136a、136b、136c沿侧向方向变化。具有一致的或不一致的分立尺寸的每一个间隙136a、136b和136c可限定在段116的相邻段之间定位成等距的对应的中心平面138a、138b和138c。结构构件102可包括形成在外表面112上的多个凹槽142(在图3到10中被标识为凹槽14h、142b和142c)。凹槽142可以绕纵向轴线110旋转等距地间隔开(即间隔开120° )并且可以沿结构构件102沿大体轴向方向取向。凹槽中的每一个凹槽可以终止于间隙136中的相应一个间隙。例如,凹槽14 可沿基部段118、近侧段120和中间段122 延伸,终止于间隙136a。同样,凹槽14 可沿基部段118和近侧段120延伸,终止于间隙 136b。并且凹槽142c可沿基部段118延伸,终止于间隙136c。光学纤维104 (在图3到10中标识为光学纤维104a、104b和I(Mc)限定多个光传播轴线148和远侧端部150(在图3到10中分别被标识为远侧端部148a到148c和150a 到150c)。光学纤维104可以布置在凹槽142(在图3到10中被标识为142a、14 和142c) 中使得远侧端部150终止于间隙136。例如,光学纤维10 可沿凹槽14 延伸,终止于间隙136a附近或间隙136a内。同样,光学纤维104b和l(Mc可以分别沿凹槽142b和142c 延伸,分别终止于间隙136b和136c附近或间隙136b和136c内。通过上述布置,光学纤维104的光传播轴线148中的每一个被段116中的相应段对向。例如,如图9中描绘的,光传播轴线148a被远侧段124的表面15 对向,该表面限定与远端150a相对的间隙136a的边界。因此,接近被对向的光传播轴线148的段116的表面IM可以制成高度反射的。间隙136可形成为使得它们横向延伸通过结构构件102的大部分。而且,间隙136 可以取向成基本上垂直于纵向轴线110(如描绘的)或相对于该纵向轴线成锐角延伸。在描绘的实施例中,结构构件包括具有间隙136的空心圆筒形管156,该间隙包括狭缝158,该狭缝由空心圆筒形管156的一侧形成并且横向于纵向轴线110,延伸穿过纵向轴线110并且跨越空心圆筒形管156的内径160达到深度162(图5)。通过这个过程,弯曲部分1 维持限定圆形的段。穿越空心圆筒形管156的内径 160的狭缝158的深度162可以变化以形成弯曲的希望柔性。就是说,深度162越大,弯曲部分1 柔性越大。狭缝156可以通过技工可获得的各种方法形成,这些方法例如但不限于锯切、激光切割或放电加工(EDM)。狭缝158可以形成为使得弯曲部分128限定不重合的中性轴线130。就是说,中性轴线130a位于明显不同于中性轴线130b和130c的周向位置的绕纵向轴线110的周向位置。中性轴线130可以(但不必须)与光学纤维104的远侧端部150的部位沿直径相对, 该光学纤维终止于由相应的弯曲部分1 桥接的该间隙136。例如,弯曲部分128a可以与远侧端部150a沿直径相对,等等。图9中描绘弯曲部分128的横截面164。该横截面的特征在于与中性轴线130对应的面积质心C,并且具有正交的惯性轴线x-x和y_y,并且其中惯性轴线x-x标识关于它的面积惯性矩最小的轴线。圆形段几何形状提供比关于惯性轴线x-x显著较大的关于惯性轴线y-y的刚性。考虑具有η/2弧度(90° )的角度的圆形段。关于惯性轴线y_y的面积惯性矩是关于惯性轴线χ-χ的面积惯性矩的大约20倍。因此,引起关于惯性轴线y-y的力矩的力将典型地引起相对于绕惯性轴线χ-χ施加的该力矩的很小的弯曲。因此,关于惯性轴线y-y的力矩将倾向于在相邻的段之间作为扭转力被传递,而关于惯性轴线χ-χ的力矩将倾向于引起挠曲。
挠曲梁长度163被定义为中性轴线130和对应光学纤维104的远侧端部150的中心之间的距离,该距离垂直于惯性轴线X-X。通过将远侧端部150和给定间隙136的中性轴线130定位成沿直径相对,挠曲梁长度163被最大化,并且接近远侧端部150的间隙的尺寸的伴随的变化也被最大化。在一个实施例中,每一个间隙136使得干涉测量间隙166能够被限定在相应光学纤维104的远侧端部150和高反射表面IM之间。如在此使用的,“干涉测量间隙”是具有诸如迈克尔逊(Michelson)干涉仪或法布里-珀罗共振器中看到的干涉测量共振器的属性的间隙。同样,如在此使用的“间隙干涉仪”是使用干涉测量间隙来产生干涉图案的干涉仪。干涉测量间隙166可以被表征为具有操作长度167,该操作长度被定义为远侧端部150和高反射表面巧4之间的距离并且可以与相应间隙136的尺寸不同。操作长度167 确立从干涉测量间隙166反射回的干涉图案的特征。远侧端部150可以面对半反射表面或涂层168,该半反射表面或涂层反射从高反射表面IM反射的光的一部分,同时使反射光的剩余部分基本上透射过那里以便被应变感测系统70检测。在另一实施例中,光跨越相应间隙136被传输且被反射回来,反射光被相应光学纤维104的远侧端部150收集。被给定光学纤维104收集的反射光的强度可以随着远侧端部150和高反射表面IM之间的距离而变化。利用反射光强度的变化的实施例可利用暴露的而不是面对半反射表面或涂层168的远侧端部150,因此增加了可检测的光的量。在一个实施例中,光学纤维104通过粘合剂或粘接材料170粘接到结构构件102。 替代地或另外地,光学纤维104可以压配合或以其它方式紧固到结构构件102。对于使用强度或干涉测量措施的构造,光学纤维104可以粘接到邻接相应的间隙136的段116以被查询。例如,光学纤维104b可以安装在凹槽142b的形成在中间段122上的部分内。可以使光学纤维104b的其余部分在凹槽142b的其余部分内自由滑动。通过这种布置,光学纤维 104b将不在相邻的段之间形成结构桥,该结构桥将抑制光学纤维力感测组件92的柔性。参考图IlA和11B,分别响应于轴向力FA和横向力FL的光学纤维力感测组件92 的操作在本发明的实施例中被描绘。轴向力FA引起段116以基本上纯弯曲动作绕各种弯曲部分128的惯性轴线x-x弯曲,因此引起接近光学纤维104的远侧端部150的间隙136 的尺寸减小(图11A)。这又引起干涉测量间隙166的操作长度167减小,因此引起跨越干涉测量间隙166持续的干涉测量图案的频率的变化。横向力FL将通常引起结构构件102的更复杂的变形。在图IOB的描绘中,基本上平行于弯曲部分128a的惯性轴线y-y施加横向力FL。这引起弯曲部分128a转换远侧段 124和中间段122之间的力矩,同时引起间隙136a的尺寸的可忽略的变化。转换的力矩引起弯曲部分128b和128c绕它们相应的惯性轴线x-x弯曲,该弯曲又引起间隙136b在光学纤维104b的远侧端部150b附近关闭并且间隙136c在光学纤维l(Mc的远侧端部150c附近打开。注意到,在图IlB的描绘中,弯曲部分128b和128c都不纯弯曲,因为横向力FL不垂直于相应的惯性轴线x-x起作用。因此,绕惯性轴线x-x的弯曲的程度将基本上与垂直于它起作用的横向力FL的分量成比例。理解到,图1IA和1IB分别示出纯轴向的力和纯横向的力,但具有轴向分量和横向分量的三维空间中的组合的力矢量将组合通过叠加描绘的总效果。因此,通过校准在这些纯载荷下的光学纤维力感测组件的响应并且叠加各种响应以推断轴向分量和横向分量,可决定三维空间中的力矢量。调制波形89a(图1A)的特征部分地由干涉测量间隙85的尺寸确定。光学纤维力感测组件92构造成使得当结构构件102经历轴向应变时干涉测量间隙85将变化。轴向应变的变化将引起干涉测量间隙85的尺寸的成比例的变化,因此改变被发射到接收器76的调制波形89a的特征。前述实施例可以提供相对于弯曲部分128经历的应变的干涉测量间隙85的变化的机械放大。在垂直于弯曲部分128的相应弯曲部分的惯性轴线x-x的位置处的段116的挠曲与中性轴线130和相应光学纤维104的远侧端部150的相应部位之间的挠曲梁的长度 163成比例。因此,间隙136的尺寸的变化将在与中性轴线130沿直径相对的部位处最大。 因此,对于光学纤维104的远侧端部150与中性轴线130直径相对的实施例(如在此描绘的),光学纤维104处于最大敏感性的位置。结构构件102可以由除空心圆筒形管外的其它形状制造,该其它形状包括但不限于限定正方形、矩形或十字形横截面的管或杆。结构构件102可包括诸如钛或钼/铱的金属材料,或诸如聚合物或陶瓷的非金属材料。间隙136和弯曲部分1 可以被设计尺寸使得在操作下由于力FA和FL的施加而导致的操作长度167的改变比结构构件102的热膨胀或收缩引起的改变具有显著更高的敏感性。此外,可以选择用于结构构件102的材料以减轻热膨胀的效果。例如,结构构件 102可以由具有低的热膨胀系数的材料(诸如熔凝石英、诸如矾土(Al2O3)的氧化铝、液晶聚合物)构成,或由金属/陶瓷复合材料(诸如被设计用于相对于金属的低的热膨胀系数的镍铁合金)构成。粘合或粘接材料170可包括胶或环氧树脂。粘接材料170可以被选择成紧密匹配结构构件102和/或光学纤维104的热膨胀系数(CTE),或者提供结构构件102和光学纤维 104的CTE之间的CTE以在其间提供过渡。也可以为柔性选择粘接材料170使得粘合膜的热生长不在光学纤维104上施加显著的应变。在一些情况下,粘接材料170的很薄的膜的使用可以减轻差异热膨胀的影响。在结构构件102包括聚合物材料的情况下,光学纤维104可以使用涉及溶剂的使用的粘接技术直接粘接到该聚合物,该溶剂被设计用来引起该聚合物熔化或流动,同时不影响光学纤维104的材料。该溶剂可以施加到要安装光学纤维104的结构构件102的区域或区,并且光学纤维104放置在其上。替代地,光学纤维104可以被暂时保持在结构构件102 的区或区域上的适当位置并且该溶剂被施加到它们两者。材料的流动引起结构构件102和光学纤维104的外表面之间的粘接。该溶剂可以通过诸如洗涤或蒸发的过程被去除以阻止熔化过程。通过抛光金属结构构件102,或通过将反射材料沉积在金属或非金属结构构件 102上,可以制造反射表面154。用于结构构件的代表性的且非限制性的尺寸在长度上近似为1到10mm,在直径上近似为0. 3到3mm,并且间隙尺寸近似为15到100微米。参考图12、12A和图13到16,包括结构构件196的光学纤维力感测组件912在本发明的实施例中被描绘。结构构件196包括在相应的图中用相同的附图标记表示的许多与图3到9的结构构件102相同的方面。光学纤维力感测组件192包括分别可操作地联接到多个法布里-珀罗应变传感器198(标识为198a、198b和198c)中的相应应变传感器的光学纤维202(在图12到16中标识为光学纤维20h、202b和202c)。图12A中给出的常见构造的法布里-珀罗应变传感器在商业上可从Quebec、QC、Canada的FISO Technologies获得。图12A中描绘了法布里-珀罗应变传感器198的操作。光学纤维202被分成发射元件20 和反射元件204b,发射元件和反射元件分别被锚固在空心管206的相对端部。发射和反射元件20 和204b布置成在其间限定干涉测量间隙205,该干涉测量间隙具有操作长度207。发射元件20 的自由端部可以面向半反射表面200a,并且反射元件204b的自由端部可以面向反射表面200b。光学纤维202可以沿凹槽142布置使得相应的法布里-珀罗应变传感器198通过相应的光学纤维202桥接在其间并且跨越彼此相邻的段116。例如,光学纤维20 可以布置在凹槽14 内使得法布里-珀罗应变传感器198a桥接中间段122和远侧段IM之间的间隙136a。同样,光学纤维202b和202c可以布置成使得法布里-珀罗传感器198b和198c 分别桥接间隙136b和136c。光学纤维202可以操作地联接到光学纤维202桥接的两个相邻的段116。光学纤维202可以使用粘合或粘接材料170连接到段116,如图14到16中最佳地看到的。在这个实施例中,粘接材料170仅被施加到邻接被光学纤维202桥接的间隙136的段116。例如, 光学纤维20 仅连接到中间段122和远侧段IM (图14和1 ,而不连接到近侧段120 (图 16)或基部段118。凹槽142也可延伸结构构件196的整个长度,如图12中描绘的,这是由于不需要结构构件196将光反射回到光学纤维202中。参考图17到21,光学纤维力感测组件208在本发明的实施例中被描绘。光学纤维力感测组件208使用具有光纤布拉格光栅应变传感器214的光学纤维202。在这个实施例中,光学纤维202布置在结构构件212的内表面210上。因此,结构构件212不需要包括在外表面上沿轴向延伸的凹槽。否则,光学纤维202沿结构构件212的长度对齐并且连接到内表面210使得光纤布拉格光栅应变传感器214固定地桥接相邻的段116。同样,光学纤维 202可以使用粘接材料170固定到内表面212。在操作中,当在结构构件196或212的远侧末端94处或附近施加力时,结构构件 196、212将具有弯曲的倾向,例如,如图IlA和IlB中所描绘的。然而,固定地连接到相邻的段116的光学纤维202引起限制结构构件196的段116之间的挠曲的恢复力或反作用力。 可以是压缩力或张力的反作用力引起跨越光学纤维202的应变传感器(光学纤维力感测组件192的法布里-珀罗应变传感器198或光学纤维力感测组件208的光纤布拉格光栅应变传感器214)的应变。光学纤维力感测组件192可以构造成使得施加在光学纤维202上的轴向力和应变处于希望的水平。例如,光学纤维202的直径将影响施加在光纤布拉格光栅应变传感器214 上的应变,较小直径的光学纤维提供每单位轴向力的较大应变。而且,弯曲部分1 的几何形状将影响传递到光学纤维202的力的大小。就是说,具有较大刚性(即关于惯性轴线x-x 的较大面积惯性矩)的弯曲部分1 将传递较小的力到相应的光学纤维202。此外,反作用力的大小将随着光学纤维202和惯性轴线x-x之间的法线距离而变化,反作用力通常随着法线距离减小而增加。因此,用于位于挠曲梁长度163(图7)的单根光学纤维的反作用力将小于用于位于结构元件102上的单根光学纤维的反作用力,该结构元件限定短于挠曲梁
13长度163的光学纤维202和惯性轴线X-X之间的法线距离。通过微调这些各种参数,可以定制由光学纤维应变传感器感测的应变以提供希望的敏感度。在反作用力方面,可以预期弯曲轴向力对光学纤维轴向力的比率可以从0.2到 5的范围内。注意到,虽然描绘的实施例给出与相应弯曲的中性轴线沿直径相对的单根光学纤维(例如,与中性轴线130a沿直径相对的光学纤维20 ),但本发明不被如此限制。各种实施例的光学纤维可以在不同于相对于给定弯曲的中性轴线沿直径相对的部位处位于结构体上。此外,用于检测施加的力的光学纤维的数量可以大于1。例如,使用光学纤维应变传感器(例如,光纤布拉格光栅应变传感器214)的构造可包括一对光学纤维应变传感器,该一对光学纤维应变传感器分别位于限定相等大小的绕惯性轴线x-x的恢复力矩臂的结构构件上的周向部位处。还注意到,法布里-珀罗检测方案和光纤布拉格光栅检测方案可以分别存在于相同光学纤维力感测组件上。对于光学纤维力感测组件208,该应变引起法布里-珀罗应变传感器198的干涉测量间隙改变并且返回的调制波形的频率频移。频率变化可以使用已知技术被校准以对应于该反作用力。对于光学纤维力感测组件208,该应变引起被相应光纤布拉格光栅应变传感器 214反射的光的中心波长的移位,该移位可以使用已知技术被校准以对应于反作用力。本发明可以在这里未公开的其它实施例中被实施,诸如内窥镜的或另外的脉管内应用。例如,公开的实施例的各个方面可用于诊断导管以便优化或者改善用于压力反射激活的激励电极的放置。公开的实施例的其它方面可应用于内窥镜应用(诸如无畸变外科手术或通过诸如喉咙、鼻子或肛门的敞开孔口的进入)而不偏离本发明的精神。诸如上和下、前和后、左和右或类似物的相对术语的引用是为了描述的方便并且不预期将本发明或其组成部分限制到任何特定倾向。图中描绘的所有尺寸可以随本发明的特定实施例的可能的设计和预期的用途变化而不偏离本发明的范围。在此公开的另外的图和方法中的每一个均可以分立地或与其它特征和方法结合地使用,以提供改进的装置、系统和用于制造和使用该装置、系统的方法。因此,在此公开的特征和方法的组合可以不必以其最广泛的意义实施本发明而是仅仅被公开以特别描述本发明的代表性实施例。为了解释本发明的权利要求的目的,明确指出的是,不援引35U.S.C.的第六段、 节112的条款,除非在主权利要求中列举特定术语“用于...的装置”或“用于...的步骤”。
权利要求
1.一种用于脉管或器官的探查或治疗的导管,所述导管包括具有近侧端部和远侧末端的柔性细长本体;和在所述远侧末端附近布置在所述柔性细长本体内的光学纤维力感测组件,所述光学纤维力感测组件包括具有外表面并且限定纵向轴线的结构构件,所述结构构件包括多个段,所述多个段沿所述纵向轴线以串联方式布置成彼此相邻,以限定多个间隙,所述多个间隙中的每一个间隙位于所述多个段的相邻段之间;多个弯曲部,所述多个弯曲部分布在所述多个段之间,使得所述多个段中的所述相邻段被所述多个弯曲部中的一个弯曲部桥接,所述弯曲部中的每一个弯曲部限定所述结构构件的所述外表面的一部分;和与所述结构构件可操作地联接的多个光学纤维。
2.根据根据权利要求1所述的导管,其中所述弯曲部中的每一个弯曲部限定基本上与所述纵向轴线平行的中性轴线。
3.根据权利要求1所述的导管,其中所述多个光学纤维可操作地联接到所述结构构件的所述外表面。
4.根据权利要求3所述的导管,其中所述结构构件的所述外表面限定基本上与所述纵向轴线平行的多个凹槽,所述多个光学纤维中的每一个光学纤维布置在所述多个凹槽中的对应凹槽中。
5.根据权利要求1所述的导管,其中所述多个间隙中的至少一个间隙基本上垂直于所述纵向轴线。
6.根据权利要求1所述的导管,其中所述结构构件包括空心管。
7.根据权利要求6所述的导管,其中所述空心管是圆筒形的。
8.根据权利要求1所述的导管,其中所述多个光学纤维通过粘接材料与所述结构构件可操作地联接。
9.根据权利要求1所述的导管,其中所述结构构件包括选自由金属/陶瓷复合物、石英和液晶聚合物组成的组的材料。
10.根据权利要求1所述的导管,其中所述多个光学纤维中的每一个光学纤维包括远侧端部,所述远侧端部布置成邻近所述多个间隙中的一个间隙,并且取向成用来将光发射到邻近所述多个间隙中的所述一个间隙的段上并且用来收集从邻近所述多个间隙中的所述一个间隙的段反射的光;并且所述光学纤维的所述远侧端部和邻近所述多个间隙中的所述一个间隙并且与所述光学纤维的所述远侧端部相对的所述段之间的距离的尺寸响应于桥接所述多个间隙中的所述一个间隙的所述弯曲部中的一个弯曲部的弯曲而变化。
11.根据权利要求10所述的导管,其中所述光学纤维的所述远侧端部和邻近所述多个间隙中的所述一个间隙的所述段限定干涉测量间隙。
12.根据权利要求10所述的导管,其中从邻近所述多个间隙中的所述一个间隙的段反射的光的所述收集响应于桥接所述多个间隙中的所述一个间隙的所述弯曲部中的所述一个弯曲部的弯曲而在强度上变化。
13.根据权利要求10所述的导管,其中所述光学纤维的所述远侧端部与桥接所述多个间隙中的所述一个间隙的相应弯曲部沿直径相对。
14.根据权利要求1所述的导管,其中所述多个光学纤维中的每一个光学纤维包括与其成一体的光学纤维应变传感器。
15.根据权利要求14所述的导管,其中所述光学纤维应变传感器包括光纤布拉格光栅应变传感器和法布里-珀罗应变传感器之一。
16.根据权利要求14所述的导管,其中所述光学纤维应变传感器的至少一部分处于与所述多个间隙中的一个间隙相应的所述结构构件的轴向部位处。
17.一种光学纤维力感测组件,包括结构构件,所述结构构件限定纵向轴线并且包括沿所述纵向轴线以串联方式布置成彼此相邻的多个段,所述多个段中的相邻段中的每一段在其间限定间隙,每一个间隙由弯曲部桥接;和与所述结构构件可操作地联接的多个光学纤维,其中所述弯曲部在垂直于所述纵向轴线的平面上限定横截面,所述横截面限定面积质心,第一惯性轴线和第二惯性轴线被限定为穿过所述面积质心,所述第二惯性轴线垂直于所述第一惯性轴线并且与所述结构构件的所述纵向轴线相交,关于所述第二惯性轴线的面积惯性矩是关于所述第一惯性轴线的面积惯性矩的至少10倍。
18.根据权利要求17所述的光学纤维力感测组件,其中关于所述第一惯性轴线的面积惯性矩是所述弯曲部的所述横截面的最小面积惯性矩。
19.根据权利要求17所述的光学纤维力感测组件,其中所述多个光学纤维与所述结构构件相配合以限定多个干涉测量间隙。
20.根据权利要求17所述的光学纤维力感测组件,其中所述多个光学纤维中的每一个光学纤维包括法布里-珀罗共振器和光纤布拉格光栅之一。
21.根据权利要求17所述的光学纤维力感测组件,其中所述弯曲部的所述横截面限定圆形的段。
22.根据权利要求17所述的光学纤维力感测组件,其中所述多个段限定多个所述间隙和多个所述弯曲部,所述弯曲部绕所述纵向轴线基本上均勻分布。
23.根据权利要求22所述的光学纤维力感测组件,其中所述多个弯曲部是三个,所述弯曲部绕所述纵向轴线以120度间隔定中。
24.一种制造光学纤维力传感器的方法,该方法包括提供限定纵向轴线的结构构件;在所述结构构件上形成多个狭缝,所述狭缝横向于所述纵向轴线,所述狭缝沿横向延伸通过所述结构构件的大部分以形成多个弯曲部,所述多个弯曲部中的每一个弯曲部限定中性轴线,所述中性轴线位于关于所述纵向轴线的周向位置处,所述周向位置显著不同于所述多个弯曲部中的其它弯曲部的中性轴线的周向位置;以及将多个光学纤维与所述结构构件可操作地联接。
25.根据权利要求M所述的方法,其中所述多个狭缝中的每一个狭缝形成为限定基本上垂直于所述纵向轴线的相应中央平面。
26.根据权利要求M所述的方法,其中在提供步骤中提供的所述结构构件是空心管状结构。
27.根据权利要求M所述的方法,其中所述结构构件是圆筒形的,并且所述多个弯曲部分别具有限定圆形段的横截面。
28.根据权利要求M所述的方法,其中所述多个弯曲部中的每一个弯曲部具有基本上相同的尺寸。
全文摘要
一种用来检测施加在导管组件的远侧端部处的力的光学纤维力感测组件。结构构件可包括以串联布置彼此相邻的段,间隙位于通过弯曲部桥接的相邻的段之间。光学纤维联接到该结构构件。在一个实施例中,每一个光学纤维具有远侧端部,该远侧端部布置成邻接该间隙中的一个间隙并且取向成用来将光发射到邻接该间隙的段上和用来收集从邻接该间隙的段反射的光。光学纤维与可变形的结构相配合以提供反射的光的强度的变化,或者可选择地提供用来感测结构构件的变形的可变间隙干涉测量仪。在另一实施例中,该间隙被光纤布拉格光栅桥接,该光纤光栅以中心波长通过光学纤维将光反射回,该中心波长随着施加在光栅上的应变而变化。
文档编号A61B18/14GK102341053SQ201080008299
公开日2012年2月1日 申请日期2010年1月8日 优先权日2009年1月9日
发明者G·利奥, N·埃比 申请人:恩杜森斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1