具有复合构造的导管的制作方法

文档序号:16264182发布日期:2018-12-14 21:48阅读:141来源:国知局

本发明涉及尤其对心脏组织的消融和电活动感测有用的电生理导管。



背景技术:

电极导管已普遍用于医疗实践多年。借助于电极导管的心律失常的诊断和治疗包括标测心脏组织的电性质,以及通过施加能量来选择性地消融心脏组织。此类消融可以终止或改变无用的电信号从心脏的一部分向另一部分的传播。消融方法通过形成不传导的消融灶来破坏无用的电通路。已经公开了多种用于形成消融灶的能量递送形式,其中包括使用微波、激光和更常见的射频能量来沿心脏组织壁形成传导阻滞。

在标测然后消融的两步法中,通常通过向心脏中推进包含一个或多个电传感器(或电极)的导管并获取多个位置的数据来感应并测量心脏中各个位置的电活动。然后利用这些数据来选择将要在该处进行消融的组织靶区域。

使用时,将电极导管插入主要的静脉或动脉(例如股动脉)中,然后引导进入所关注的心室中。提供参比电极,通常将其贴扎在患者皮肤上或设置在消融导管或另外的导管上。将射频(RF)电流施加到导管的消融电极,并且流动穿过周围介质(即,血液和组织)流向参比电极。电流的分布取决于与血液相比电极表面与组织接触的量,血液具有比组织更高的导电率。

由于组织的电阻率而出现组织的变热。组织被充分加热以使得心脏组织中的细胞破坏,导致在心脏组织内形成电力不导电的消融灶。在这个过程中,由于从加热组织至电极本身的传导,还发生对消融电极的加热。如果电极温度变得足够高,可能高于60℃,则可在电极的表面上形成脱水血液的薄透明涂层。如果温度继续升高,则所述血液的脱水层可变得越来越厚,导致在电极表面上的血液凝结。因为脱水生物材料具有比组织更高的电阻,所以对于进入组织的电能量流的阻抗也增大。如果阻抗充分地增大,则发生阻抗升高并且导管必须从身体移开并且对尖端电极进行清理。

在通常施加射频电流中,循环的血液为消融电极提供一些冷却。另一方法是在室温下用例如生理盐水冲洗消融电极以主动地冷却消融电极,而不是依靠血液提供的较为被动的生理冷却。因为射频电流的强度不再受到界面温度的限制,所以电流可增大。这导致趋于更大且更为球形的消融灶,通常测量为约10至12mm。

冲洗消融电极的临床疗效取决于电极结构内的流的分布和通过导管的冲洗流的流量。通过降低总体电极温度和消除可引发凝结物形成的消融电极中的热点来取得效果。在降低总体温度和温度变化(即热点)方面,更多的通路和更高的流量是更有效的。冷却剂流量必须相对于可注射到患者体内的流体的量以及监视需要的增大的临床负载进行平衡,并可能在手术过程中再补充注射装置。除了在消融过程中的冲洗流之外,在整个手术中需要通常具有低流量的维护流,以防止血液回流到冷却剂通道。因此,通过尽可能高效率地利用冷却剂流来减少冷却剂流是期望的设计目标。

另一种考虑是控制导管尖端的准确位置和取向的能力。这种能力是决定性因素并且在很大程度上确定了导管的有用性。一般来讲,已知将电磁(EM)三轴位置/定位传感器包含到电生理导管中,以用于确定导管远端的位置。在导管中(通常靠近位于远侧末端内的导管远端)的EM传感器产生用于确定装置相对于参考系的位置的信号,该参考系固定在身体或心脏本身的外部。电磁传感器可以是有源或无源的,并且可通过产生或容纳电、磁或超声能量场或本领域公知的其它合适形式的能量来工作。

全部公开内容以引用方式并入本文的美国专利No.5,391,199描述了一种位置响应导管,其包括包含在导管远端中的微型传感器线圈。所述线圈响应于外部施加的电磁场产生电信号,所述电磁场由放置在患者体外的场发生器线圈产生。分析该电信号以确定线圈的三维坐标。

全部公开内容据此以引用方式并入本文的美国专利No.6,690,963涉及一种用于确定侵入式医疗器械(例如导管或内窥镜)相对于参考系的位置和取向的定位系统,包括:多个场发生器,所述场发生器响应于驱动信号产生已知的可区分场,优选连续交流磁场;多个传感器,所述传感器位于侵入式医疗器械中邻近其远端的位置,并且响应于所述场产生传感器信号;以及信号处理器,所述信号处理器具有与所述驱动信号和所述传感器信号对应的多个信号的输入端,并且对侵入式医疗器械上的某个位点产生三个位置坐标和三个取向坐标。

由于尖端电极的尺寸和其有限的内部空间,因此电磁传感器通常尖端电极的近侧定位在尖端电极的外面,并且通常与尖端电极离轴,这能够降低传感器的位置感测能力的准确性。在尖端电极外面,定位传感器还暴露于弯曲应力并能够限制其远侧末端节段的柔韧性和偏转。此外,传感器在消融期间可因射频能量而损坏。

在远侧末端被冲洗的情况下,由于消融手术可持续五或六小时,导致患者体内大量的流体加载,因此冲洗冷却的效率成为重要因素。常规的冲洗尖端电极通常以在低于约30瓦的射频消融能量下的约17ml/分钟至在约30瓦或更大时的约30-50ml/分钟的流量工作。

当前的导管包括适用于消融的冲洗环形电极。此类导管包括用于可视化冲洗环形电极的线圈或单轴传感器(SAS)。然而,传感器通常容纳在通常与可偏转导管一起使用的多管腔管的专用管腔中。由于其他部件例如牵拉线、引线和/或冲洗管也需要管腔,因此要保持典型的导管尺寸变得很困难。由于导管变得更加复杂,结合了更多的部件,因此为每个部件分配空间变得更具挑战性。

因此,希望通过提供尖端节段使导管适用于标测和消融,同时具有改善的冷却和位置感测特性:该尖端节段以最大程度减少尖端节段尺寸的增大同时不干扰其内承载的部件的功能的方式承载冲洗尖端和环形电极及其位置传感器。



技术实现要素:

本发明涉及一种导管,所述导管在远侧节段具有复合和嵌段式构造,该构造允许远侧节段中的空间被有效利用,而无需增大导管尺寸。远侧节段包括以交替顺序布置的至少一个可偏转构件和至少一个支撑构件,其中支撑构件具有足够的刚性来支撑和承载环形电极,并且可偏转构件比支撑构件更具柔性,以允许远侧节段整体发生偏转。环形电极的支撑构件上还承载了位置传感器,例如单轴线圈传感器。该传感器承载于支撑构件的外表面上,使得支撑构件内的管腔可用于其他部件,例如引线、热电偶线、牵拉线、冲洗流体和/或传感器缆线,这些部件通常占据比位置传感器更小的空间。远侧节段还被配置成具有远侧冲洗流体路径,其轴向延伸穿过可偏转构件和支撑构件,以将冲洗流体递送到环形电极和尖端电极。

在本发明的一个实施例中,导管具有细长导管主体和带有复合构造的远侧节段,所述复合构造具有可偏转构件和支撑构件的交替区段,其中每个支撑构件承载相应的冲洗环形电极和卷绕在支撑构件外表面上的单轴位置线圈传感器。所述线圈传感器位于环形电极和支撑构件之间,但与冲洗流体隔离,该冲洗流体通过形成于环形电极和支撑构件之间的贮存器。就这一点言,远侧冲洗管延伸穿过远侧节段的长度,以提供将冲洗流体递送到环形电极和尖端电极的流体路径。

在一个实施例中,尖端电极具有限定腔体的外壳壁,流体通过腔体流动并通过形成在外壳壁中的流体孔流出。该腔体由内部构件密封,该内部构件延伸到腔体中以可靠地容纳尖端电极的位置传感器。内部构件的近侧部分使进入尖端电极的流体分散,以便更加均匀流动通过腔体。同样地,流体馈给尖端电极中的更远侧流体口,以便在尖端电极上的所有位置处更加均匀冷却。

本发明还涉及一种构造导管的方法。所述方法包括通过提供管、多个支撑构件和每个支撑构件的冲洗环形电极,由内而外构建导管的节段。该方法包括通过将管插入穿过每个支撑构件的管腔并使管上的相邻支撑构件以预定间距被分隔开,从而将支撑构件安装在管的预定位置。该方法还包括将冲洗环形电极安装在每个支撑构件上。该方法还包括在管上形成可偏转构件,以填充预定的间距并使相邻的支撑构件与刚性不如支撑构件构造材料的材料连接。可偏转构件可从挤出制品切割,或可注塑在导管内部的已组装部件上。可通过对挤出制品进行微加工、微模制或加工来制造支撑构件,所述挤出制品采用具有足以支撑环形电极的刚性且具有用于与血液接触的足够生物相容性的塑性材料。可偏转构件和支撑构件可为多管腔的以容纳引线、牵拉线、热电偶线、传感器缆线和/或冲洗流体。

附图说明

通过参考以下与附图结合考虑的详细说明,将更好地理解本发明的这些和其他特征以及优点,其中:

图1为根据本发明实施例的导管的透视图。

图2A为沿第一直径截取的图1的导管的侧剖视图,其示出了导管主体和可偏转的中间区段之间的接合部。

图2B为沿与第一直径大致垂直的第二直径截取的图1导管的侧剖视图,其示出了导管主体和可偏转的中间区段之间的接合部。

图2C为沿线C--C截取的图2B的可偏转中间区段的纵向剖视图。

图3为图1的导管远侧节段的透视图,其中部件已拆除以显示内部。

图3A为沿第一直径截取的图3的远侧节段的侧剖视图,其包括最远侧环形电极和支撑构件。

图3B为沿大致垂直于第一直径的第二直径截取的图3的远侧节段的侧剖视图,其包括最远侧环形电极和支撑构件。

图3C为沿第一直径和第二直径之间的第三直径截取的图3的远侧节段的侧剖视图,其包括最远侧环形电极和支撑构件。

图3D为沿线D--D截取的图3的远侧节段的末端剖视图。

图3E为沿线E--E截取的图3的远侧节段的末端剖视图。

图4为环形电极的实施例的透视图。

图5为图3的尖端电极的侧剖视图。

图5A为沿线A--A截取的图5的尖端电极的末端剖视图。

图5B为沿线B--B截取的图5的尖端电极的末端剖视图。

图5C为沿线C--C截取的图5的尖端电极的末端剖视图。

具体实施方式

图1示出了导管10的实施例,该导管承载具有位置感测和冷却能力的冲洗尖端和环形电极。该导管具有含近端和远端的细长导管主体12、位于导管主体12的远端处的可偏转的中间节段14以及具有冲洗尖端电极17和多个冲洗环形电极21的远侧节段15。该导管也包括位于导管主体12的近端处的控制手柄16,以用于控制中间区段14的偏转。有利的是,远侧节段15具有复合和嵌段式构造,所述构造具有可偏转管腔构件54和环形电极支撑构件56的交替区段。该构造有利于有效使用远侧节段15中的空间,因为该构造允许远侧节段中的所有管腔用于除位置感测线圈之外的部件,否则位置感测线圈趋于需要专用的且更大的管腔。

参照图2A和2B,导管主体12包括具有单个中央管腔或轴向腔18的细长管状构造。导管主体12为柔性的,即可弯曲,但沿其长度基本上不可压缩。导管主体12可具有任何合适的构造,并且可由任何合适的材料制成。目前优选的构造包括由聚氨酯或PEBAX制成的外壁20。外壁20包括不锈钢等的嵌入式编织网,以增大导管主体12的扭转刚度,使得当控制手柄16旋转时导管10的中间区段14将以相应的方式旋转。

导管主体12的外径并不关键,但优选地为不大于约8F,更优选地不大于约7F。同样,外壁20的厚度也并不关键,但要足够薄,使得中央管腔18可容纳牵拉构件(例如,牵拉线)、引线、以及任何其他所需的线材、缆线或管。如果需要,外壁20的内表面可衬有加强管22以提供改善的扭转稳定性。在本发明所公开的实施例中,导管具有外径为约0.090英寸至约0.94英寸且内径为0.061英寸至约0.065英寸的外壁20。

加强管22和外壁20的远端通过用聚氨酯胶等形成胶接部23来固定地附接在导管主体12的远端附近。用较慢干燥但较强力的胶(例如聚氨酯)在加强管20和外壁22的近端之间形成第二胶接部(未示出)。

在控制手柄16和可偏转节段14之间延伸的部件穿过导管主体12的中央管腔18。这些部件包括用于远侧节段15上的尖端电极17和环形电极21的引线40、用于将流体递送到远侧节段15的冲洗管38、用于位于尖端电极和环形电极中的定位/位置传感器46的缆线48、用于至少中间区段14(如果另外未包括远侧节段15的话)的双向偏转的一对牵拉线26、以及用于感测远侧节段15处的温度的一对热电偶线41、45。

图2A、图2B和2C中还示出了包括一小段管19的中间区段14的实施例。该管也具有编织网构造,但具有多个离轴管腔,例如五个管腔31、32、33、34和35。离轴的、直径相对的第一管腔31和第二管腔32各自承载牵拉线26。第三离轴管腔33承载引线40以及热电偶线41和45。第四离轴管腔34承载传感器缆线48。第五中央管腔35承载冲洗管38。

中间区段14的管19由合适的无毒材料制成,该材料比导管主体12更具柔性。适用于管19的材料是编织的聚氨酯,即具有嵌入的编织不锈钢等的网的聚氨酯。每个管腔的大小并不关键,但要足以容纳贯穿延伸的相应部件。

图2A和图2B中示出了将导管主体12附接到中间节段14的装置。中间区段14的近端包括容纳导管主体12的外壁20的内表面的外周凹口24。中间区段14和导管主体12通过胶等附接。

如果需要,可在导管主体内的加强管(如果提供)的远端与中间区段的近端之间设置间隔区(未示出)。该间隔区在导管主体和中间区段的接合处提供柔韧性的过渡,其使此接合平滑地弯曲而不折叠或扭结。具有此类间隔区的导管在美国专利No.5,964,757中有所描述,该专利的公开内容以引用方式并入本文。

每根牵拉线26优选涂覆有Teflon.RTM。牵拉线26可由任何合适的金属(如不锈钢或镍钛诺)制成,并且该特氟隆涂层赋予牵拉线润滑性。牵拉线优选具有在约0.006英寸至约0.010英寸范围内的直径。

如图2B所示,延伸穿过导管主体12的每根牵拉线26的一部分穿过与牵拉线26呈包围关系的压缩线圈37。压缩线圈37从导管主体12的大致近端延伸至中间区段14的大致近端。压缩线圈37由任何合适的金属制成,优选为不锈钢,并且压缩线圈自身紧密地卷绕以提供柔韧性,即弯曲,但抗压缩。压缩线圈的内径优选稍大于牵拉线26的直径。在导管主体12内,压缩线圈37的外表面也覆盖有柔性的不导电护套39(图2B),例如由聚酰亚胺管材制成的护套。如图2B和2C所示,延伸穿过中间区段14的每根牵拉线26的一部分覆盖有不导电保护套47。

牵拉线26的近端锚固在控制手柄16中。在本发明所公开的实施例中,牵拉线26的远端锚固在远侧节段15中,如下面进一步所述。导致中间区段14和末端节段15偏转的牵拉线26相对于导管主体12的分离和独立的纵向运动通过控制手柄16的适当操纵来完成。

在图1所示的实施例中,控制手柄16具有致动牵拉线双向偏转的偏转致动器50。控制手柄还包括偏转张力旋钮52,所述旋钮确保使用者调整到偏转致动器能够轻松旋转的程度。合适的偏转组件和控制手柄在2008年12月30日提交的名称为“DEFLECTABLE SHEATH INTRODUCER”(可偏转护套插管器)的共同未决的美国专利申请序列No.12/346,834中有所描述,该专利的全部公开内容以引用方式并入本文。其他合适的偏转组件在以下文献中有所描述:2008年9月16日提交的名称为“CATHETER WITHADJUSTABLE DEFLECTION SENSITIVITY”(具有可调节的偏转灵敏度的导管)的共同未决的美国专利申请序列No.12/211,728以及2008年5月27日提交的名称为“STEERING MECHANISM FOR BI-DIRECTIONALCATHETER”(双向导管的转向机构)的美国专利申请序列No.12127704,这两者的全部公开内容以引用方式并入本文。

参照图3,在中间区段14的远端处为远侧节段15,远侧节段包括尖端电极17和多个冲洗环形电极21。远侧节段具有复合构造,所述复合构造包括可偏转管腔构件54和环形电极支撑构件56的交替区段。在所示的实施例中,复合构造包括紧邻中间区段14远端的远侧的第一可偏转管腔构件54a,和紧邻第一可偏转管腔构件54a的远侧的第一支撑构件56a。远侧节段15具有所示实施例中的三个环形电极21,并且包括沿远侧节段15以交替顺序布置的三个可偏转管腔构件54a、54b、54c和三个支撑构件56a、56b、56c,其中每个环形电极21安装在相应的支撑构件56上。应当理解,本发明包括任意组合/多个的可偏转管腔构件54和支撑构件56。根据实施例,可能有比构件56更多的构件54,包括N多个构件54和N+1多个构件56,反之亦然,或者相同多的构件54和56。

环形电极支撑构件56可由适于容纳定位/位置传感器例如SAS的足够刚性的塑性材料构造,以调控到达冲洗环形电极21的冲洗流量或用作安装环形电极21的基片。每个支撑构件56具有带多个管腔71、72、73、74、75的类似构造,这些管腔优选分别与可偏转管腔构件54的管腔61、62、63、64、65轴向对齐。在图3A、3B和3E所示的实施例中,每个构件56包括各自用于相应牵拉线26的直径相对的第一离轴管腔71和第二离轴管腔72,用于电极引线40和热电偶线41、45的第三离轴管腔73,用于传感器缆线48的第四离轴管腔74,以及用于冲洗流体的第五中央管腔75。每个支撑构件56的长度可在约0.2cm和1.0cm之间的范围内,并且优选为约0.5cm。应当理解,构件56的长度可与构件54的长度大致相等或者可与之不相等,具体根据需要或视情况而定。

可通过对挤出制品进行微加工、微模制或加工来制造支撑构件56,所述挤出制品采用具有足够刚性且具有用于与血液接触的足够生物相容性的塑性材料。

在相邻支撑构件56之间延伸的是可偏转管腔构件54,可偏转管腔构件54比支撑构件56更具柔性且刚性不如支撑构件56,以便当将张力施加到牵拉线26时远侧节段15发生弯曲和偏转。每个可偏转管腔构件54具有带多个管腔61、62、63、64、65的类似构造。在图3A、3B和3D所示的实施例中,构件54包括各自用于相应牵拉线26的直径相对的第一离轴管腔61和第二离轴管腔62,用于电极引线40和热电偶线41、45的第三离轴管腔63,用于传感器缆线48的第四离轴管腔64,以及用于冲洗流体的第五中央管腔65。

每个可偏转管腔构件54的长度可在约0.2cm和2.0cm之间的范围内,优选为约0.5cm。可偏转管腔构件54由柔性生物相容性的材料构造,所述柔性生物相容性的材料包括柔性聚合物和热塑性弹性体,例如PELLETHANE或PEBAX。每个可偏转管腔构件54可从挤出制品切割或可注塑在导管内部的已组装部件上,例如冲洗流体管、引线、传感器缆线和牵拉线。

可偏转管腔构件54和支撑构件56的末端可通过任何合适的方式接合,包括粘接剂、热粘结、超声焊接或重叠注塑。将可偏转管腔构件54的管腔61-65和支撑构件56的管腔71-75对齐,使得牵拉线26、引线40、热电偶线41和45以及传感器缆线48可延伸穿过远侧节段15而不需要急剧弯曲或纽绞。

应当理解,可偏转管腔构件54的管腔65和支撑构件56的管腔75可容纳单个连续的远侧冲洗管79,所述冲洗管与管腔65和75排成一行,以提供通过远侧节段15的远侧冲洗流体路径。

根据本发明的结构,在每个支撑构件56的外表面中形成周向凹槽80。在图3A和3B所示的实施例中,在支撑构件56的近端附近形成凹槽80,但应当理解,可在支撑构件56的远端附近形成凹槽80。凹槽80设置在支撑构件56上以承载每个冲洗环形电极21的传感器36R的线圈。线圈(例如,单轴传感器“SAS”)有利地卷绕在支撑构件56上的凹槽80中,使得其不会占据远侧节段15中的超出已由支撑构件56占据的任何空间。此外,线圈不会占据支撑构件56的任何管腔。恰恰相反,管腔供其他部件使用,包括引线、热电偶线和牵拉线,这些部件不必像典型的传感器那样需要专用管腔和/或较大的管腔。

连接到线圈36R每一端的传感器缆线48延伸穿过支撑构件56的第四管腔74。在凹槽的每一端提供了穿过支撑构件56的通道82(图3A),从而允许在管腔74和凹槽80之间连通。一根传感器缆线48馈送通过相应的通道82,以用于连接到传感器36R的线圈的每一端,因此每个传感器36R具有连接到其的一对缆线。

冲洗环形电极21适用于消融和冲洗并且具有类似结构。这些环形电极可由任何合适的贵金属制成,例如铂或金,优选铂和铱或者金和铂的组合。在所示的实施例中,环形电极21通常是其长度大于直径的圆柱形。参照图4,环形电极具有远端90、中间区段92和近端94。环形电极21在其整个长度上具有大致均匀厚度的壁96,并且在中间区段92的直径大于在远端90和近端94的直径。同样地,在中间区段92的每一侧上具有弯曲过渡区域98而使中间区段的壁向外凸起,以便提供具有不含转角或锐利边缘的无损伤外形的环形电极。如图3A和3B的实施例所示,在中间区段92的内表面和支撑构件56的外表面之间形成环形间隙G形状的贮存器。在中间区段92的壁96中形成多个冲洗孔100以促进径向流动,并且在弯曲过渡区域98的壁96中形成多个冲洗孔100以促进轴向流动。在后者情形中,弯曲过渡区域98中的孔100对于最小化烧焦和凝块特别有效,这些弯曲过渡区域可能为由于电极外形中的过渡而形成的较高电流密度所导致的“热点”。就这一点言,弯曲过渡区域98可具有更多个孔100和/或横截面更大的孔,以最大程度减少热点的发生。其他合适的环形电极在美国专利申请公开No.US2010/0168548A1和2011年6月30日提交的美国专利申请No,13/174,742中有所描述,这两份专利申请的全部内容以引用方式并入本文。

环形电极21可由任何合适的固体导电材料制成,例如铂或金,优选为铂和铱的组合物。环形电极可用胶等安装到支撑构件56上。环形电极可为单极或双极。在所示的实施例中,具有远侧单极环形电极和近侧成对的双极环形电极。每个环形电极连接到相应的引线40R。

通过任何合适的方法将每根引线40R附接到其相应的环形电极21。用于将引线附接到环形电极的优选方法涉及首先穿过不导电包覆层或管的壁开一个小孔。例如,可通过将针穿过支撑构件56插入并且充分加热该针来形成永久性孔的方式来形成这样的孔。然后使用微型钩等拉动引线穿过该孔。剥去引线末端的任何涂层并将末端焊接在环形电极的下侧,然后将环形电极滑动到该孔上方并用聚氨酯胶等将其固定在适当的位置。

参照图3C和3E,在远侧冲洗管79中形成开口77,其与形成于支撑构件56中的通道76连通,以在每个环形电极21的冲洗管腔75和间隙贮存器G之间形成流体连通。以预定的径向角形成通道76(图3E),使得通道76不干扰每个支撑构件56中的离轴管腔。有利的是,通道可具有精确尺寸,以便调控递送到间隙贮存器G的冲洗流体的体积流量。

环形电极21的长度大致等于支撑构件56的长度,使得支撑构件完全被其相应的环形电极覆盖。凹槽80和线圈传感器36R设置在环形电极21的末端90(或近端92)下方,使得线圈传感器36R不暴露于环形电极的间隙贮存器G中的冲洗流体。环形电极的远端90和近端94相对于支撑构件56是尺寸得当的,以便形成封闭间隙贮存器G的流体密封件。

参照图3和5,最远侧冲洗环形电极21c的远侧为尖端电极17,其通过具有接触力弹簧83和不导电覆盖件85的连接节段81连接。覆盖件85的近端和支撑构件56c(和环形电极21c)的远端可通过胶接部84连接。接触力弹簧83可为线圈或螺旋形式或具有径向切口的管,以允许当将偏转力施加到尖端电极17,例如当尖端电极17与组织接触时,在尖端电极17和最远侧冲洗环形电极21c之间相对运动/偏转。纵向延伸穿过弹簧83的是冲洗连接器管腔86,该冲洗连接器管腔在尖端电极17和最远侧冲洗环形电极21C的中央冲洗管腔75之间延伸。

尖端电极17将电磁位置传感器36T容纳在相对于尖端电极远侧和同轴的位置。尖端电极被配置成用以促使冲洗流体湍流和分散,以用于增加从尖端电极至流体的热转移,因此具有导致患者体内更低的流体负载的更小流量。可将流体(例如生理盐水或肝素生理盐水)从尖端电极递送到消融部位,以冷却组织、减弱凝结作用和/或有利于形成更深的消融灶。应当理解,也可递送其他流体,包括任何诊断和治疗流体,例如神经抑制剂和神经刺激剂。

尖端电极17具有两件式构造,所述构造包括导电性穹顶外壳110和内部构件112。外壳110通常为圆柱形,其限定了封闭远端114和开放近端(或颈杆)116之间的腔体113。颈杆116与连接节段81的不导电覆盖件85的远端相连。内部构件112被配置成在外壳110之内装配位于腔体113内部的细长远侧节段118,和插入颈杆116的近侧芯120。芯120和远侧节段118通过杆119连接。外壳110的远端114和内部构件112的远侧节段118是相对尺寸得当的,使得腔体113作为进入尖端电极17的冲洗流体的尖端贮存器。在芯120中形成流体通道124以提供从冲洗连接器管腔86至腔体113的流体连通。

外壳110由生物相容性的金属(包括生物相容性的金属合金)构造。合适的生物相容性的金属合金包括选自不锈钢合金、贵金属合金和/或其组合的合金。在一个实施例中,外壳由包含约80重量%钯和约20重量%铂的合金构造。在一个替代实施例中,外壳由包含约90重量%铂和约10重量%铱的合金构造。外壳可通过深拉制造工艺形成,其生产足够薄但牢固的壁,其适于在标测和消融手术中处理、通过患者身体传送和组织接触。被深拉的外壳也适用于电火花加工(EDM)工艺,以在外壳中形成大量通孔或孔122,它们允许在腔体113和外壳110外面之间连通。

内部构件112的细长远侧节段118被配置成保护和包封尖端电极传感器36T,所述传感器在腔体113内定位在中心,使得传感器在尖端电极的远侧并居中,从而实现最佳性能。在本发明所公开的实施例中,尖端电极传感器36T为电磁(EM)三轴位置/定位传感器,该传感器采用三个线圈,这些线圈产生用于确定装置相对于参考系的位置的信号,该参考系固定在身体或心脏本身的外部。电磁传感器可以是有源或无源的,并且可通过产生或容纳电、磁或超声能量场或本领域公知的其它合适形式的能量来工作。

内部构件112的芯120位于外壳110的颈杆116中。芯被有利地被配置为分散器,该分散器提供通过颈杆116的多个流体通道或通路124以便分散冲洗流体。同样地,分散芯120在腔体113中提供增强的湍流和更均匀的流量,因此在外壳110上提供更增强的对流冷却。因此在尖端电极的整个长度中,尖端电极17中的冲洗更加均匀。内部构件112有效地阻碍了流体进入尖端电极17的速度否则将流体承载到更远侧的孔并使更近侧的孔122缺乏流体的趋势。

在芯120的近侧表面上,中心开口130(图5A)将连接器冲洗管腔86的远端与芯120中的通路124连接。在芯120内,通路124在整个尖端电极(图5B)中彼此以不同角度相交,然后分开成不同的通路(图5C)。在所示的实施例中,通路124具有圆形横截面,然而,应当理解,横截面可为多边形或任何非圆形形状,并且可具有任何合适的尺寸,具体视情况而定。芯120由导电材料制成,以便当通过其引线40T对芯120通电时与外壳110导通,但是远侧节段118可由塑料(例如聚酰亚胺)或粘合剂或密封剂(例如环氧树脂)制成以包封尖端电极传感器36T。

位于芯120近侧表面上的还有用于尖端电极引线40T和热电偶线41、45的盲孔132、133(图5A)。为尖端电极传感器36T的缆线48T提供了延伸穿过芯120、杆119并进入内部构件112的远侧节段118中的纵向通孔134。通孔或通道134从芯120中的近侧离轴位置路由至杆119的远侧同轴位置,而不干扰流体分散通路124。

每根牵拉线26的远端具有丁字架135。在图3B所示的实施例中,丁字架锚固在最远侧可偏转管腔构件54c的第一管腔61和第二管腔62中。作为替代方式,牵拉线26的远端可焊接在尖端电极17的芯120的近侧表面中的与直径相对的离轴盲孔中。

根据本发明的另一个结构,流体经由冲洗管38(图2A)递送穿过导管主体12,经由冲洗管腔35(图2A)递送穿过中间区段14,经由可偏转管腔构件54的管腔65(图3A)和环形电极支撑构件56的管腔75(图3A)递送穿过远侧节段15。一部分流体经由开口77和通道76(图3C)进入环形电极的贮存器间隙G,并经由孔100流出环形电极。另一部分流体继续经由连接器冲洗管腔86和分散通路124(图5)到达尖端电极17,在此处进入腔体113并经由冲洗孔122流出尖端电极。在尖端电极17中,流体以更均匀和相等的流量沿径向方向通过分散通路124,继而在腔体113中提供增强的湍流和更均匀的流量,因此在外壳110上提供更强的对流冷却。因此在尖端电极的整个长度中,尖端电极中的冲洗更加均匀。合适的尖端电极在2010年4月26日提交的名称为“IRRIGATED CATHETER WITH INTERNAL POSITION LOCATION SENSOR”(具有内部定位位置传感器的冲洗导管)的美国专利申请序列No.12/767,763中有所描述,所述专利申请的全部公开内容以引用方式并入本文。

引线40T和40R穿过可偏转管腔构件54和支撑构件56的管腔63和73(图3A)、可偏转的中间区段14的管19的管腔33(图2A)和导管主体12的中央管腔18(图2A)。延伸穿过导管主体12的中央管腔18和管腔33的近侧部分的引线部分可包封在保护护套67(图2A)内,该保护护套可用任何合适的材料(优选聚酰亚胺)制成。用聚氨酯胶等将保护护套粘附在管腔33中,使保护护套的远端锚固于中间区段14的近端。每根电极引线的近端终止于控制手柄16近端处的连接器(未示出)中。尖端电极17和环形电极21通过引线40T和40R经由连接器电连接到消融能量源。这些线还可经由连接器电连接到适当的标测系统或监视系统。

虽然常规的构造方法是“由外而内”构建导管,但本发明的导管,特别是远侧节段15的复合构造允许由内而非由外构建节段的“由内而外”构造。同样地,远侧节段15和导管可构建在远侧冲洗管79周围。将支撑构件56放置在远侧冲洗管79上以预定的大致均匀间隙或间距分隔开的预定位置。例如,管79可馈送穿过支撑构件56的每个管腔75,使得构件56“串在”管79上。每个支撑构件中用于冲洗的通道76可与管79中的冲洗开口77一起形成或在不同阶段形成。线圈传感器36R卷绕在支撑构件56上的凹槽80中并且连接到延伸穿过支撑构件56的管腔74的缆线48。在每个支撑构件中形成径向冲洗流体通道76,然后将环形电极21安装在每个支撑构件上。路经每个支撑构件56的管腔73的引线40R连接到环形电极21。尖端电极17的引线40T和热电偶线41和45路经管腔73,并且牵拉线26路经支撑构件56的管腔71和72。在所有部件位于适当位置以形成远侧节段15的子组件之后,将可偏转管腔构件54添加到冲洗管79上以填充和连接支撑构件56之间的间隙。例如,可将子组件放置在模具中,用合适的材料(例如,聚合物)注射,以完成可偏转管腔构件54的形成。

已参照本发明的某些示例性实施例进行以上描述。本发明所属技术领域内的技术人员应认识到,在不是有意脱离本发明的原则、实质和范围的情况下,可对所述结构进行改变和变型。应当理解,附图未必按比例绘制。因此,以上描述不应该被理解为只涉及附图中所描绘和所示出的具体结构。相反,以上描述应被理解为与以下涵盖其最完整和最清楚范围的权利要求书一致,并支持该权利要求书。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1