一种支持智能终端机械结构的智能轮椅的制作方法

文档序号:12074874阅读:199来源:国知局

本发明属于智能轮椅技术领域,尤其涉及一种支持智能终端机械结构的智能轮椅。



背景技术:

现有的轮椅,轮椅是康复的重要工具,它不仅是肢体伤残者的代步工具,更重要的是使他们借助于轮椅进行身体锻炼和参与社会活动。普通轮椅一般由轮椅架、车轮、刹车装置及座靠四部分组成。手摇轮椅在普通轮椅基础上,增加手摇装置。包括行走的,爬楼的灯具是固定座椅方式的,不能平卧也不能直立升起,更不能旋转。还没有智能终端已解决更加超值的控制和服务,所以这种轮椅不会带来进一步的方便那些需要深度帮助和更多功能的残疾人员。

现有的轮椅结构简单,智能化程度较低,安全性和可靠性较差。



技术实现要素:

本发明的目的在于提供一种支持智能终端机械结构的智能轮椅,旨在解决现有的轮椅结构简单,智能化程度较低,安全性和可靠性较差的问题。

本发明是这样实现的,一种支持智能终端机械结构的智能轮椅,所述支持智能终端机械结构的智能轮椅包括:

智能终端,与主控机有线或无线通讯,实现对主控机输入信号的处理;

行车记录仪,用于记录轮椅行驶途中的影像及声音等相关的信息;

语音控制模块,用于输入操作者的语音指令,并送至智能终端进行处理,实现轮椅机械结构的语音控制;

距离感应模块,用于检测对象物的物理变化量,通过将该变化量换算为距离,来测量从传感器到对象物的距离;

显示终端,用于对智能终端处理的信号显示,供操作者参考;

主控机,与行车记录仪、语音控制模块、距离感应模块、显示终端有线通讯,实现行车记录仪、语音控制模块、距离感应模块输入信号的处理,并在显示终端显示。

进一步,所述智能终端还设置有GPS模块、4G模块和WIFI模块;

GPS模块实现轮椅的定位;

4G模块和WIFI模块实现智能终端与其他终端和主控机的通讯。

进一步,所述智能终端设置有同步正交跳频信号盲源分离模块,所述同步正交跳频信号盲源分离模块的同步正交跳频信号盲源分离方法包括:

步骤一,利用含有M个阵元的阵列天线接收来自多个同步正交跳频电台的跳频信号,对每一路接收信号进行采样,得到采样后的M路离散时域混合信号

步骤二,对M路离散时域混合信号进行重叠加窗短时傅里叶变换,得到M个混合信号的时频域矩阵p=0,1,…,P-1,q=0,1,…,Nfft-1,其中P表示总的窗数,Nfft表示FFT变换长度;(p,q)表示时频索引,具体的时频值为这里Nfft表示FFT变换的长度,p表示加窗次数,Ts表示采样间隔,fs表示采样频率,C为整数,表示短时傅里叶变换加窗间隔的采样点数,C<Nfft,且Kc=Nfft/C为整数,也就是说采用的是重叠加窗的短时傅里叶变换;

步骤三,对步骤二中得到的跳频混合信号时频域矩阵进行预处理;

步骤四,利用聚类算法估计每一跳的跳变时刻以及各跳对应的归一化的混合矩阵列向量、跳频频率在p(p=0,1,2,…P-1)时刻,对表示的频率值进行聚类,得到的聚类中心个数表示p时刻存在的载频个数,个聚类中心则表示载频的大小,分别用表示;对每一采样时刻p(p=0,1,2,…P-1),利用聚类算法对进行聚类,同样可得到个聚类中心,用表示;对所有求均值并取整,得到源信号个数的估计即

找出的时刻,用ph表示,对每一段连续取值的ph求中值,用表示第l段相连ph的中值,则表示第l个频率跳变时刻的估计;

根据估计得到的以及第四步中估计得到的频率跳变时刻估计出每一跳对应的个混合矩阵列向量具体公式为:

这里表示第l跳对应的个混合矩阵列向量估计值;估计每一跳对应的载频频率,用表示第l跳对应的个频率估计值,计算公式如下:

步骤五,根据步骤四估计得到的归一化混合矩阵列向量估计时频域跳频源信号;

步骤六,对不同跳频点之间的时频域跳频源信号进行拼接;估计第l跳对应的个入射角度,用表示第l跳第n个源信号对应的入射角度,的计算公式如下:

表示第l跳估计得到的第n个混合矩阵列向量的第m个元素,c表示光速,即vc=3×108米/秒;判断第l(l=2,3,…)跳估计的源信号与第一跳估计的源信号之间的对应关系,判断公式如下:

其中mn(l)表示第l跳估计的第mn(l)个信号与第一跳估计的第n个信号属于同一个源信号;将不同跳频点估计到的属于同一个源信号的信号拼接在一起,作为最终的时频域源信号估计,用Yn(p,q)表示第n个源信号在时频点(p,q)上的时频域估计值,p=0,1,2,....,P,q=0,1,2,...,Nfft-1,即:

步骤七,根据源信号时频域估计值,恢复时域跳频源信号,对每一采样时刻p(p=0,1,2,…)的频域数据Yn(p,q),q=0,1,2,…,Nfft-1做Nfft点的IFFT变换,得到p采样时刻对应的时域跳频源信号,用yn(p,qt)(qt=0,1,2,…,Nfft-1)表示;对上述所有时刻得到的时域跳频源信号yn(p,qt)进行合并处理,得到最终的时域跳频源信号估计,具体公式如下:

这里Kc=Nfft/C,C为短时傅里叶变换加窗间隔的采样点数,Nfft为FFT变换的长度。

进一步,所述主控机设置有数字信号调制模块,所述数字信号调制模块的数字信号处理方法包括:

接收信号y(t)表示为:

y(t)=x(t)+n(t);

其中,x(t)为数字调制信号,n(t)为服从标准SαS分布的脉冲噪声,针对MASK和MPSK调制,x(t)的解析形式表示为:

其中,N为采样点数,an为发送的信息符号,在MASK信号中,an=0,1,2,…,M-1,M为调制阶数,在MPSK信号中,an=ej2πε/M,ε=0,1,2,…,M-1,g(t)表示矩形成型脉冲,Tb表示符号周期,fc表示载波频率,载波初始相位是在[0,2π]内均匀分布的随机数;针对MFSK调制,x(t)的解析形式表示为:

其中,fm为第m个载频的偏移量,若MFSK信号载频偏移为Δf,则fm=-(M-1)Δf,-(M-3)Δf,…,(M-3)Δf,(M-1)Δf,载波初始相位是在[0,2π]内均匀分布的随机数;

Alpha稳定分布的概率密度函数不存在封闭的表达式,用以下特征函数来描述其分布特性:

其中为符号函数,

α(0<α≤2)为特征指数,γ为分散系数,β为对称参数,ζ为位置参数。当ζ=0,β=0且γ=1时,该分布称为标准SαS分布;

数字调制信号x(t)的分数低阶模糊函数表示为:

其中,τ为时延偏移,f为多普勒频移,0<a,b<α/2;x*(t)表示x(t)的共轭。当x(t)为实信号时,x(t)<p>=|x(t)|<p>sgn(x(t));当x(t)为复信号时,[x(t)]<p>=|x(t)|p-1x*(t),该非线性运算只改变信号的幅度信息,保留其频率和相位信息,有效抑制脉冲噪声。

进一步,所述主控机设置有能量检测模块,所述能量检测模块的能量检测方法包括:

第一步,利用混频器将射频或者中频信号与单频混频获得信号x1;

第二步,利用低通滤波器A去除信号x1的高频分量,低通滤波器A的3dB带宽大于分析带宽Bs,获得信号x2,此时x2是零中频的信号,并且带宽为Bs的信号受到滤波器A的影响很小,可忽略不计;

第三步,将信号x2同时进行二步处理:先将x2通过低通滤波器B,通频带为0--PBs,P<1,获得信号的低频时域信号x2L带宽为PBs;再将x2通过高通滤波器,通频带为PBs-Bs,获得信号的高频时域信号x2H带宽为(1-P)Bs;

第四步,利用时域累计,即时域信号的模的平方和,求出信号x2L的能量值EL,以及信号x2H的能量值EH;

第五步,求得比值R=EL/EH;

第六步,门限标定,首先对有信号和无信号的数据进行多次求R值,通过统计概率获得门限C1和C2,C2>C1,C2值的大小主要影响漏检概率,C1的大小主要影响误警概率,所选择的门限应保证以上两种不利因数可能的小;

第七步,标志位flag的更新,flag=0,表示前一次检测结果为无信号,此种条件下,只有当R>C2时判定为当前检测到信号,flag变为1;当flag=1,表示前一次检测结果为有信号,此种条件下,只有当R<C1时判定为当前未检测到信号,flag变为0;

第八步,根据标志位控制后续解调线程等是否开启:flag=1,开启后续解调线程等,否则关闭后续解调线程。

本发明提供的支持智能终端机械结构的智能轮椅,设置有智能终端、行车记录仪、语音控制模块和距离感应模块,提高了操作的可靠性,提高了轮椅的使用安全性;智能终端、语音控制模块和距离感应模块提高了轮椅的智能化水平,有利于提高轮椅行走时的安全性和可靠性。

附图说明

图1是本发明实施例提供的支持智能终端机械结构的智能轮椅结构示意图;

图中:1、智能终端;2、行车记录仪;3、语音控制模块;4、距离感应模块;5、显示终端;6、主控机。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

下面结合附图对本发明的结构作详细的描述。

如图1所示,本发明实施例的支持智能终端机械结构的智能轮椅包括:智能终端1、行车记录仪2、语音控制模块3、距离感应模块4、显示终端5、主控机6。

智能终端1,与主控机有线或无线通讯,实现对主控机输入信号的处理。

行车记录仪2,用于记录轮椅行驶途中的影像及声音等相关的信息。

语音控制模块3,用于输入操作者的语音指令,并送至智能终端1进行处理,实现轮椅机械结构的语音控制。

距离感应模块4,用于检测对象物的物理变化量,通过将该变化量换算为距离,来测量从传感器到对象物的距离。

显示终端5,用于对智能终端1处理的信号显示,供操作者参考;

主控机6,与行车记录仪2、语音控制模块3、距离感应模块4、显示终端5有线通讯,实现行车记录仪2、语音控制模块3、距离感应模块4输入信号的处理,并在显示终端5显示。

智能终端1还设置有GPS模块、4G模块和WIFI模块;GPS模块实现轮椅的定位;4G模块和WIFI模块实现智能终端1与其他终端和主控机6的通讯。

进一步,所述智能终端设置有同步正交跳频信号盲源分离模块,所述同步正交跳频信号盲源分离模块的同步正交跳频信号盲源分离方法包括:

步骤一,利用含有M个阵元的阵列天线接收来自多个同步正交跳频电台的跳频信号,对每一路接收信号进行采样,得到采样后的M路离散时域混合信号

步骤二,对M路离散时域混合信号进行重叠加窗短时傅里叶变换,得到M个混合信号的时频域矩阵p=0,1,…,P-1,q=0,1,…,Nfft-1,其中P表示总的窗数,Nfft表示FFT变换长度;(p,q)表示时频索引,具体的时频值为这里Nfft表示FFT变换的长度,p表示加窗次数,Ts表示采样间隔,fs表示采样频率,C为整数,表示短时傅里叶变换加窗间隔的采样点数,C<Nfft,且Kc=Nfft/C为整数,也就是说采用的是重叠加窗的短时傅里叶变换;

步骤三,对步骤二中得到的跳频混合信号时频域矩阵进行预处理;

步骤四,利用聚类算法估计每一跳的跳变时刻以及各跳对应的归一化的混合矩阵列向量、跳频频率在p(p=0,1,2,…P-1)时刻,对表示的频率值进行聚类,得到的聚类中心个数表示p时刻存在的载频个数,个聚类中心则表示载频的大小,分别用表示;对每一采样时刻p(p=0,1,2,…P-1),利用聚类算法对进行聚类,同样可得到个聚类中心,用表示;对所有求均值并取整,得到源信号个数的估计即

找出的时刻,用ph表示,对每一段连续取值的ph求中值,用表示第l段相连ph的中值,则表示第l个频率跳变时刻的估计;

根据估计得到的以及第四步中估计得到的频率跳变时刻估计出每一跳对应的个混合矩阵列向量具体公式为:

这里表示第l跳对应的个混合矩阵列向量估计值;估计每一跳对应的载频频率,用表示第l跳对应的个频率估计值,计算公式如下:

步骤五,根据步骤四估计得到的归一化混合矩阵列向量估计时频域跳频源信号;

步骤六,对不同跳频点之间的时频域跳频源信号进行拼接;估计第l跳对应的个入射角度,用表示第l跳第n个源信号对应的入射角度,的计算公式如下:

表示第l跳估计得到的第n个混合矩阵列向量的第m个元素,c表示光速,即vc=3×108米/秒;判断第l(l=2,3,…)跳估计的源信号与第一跳估计的源信号之间的对应关系,判断公式如下:

其中mn(l)表示第l跳估计的第mn(l)个信号与第一跳估计的第n个信号属于同一个源信号;将不同跳频点估计到的属于同一个源信号的信号拼接在一起,作为最终的时频域源信号估计,用Yn(p,q)表示第n个源信号在时频点(p,q)上的时频域估计值,p=0,1,2,....,P,q=0,1,2,...,Nfft-1,即:

步骤七,根据源信号时频域估计值,恢复时域跳频源信号,对每一采样时刻p(p=0,1,2,…)的频域数据Yn(p,q),q=0,1,2,…,Nfft-1做Nfft点的IFFT变换,得到p采样时刻对应的时域跳频源信号,用yn(p,qt)(qt=0,1,2,…,Nfft-1)表示;对上述所有时刻得到的时域跳频源信号yn(p,qt)进行合并处理,得到最终的时域跳频源信号估计,具体公式如下:

这里Kc=Nfft/C,C为短时傅里叶变换加窗间隔的采样点数,Nfft为FFT变换的长度。

进一步,所述主控机设置有数字信号调制模块,所述数字信号调制模块的数字信号处理方法包括:

接收信号y(t)表示为:

y(t)=x(t)+n(t);

其中,x(t)为数字调制信号,n(t)为服从标准SαS分布的脉冲噪声,针对MASK和MPSK调制,x(t)的解析形式表示为:

其中,N为采样点数,an为发送的信息符号,在MASK信号中,an=0,1,2,…,M-1,M为调制阶数,在MPSK信号中,an=ej2πε/M,ε=0,1,2,…,M-1,g(t)表示矩形成型脉冲,Tb表示符号周期,fc表示载波频率,载波初始相位是在[0,2π]内均匀分布的随机数;针对MFSK调制,x(t)的解析形式表示为:

其中,fm为第m个载频的偏移量,若MFSK信号载频偏移为Δf,则fm=-(M-1)Δf,-(M-3)Δf,…,(M-3)Δf,(M-1)Δf,载波初始相位是在[0,2π]内均匀分布的随机数;

Alpha稳定分布的概率密度函数不存在封闭的表达式,用以下特征函数来描述其分布特性:

其中为符号函数,

α(0<α≤2)为特征指数,γ为分散系数,β为对称参数,ζ为位置参数。当ζ=0,β=0且γ=1时,该分布称为标准SαS分布;

数字调制信号x(t)的分数低阶模糊函数表示为:

其中,τ为时延偏移,f为多普勒频移,0<a,b<α/2;x*(t)表示x(t)的共轭。当x(t)为实信号时,x(t)<p>=|x(t)|<p>sgn(x(t));当x(t)为复信号时,[x(t)]<p>=|x(t)|p-1x*(t),该非线性运算只改变信号的幅度信息,保留其频率和相位信息,有效抑制脉冲噪声。

进一步,所述主控机设置有能量检测模块,所述能量检测模块的能量检测方法包括:

第一步,利用混频器将射频或者中频信号与单频混频获得信号x1;

第二步,利用低通滤波器A去除信号x1的高频分量,低通滤波器A的3dB带宽大于分析带宽Bs,获得信号x2,此时x2是零中频的信号,并且带宽为Bs的信号受到滤波器A的影响很小,可忽略不计;

第三步,将信号x2同时进行二步处理:先将x2通过低通滤波器B,通频带为0--PBs,P<1,获得信号的低频时域信号x2L带宽为PBs;再将x2通过高通滤波器,通频带为PBs-Bs,获得信号的高频时域信号x2H带宽为(1-P)Bs;

第四步,利用时域累计,即时域信号的模的平方和,求出信号x2L的能量值EL,以及信号x2H的能量值EH;

第五步,求得比值R=EL/EH;

第六步,门限标定,首先对有信号和无信号的数据进行多次求R值,通过统计概率获得门限C1和C2,C2>C1,C2值的大小主要影响漏检概率,C1的大小主要影响误警概率,所选择的门限应保证以上两种不利因数可能的小;

第七步,标志位flag的更新,flag=0,表示前一次检测结果为无信号,此种条件下,只有当R>C2时判定为当前检测到信号,flag变为1;当flag=1,表示前一次检测结果为有信号,此种条件下,只有当R<C1时判定为当前未检测到信号,flag变为0;

第八步,根据标志位控制后续解调线程等是否开启:flag=1,开启后续解调线程等,否则关闭后续解调线程。

本发明的工作原理:

智能终端与主控机有线或无线通讯,对主控机输入信号的处理;行车记录仪记录轮椅行驶途中的影像及声音等相关的信息;语音控制模块输入操作者的语音指令,并送至智能终端进行处理,实现轮椅机械结构的语音控制;距离感应模块检测对象物的物理变化量,通过将该变化量换算为距离,来测量从传感器到对象物的距离;显示终端对智能终端的信号显示,供操作者参考;主控机实现行车记录仪、语音控制模块、距离感应模块输入信号的处理,并在显示终端显示。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1