生物计量信息监测系统的制作方法

文档序号:14954189发布日期:2018-07-17 23:13阅读:147来源:国知局

本发明涉及用于通过使用床传感器来监测生物计量信息(生物信息)的监测系统。



背景技术:

对象(人类对象,即被监测的人)的生物计量信息是用于在医疗治疗和护理的场所中了解患者或受护理者的身体状况(身体状况)的重要信息之一。例如,可以利用对象的呼吸频率来掌握例如睡眠呼吸暂停综合征(sas)和打鼾的症状;并且改善(缓解)症状。此外,对于掌握患者或受护理者的身体如何在床上移动也是有用的。

通常通过将呼吸传感器附着于鼻孔并且将加速度传感器附着于胸部和/或腹部来测量在对象的睡眠期间获得的生物计量信息例如呼吸频率。此外,还提出了将负载传感器布置在床的床脚下方,以基于负载传感器的测量值来测量对象的呼吸频率(专利文献1)。此外,还提出将负载检测器布置在床的床脚下方,以获取在床上的对象活体的重心的移动,并且基于重心的移动来获取对象活体的呼吸运动(respiratorymovement)(呼吸运动(breathingmovement))和心率运动(心跳运动)(专利文献2)。

引用列表

专利文献

[专利文献1]日本专利第4883380号

[专利文献2]日本专利公开第61-24010号



技术实现要素:

技术问题

在将传感器附着于鼻孔、胸部和/或腹部的方法的情况下,对象需要将测量设备附着于身体。测量设备的存在给对象带来不适和/或不愉快,并且可能导致对象的睡眠干扰、限制对象的行动,例如在夜晚走去厕所和在住院期间的神志失常。此外,测量设备可能取决于沉睡中的对象的姿势而在对象睡眠期间从对象的身体脱离,并且可能导致测量失败。

另一方面,在将负载传感器布置在床的床脚下方的专利文献1和专利文献2中描述的方法的情况下,担心测量准确度可能不足。此外,在专利文献1和专利文献2中描述的方法的情况下,不能高准确度地获取对象的身体运动信息(关于身体运动的信息)和呼吸信息(关于呼吸的信息)两者。

鉴于以上所述,本发明的目的是解决上述问题,并且提供一种用于在不会给对象带来任何不适和任何不愉快的情况下高准确度地监测对象的生物计量信息的监测系统,该监测系统是非侵入式传感器。

技术方案

根据本发明的第一方面,提供了一种用于监测在床上的对象的生物计量信息的生物计量信息监测系统,该系统包括:多个负载检测器,其被放置在床上或者床的床脚下方,并且检测对象的负载;重心位置计算单元,其基于所检测到的对象的负载来获取对象的重心位置的时间变化;身体运动信息确定单元,其基于所获取的对象的重心位置的时间变化来获取关于对象的身体运动的信息;以及呼吸频率计算单元,其基于所获取的对象的重心位置的时间变化和由身体运动信息确定单元获取的关于对象的身体运动的信息来计算对象的呼吸频率。

在根据第一方面的生物计量信息监测系统中,身体运动信息确定单元可以包括第一身体运动信息确定单元和第二身体运动信息确定单元,第一身体运动信息确定单元确定关于对象的大身体运动的信息,第二身体运动信息确定单元确定关于对象的小身体运动的信息。

在根据第一方面的生物计量信息监测系统中,第一身体运动信息确定单元可以基于在预定时间段内重心位置的移动距离来确定在对象的重心位置的时间变化中包含的、由对象的大身体运动引起的变化。

在根据第一方面的生物计量信息监测系统中,第二身体运动信息确定单元可以基于重心位置的移动方向来确定在对象的重心位置的时间变化中包含的、由对象的小身体运动引起的变化,重心位置的时间变化是已经去除了由第一身体运动信息确定单元确定的由大身体运动引起的变化的变化。

在根据第一方面的生物计量监测信息中,呼吸频率计算单元可以基于已经去除由第一身体运动信息确定单元确定的由大身体运动引起的变化和由第二身体运动信息确定单元确定的由小身体运动引起的变化的对象的重心位置的时间变化来计算呼吸频率。

在根据第一方面的生物计量信息监测系统中,可以同步地获取关于大身体运动的信息、关于小身体运动的信息以及呼吸频率。

根据第一方面的生物计量信息监测系统还可以包括身体状况判断单元,该身体状况判断单元基于所获取的关于对象的身体运动的信息和/或对象的呼吸频率来判断对象是处于睡眠状态还是处于清醒状态。

根据第一方面的生物计量信息监测系统还可以包括离床/在床(bed-leaving/settling)判断单元,该离床/在床判断单元基于所检测到的负载来判断对象是否存在于床上;并且在对象被身体状况判断单元判断为处于睡眠状态并且被离床/在床判断单元判断为已经离开床的情况下,身体状况判断单元可以判断对象已经从床跌落。

根据第一方面的生物计量信息监测系统还可以包括心率计算单元,该心率计算单元基于所获取的对象的重心位置的时间变化来获取对象的心率。

在根据第一方面的生物计量信息监测系统中,身体状况判断单元可以基于所获取的关于对象的身体运动的信息、对象的呼吸频率和对象的心率来判断对象是活着还是死亡。

根据第一方面的生物计量信息监测系统还可以包括显示单元,该显示单元将所获取的关于对象的身体运动的信息的时间变化显示为重心位置在床上移动的历史。

根据第一方面的生物计量信息监测系统还可以包括通知单元,该通知单元基于所获取的对象的重心位置的时间变化来执行通知。

在根据第一方面的生物计量信息监测系统中,重心位置的时间变化可以包括由对象的身体运动引起的变化和由对象的呼吸引起的变化,并且生物计量信息监测系统还包括身体轴确定单元,该身体轴确定单元基于由呼吸引起的变化来获取对象的身体轴。

根据第一方面的生物计量信息监测系统还可以包括体重测量单元,该体重测量单元基于所检测到的负载来获取对象的体重。

根据本发明的第二方面,提供了一种床系统,该床系统包括:床;以及根据第一方面的生物计量信息监测系统。

使用本发明的一个方面的床传感器的生物计量信息监测系统可以提供一种能够在不会给对象带来任何不适和任何不愉快的情况下高准确度地监测对象的生物计量信息的监测系统,该监测系统是非侵入式传感器。此外,使用本发明的一个方面的床传感器的生物计量信息监测系统能够根据来自负载传感器的时间序列数据同时并且同步地测量生物计量信息的状态,包括例如体重、身体运动、呼吸、打鼾和心跳及其时间变化。因此,还可以与各个时间的生物计量信息同步地判断时间序列中变化的对象的身体状况。

附图说明

[图1]图1是描绘根据本发明的实施方式的生物计量信息监测系统的配置的框图。

[图2]图2是描绘根据本发明的实施方式的呼吸状况检测方法的流程图。

[图3]图3是描绘负载检测器相对于床的布置的示意图。

[图4]图4是描绘在床的上表面上限定的四个负载检测区域的布置的示意图。

[图5]图5描绘了从负载检测器馈送的示例性负载信号。

[图6]图6描绘了对象的重心的示例性轨迹(迹线、路径)。

[图7]图7描绘了对象的重心的另一示例性轨迹。

[图8]图8是用于说明用于判断运动矢量的移动方向的方法的示意图。

[图9-a]图9a描绘了通过从图7中所描绘的在床上的对象的重心的轨迹去除由对象的大身体运动引起的重心移动的轨迹而获得的轨迹。

[图9-b]图9b描绘了通过从图7中所描绘的在床上的对象的重心的轨迹去除由对象的大身体运动引起的重心移动的轨迹而获得的轨迹。

[图9-c]图9c描绘了通过从图7中所描绘的在床上的对象的重心的轨迹去除由对象的大身体运动引起的重心移动的轨迹而获得的轨迹。

[图10]图10描绘了包括在图9a中所描绘的重心的轨迹中的多个运动矢量。

[图11-a]图11a描绘了通过从图9a中所描绘的在床上的对象的重心的轨迹去除由对象的小身体运动引起的重心移动的轨迹而获得的轨迹。

[图11-b]图11b描绘了通过从图9b中所描绘的在床上的对象的重心的轨迹去除由对象的小身体运动引起的重心移动的轨迹而获得的轨迹。

[图11-c]图11c描绘了通过从图9c中所描绘的在床上的对象的重心的轨迹去除由对象的小身体运动引起的重心移动的轨迹而获得的轨迹。

[图12]图12描绘了通过旋转图11a中所描绘的重心的轨迹gt而使得身体轴方向与x方向一致而获得的轨迹。

[图13]图13是描绘根据修改的实施方式的生物计量信息监测系统的配置的框图。

[图14-a]图14a描绘了在根据修改的实施方式的负载检测步骤中测量到的体重的示例性测量值。

[图14-b]图14b描绘了根据修改的实施方式的在负载检测步骤中检测到的从负载检测器馈送的示例性负载信号。

[图15-a]图15a描绘了对象的重心的另一示例性轨迹,并且图15b描绘了通过将图15a中所描绘的重心的轨迹转换成基于低采样频率的轨迹而获得的重心的轨迹。

[图15-b]图15a描绘了对象的重心的另一示例性轨迹,并且图15b描绘了通过将图15a中所描绘的重心的轨迹转换成基于低采样频率的轨迹而获得的重心的轨迹。

[图16-a]图16a描绘了通过从图15a中所描绘的在床上的对象的重心的轨迹去除由对象的大身体运动引起的重心移动的轨迹而获得的轨迹。

[图16-b]图16b描绘了通过从图15a中所描绘的在床上的对象的重心的轨迹去除由对象的大身体运动引起的重心移动的轨迹而获得的轨迹。

[图16-c]图16c描绘了通过从图15a中所描绘的在床上的对象的重心的轨迹去除由对象的大身体运动引起的重心移动的轨迹而获得的轨迹。

[图17]图17描绘了将重心的轨迹分解成呼吸分量和小身体运动分量。

[图18]图18描绘了从图16b中所描绘的重心的轨迹提取的呼吸分量。

[图19]图19描绘了显示单元5的示例性显示屏幕。

[图20]图20是描绘根据本发明的实施方式的床系统的整体配置的框图。

具体实施方式

<第一实施方式>

将参照图1至图12说明本发明的第一实施方式。

如图1中所描绘的,提供了该实施方式的生物计量信息监测系统100,其执行观察和测量以便掌握在床上的对象(人类对象,即被监测的人)的生物计量(生物)状态或状况。生物计量信息监测系统100主要包括负载检测单元1、控制单元3、存储单元4和显示单元5。负载检测单元1和控制单元3经由a/d转换单元2连接。通知单元6和输入单元7还连接至控制单元3。

负载检测单元1设置有四个负载检测器11、12、13、14。负载检测器11、12、13、14中的每一个是通过使用例如梁型负载单元来检测负载的负载检测器。例如在日本专利第4829020号和日本专利第4002905号中描述了这样的负载检测器。负载检测器11、12、13、14中的每一个借助布线连接至a/d转换单元2。

a/d转换单元2设置有将从负载检测单元1馈送的模拟信号转换成数字信号的a/d转换器。a/d转换单元2借助布线连接至负载检测单元1和控制单元3中的每一个。

控制单元3是专用计算机或通用计算机。在控制单元3中构造有重心位置计算单元31、呼吸频率计算单元32、呼吸换气量(潮气量)计算单元33、心率计算单元34、心输出量计算单元35以及身体状况判断单元36。

存储单元4是存储用于生物计量信息监测系统100的数据的存储设备。因此,例如可以使用硬盘(磁盘)。显示单元5是用于为生物计量信息监测系统100的用户显示从控制单元3输出的信息的监测器例如液晶监测器等。

通知单元6设置有用于基于从控制单元3馈送的信息在视觉上或者在听觉上执行预定通知的设备例如扬声器。输入单元7是用于针对控制单元3执行预定输入的接口,其可以是键盘和鼠标。

将对用于通过使用上述生物计量信息监测设备100来检测和监测生物计量信息例如在床上的对象的呼吸状况的操作进行说明。

如图2中所描绘的,基于使用生物计量信息监测系统100的对对象的呼吸状况的检测包括负载检测步骤(s101)、重心轨迹计算步骤(s102)、呼吸频率计算步骤(s103)、呼吸换气量计算步骤(s104)、心率计算步骤(s105)、心输出量计算步骤(s106)以及身体状况判断步骤(s107)。负载检测步骤(s101)是检测对象的负载的步骤。重心轨迹计算步骤(s102)是基于所检测到的负载来计算对象的重心的位置的时间变化(重心轨迹)的步骤。呼吸频率计算步骤(s103)是基于所获取的重心轨迹来计算对象的身体运动、呼吸状况、呼吸频率及其时间变化的步骤。呼吸换气量计算单元(s104)是基于所获取的重心轨迹来计算对象的呼吸的换气量(潮气量)的步骤。心率计算步骤(s105)是基于所检测到的负载来计算对象的心率的步骤。心输出量计算步骤(s106)是计算对象的心输出量的步骤。身体状况判断步骤(s107)是基于所计算的对象的呼吸频率和呼吸换气量来判断对象的身体状况的步骤。对对象的呼吸状况的检测还包括显示在上述步骤中计算的对象的呼吸频率和呼吸换气量以及在上述步骤中判断的对象的身体状况的显示步骤(s108)。

<负载检测步骤>

为了执行负载检测步骤s101,负载检测单元1的四个负载检测器11、12、13、14布置在要由对象使用的床的床脚下方。具体地,如图3中所描绘的,负载检测器11、12、13、14分别布置在附接至设置在床bd的四个角部的床脚的下端部的脚轮c1、c2、c3、c4下方。

当负载检测器11、12、13、14分别布置在脚轮c1、c2、c3、c4下方时,由此由四个负载检测器11、12、13、14以分散的方式来检测施加到床bd的上表面的负载。具体地,如图4中所描绘的,床bd的矩形上表面被纵向分为两部分并且被横向分为两部分,因此上表面被等分为四个矩形区域i至iv。

因此,主要由负载检测器11来检测施加到被定位成具有仰卧(面朝上)在床bd的中心部分的对象s的左下半身体的区域i的负载,并且主要由负载检测器12来检测施加到被定位成具有处于相同状态的对象s的右下半身体的区域ii的负载。类似地,主要由负载检测器13来检测施加到被定位成具有仰卧在床bd的中心部分处的对象s的右上半身体的区域iii的负载,并且主要由负载检测器14来检测施加到被定位成具有处于相同状态的对象s的左上半身体的区域iv的负载。注意,当对象s不存在于床bd上时,来自负载检测器11、12、13、14的输出的总和表示床本身的重量。当对象s存在于床bd上时,来自负载检测器11、12、13、14的输出的总和表示床的重量和对象s的体重。因此,通过预先将床本身的重量存储在存储单元4中,可以测量当对象s存在于床上时对象s的体重。注意,当在四个区域中床的重量不均匀时,将其间的差预先存储为与负载检测器中的每一个对应的床重量。此外,期望在实际测量期间带来除了对象s的重量之外的任何重量的情形例如放置任何寝具、任何行李等都反映在床的重量上。

负载检测器11、12、13、14中的每一个检测负载(负载变化),并且将负载(负载变化)作为模拟信号输出至a/d转换单元2。a/d转换单元2在使用例如0.1秒的采样周期的情况下将模拟信号转换成数字信号,并且将数字信号(下文被称作“负载信号”)输出至控制单元3。

在图5中描绘了示例性负载信号。图5描绘了在从时间t10至时间t14的时段期间输出的从负载检测器11、12、13、14馈送的负载信号s1(实线)、s2(虚线)、s3(单点划线)和s4(双点划线)。已经观察到以下事实。即,在从时间t10至时间t11的时段期间(时段p11),对象s如图4中所描绘地仰卧在床bd的中心部分。在从时间t11至时间t12的时段期间(时段p12),对象s移动至床bd的区域i、iv侧。与时段p12相比,在从时间t12至时间t13的时段期间(时段p13),对象s在一定程度上移动至床bd的中心侧。在从时间t13至时间t14的时段期间(时段p14),对象s仰卧在床bd的中心部分。

在时段p11期间,对象s如图4中所描绘地仰卧在床bd的中心部分。因此,在时段p11期间,从布置在对象s的头侧的负载检测器13、14馈送的信号s3、s4彼此大致相等,并且从布置在对象s的脚侧的负载检测器11、12馈送的信号s1、s2彼此大致相等。

在时段p12期间,对象s移动至床bd的区域i、iv侧。因此,与时段p11相比,在时段p12期间从布置在区域i、iv中的负载检测器11、14馈送的信号s1、s4呈现出大负载值,并且与时段p11相比,从布置在区域ii、iii中的负载检测器12、13馈送的信号s2、s3呈现出小负载值。

与时段p12相比,在时段p13期间对象s在一定程度上移动至床bd的中心侧。因此,与时段p12相比,在时段p13期间从布置在区域i、iv中的负载检测器11、14馈送的信号s1、s4呈现出小负载值,并且与时段p12相比,从布置在区域ii、iii中的负载检测器12、13馈送的信号s2、s3呈现出大负载值。

在时段p14期间对象s以与时段p11相同的方式仰卧在床bd的中心部分。因此,在时段p14期间提供的信号s1至s4与在时段p11期间提供的信号s1至s4相同。可以通过使用来自负载检测器1的输出来监测对象s是否存在于床上。此外,如后面描述的可以通过使用从重心位置计算单元31和呼吸频率计算单元32馈送的数据来正确地监测对象。

<重心轨迹计算步骤>

在重心轨迹计算步骤s102中,重心位置计算单元31以预定周期t(例如,等于上述0.1秒的采样周期的周期)基于从负载检测器11至14馈送的负载信号s1至s4来计算床bd上的对象s的重心g的位置g(x,y),以获取对象s的重心g的位置的时间变化(重心轨迹gt)。在该情况下,(x,y)表示在xy坐标平面上的坐标,在xy坐标平面中x沿床bd的纵向方向延伸,y沿床bd的横向方向延伸,同时床bd的中心部分是原点(图6)。

按照以下运算来执行由重心位置计算单元31对重心g的位置g(x,y)进行的计算。即,假设负载检测器11、12、13、14的坐标分别是(x11,y11)、(x12,y12)、(x13,y13)、(x14,y14),负载检测器11、12、13、14的检测值分别是w11、w12、w13、w14,按照以下表达式来计算g(x,y)。

[公式1]

[公式2]

重心位置计算单元31在基于上述数学表达式(1)和(2)以预定采样周期t来计算重心g的位置g(x,y)时获取重心g的位置g(x,y)的时间变化,即重心轨迹gt。所获取的重心轨迹gt被存储在例如存储单元4中。

在图6中描绘了由重心位置计算单元31计算的重心轨迹gt的示例。图6描绘了分别在包括在图5中所描绘的时段p11、p12、p13中的时间t110、t120、t130处在床bd上的对象s的重心g的位置g(xp11,yp11)、g(xp12,yp12)、g(xp13,yp13)。连接p11、p12、p13的单点划线箭头表示对象s的重心g的重心轨迹gt从位置g(xp11,yp11)移动至g(xp13,yp13)。当使用由重心位置计算单元31计算的重心轨迹gt时,从而可以监测到:如果重心轨迹gt变化,则对象s存在于床上,或者如果重心轨迹gt不变化则对象s不存在于床上。

<呼吸频率计算步骤>

在呼吸频率计算步骤103中,呼吸频率计算单元32基于由重心位置计算单元31计算的重心轨迹gt来计算对象s的每单位时间的呼吸频率。

人的呼吸通过移动胸腔和隔膜以扩张和收缩肺来进行。在这种情况下,当吸入空气时,即当肺扩张时,隔膜向下降低,内部器官也向下移动。另一方面,当呼出空气时,即当肺收缩时,隔膜向上升高,内部器官也向上移动。作为本发明的发明人所进行的研究的结果,已经发现重心g按照内部器官的移动而稍微移动,并且重心g的移动大致沿着脊骨的延伸方向(身体轴方向)发生。

因此,呼吸频率计算单元32可以基于包括在由重心位置计算单元31计算的重心轨迹gt中的沿重心g的身体轴方向的往复运动的轨迹来计算对象s的每单位时间的呼吸频率。

具体地,呼吸频率计算单元32计算呼吸频率的呼吸频率计算步骤s103包括大身体运动确定步骤s1031、小身体运动确定步骤s1032和计算步骤s1033。大身体运动确定步骤s1031是确定在对象s的重心轨迹gt中包含的由对象s的大身体运动例如翻身(辗转和翻动)等引起的重心移动的轨迹的步骤。小身体运动确定步骤s1032是确定由对象s的小身体运动例如手和脚等的移动引起的重心移动的轨迹的步骤。计算步骤s1033是通过使用作为这些步骤s1031和s1032的结果提取的由对象s的呼吸引起的重心移动的轨迹来计算对象s的呼吸频率的步骤。将以示例的方式计算每一分钟的呼吸频率的情况为例对呼吸频率计算步骤s103的更详细的过程进行说明。

首先,呼吸频率计算单元32从存储单元4提取每一分钟(即,测量目标周期)对象s的重心轨迹gt。要提取的重心轨迹gt的示例如图7中所描绘。在图7中描绘的重心轨迹gt表示对象s按照例如在作为测量目标周期的一分钟期间的翻身在床上沿左右方向进行一次往复运动。在第一移动中,对象s的重心g从点a移动到点b。在第二移动中,对象s的重心g从点b移动到点c。注意,在图7中没有表示由对象s的呼吸引起的重心移动的尺度,因为其比由对象s的翻身引起的重心移动的尺度小得多。

随后,在大身体运动确定步骤s1031中,呼吸频率计算单元32从重心轨迹gt确定由对象s的大身体运动引起的重心移动的轨迹,并且去除该轨迹。在本发明中,术语“大身体运动”主要包括翻身和伴随身体部分的移动的其他不连续的身体运动,并且例如当对象疼痛或者对象醒来时,也会出现大身体运动。当考虑到重心的移动来定义该术语时,该术语是指重心g在一定时段内沿一定方向移动超过预定距离d的身体运动。因此,对象s的身体运动中的哪一个是“大身体运动”是不定的。可以基于预定距离d的值来确定哪一个是“大身体运动”。还可以将大身体运动定义为在可以做出相对区分的程度上大于由呼吸引起的重心的移动的重心的移动(例如,前者不小于后者的数倍)。

如果重心g基本上沿一个方向移动超过了预定距离d,则呼吸频率计算单元32判断发生了大身体运动,并且呼吸频率计算单元32去除与重心g基本上沿一个方向移动超过预定距离d的时段对应的重心轨迹gt。可以例如基于在预定采样周期期间提供的重心g的运动矢量与在下一采样周期期间提供的重心g的运动矢量之间形成的角度是否不大于预定角度来判断重心g是否基本上沿一个方向移动。注意,在大身体运动确定步骤s1031中获得的大身体运动主要包括翻身和伴随身体部分的移动的其他身体运动。因此,可以通过利用机器学习等判断与大身体运动对应的信号的内容来监测翻身和姿势的移动。

如图8中所描绘的,重心g的运动矢量v2至v4中的每一个相对于紧挨前一个采样周期期间的运动矢量具有不大于约5°的角度。然而,运动矢量v5相对于紧挨前一个采样周期期间的运动矢量v4具有不小于5°的角度。在这样的情况下,可以做出如下假设。即,在与运动矢量v1至v4中的每一个对应的采样周期期间重心g在基本上恒定的方向移动,并且在与运动矢量v5对应的采样周期期间移动方向改变。在该部分,角度的阈值(5°)通过示例被提及,并且可以设置为任何任意的角度。注意,在基于使用运动矢量来确定大身体运动之前,可以利用低通滤波器对重心轨迹gt进行滤波。因此,去除了高频分量(噪声),可以提高确定的准确度。

当从图7中描绘的重心轨迹gt去除了由大身体运动引起的重心移动的轨迹时,获得了例如在图9a至图9c中描绘的轨迹。图9a描绘了在对象s进行第一次大身体运动之前提供的时段即对象s的重心g位于在图7中描绘的点a的附近的时段期间,对象s的重心轨迹gt。图9b描绘了在对象s进行第一次大身体运动之后直到进行第二次大身体运动所提供的时段即对象s的重心g位于在图7中描绘的点b的附近的时段期间,对象s的重心轨迹gt。图9c描绘了在在对象s进行第二次大身体运动之后所提供的时段即对象s的重心g位于在图7中描绘的点c的附近的时段期间,对象s的重心轨迹gt。

在图9a至图9c中描绘的重心轨迹gt中的每一个包括表示沿一个方向的往复运动的轨迹。该轨迹是由对象s的呼吸引起的重心移动的轨迹。在图9a至图9c中描绘的重心轨迹gt中的每一个还包括从往复运动偏离并且在任意方向上稍微大幅地移动的部分。该部分是由对象s的小身体运动引起的重心移动的轨迹。在本发明中,术语“小身体运动”是指这样的移动:对象s的整个身体没有大幅地移动而仅是身体的部分即手、脚和/或脸(头)移动。当考虑重心的移动来定义小身体运动时,小身体运动是指重心g沿与由对象s的呼吸引起的重心移动的方向不同的方向在不超过预定距离d的范围内移动的身体运动。小身体运动还可以被认为是在小身体运动与大身体运动可以区分的程度上的重心的小的移动(例如,前者不大于后者的一小部分(几分之一))。

随后,在小身体运动确定步骤s1032中,呼吸频率计算单元32确定由对象s的小身体运动引起并且包括在重心轨迹gt中的重心移动的轨迹,并且去除所确定的轨迹。例如,可以按照异常值去除方法来去除由小身体运动引起的重心移动的轨迹。

具体地,假设在图9a中描绘的重心轨迹gt包括如在图10中描绘的从v6至v46的41个运动矢量。首先,呼吸频率计算单元32从41个运动矢量中获取模式矢量vf的方向。运动矢量v6至v46分别具有方向。然而,如图10中所描绘的,运动矢量v6至v46中的一些分别具有相互相同的方向。模式矢量vf的方向等于最频繁出现并且包括在运动矢量v6至v46的方向中的方向。如由图10阐明的,模式矢量vf的方向等于运动矢量v6至v37中的任何一个的方向。模式矢量vf的方向也大致等于对象s的身体轴延伸的方向。因此,可以通过获取模式矢量vf的方向来获取对象s的身体轴延伸的方向。(呼吸频率计算单元32可以被看作包括身体轴确定单元。)

随后,呼吸频率计算单元32将包括在运动矢量v6至v46中、矢量本身的方向与模式矢量vf的方向(或者相对于模式向量vf的方向具有180°的角度的方向)之间的差不大于一定阈值的这样的运动矢量当作多数矢量,而呼吸频率计算单元32将矢量本身的方向与模式矢量vf的方向(及相对于模式向量vf的方向具有180°的角度的方向)之间的差大于一定阈值的这样的运动矢量当作少数矢量。具体地,将具有基本上沿着对象s的身体轴方向延伸的方向的运动向量v6至v37当作多数矢量,并且将其他运动矢量v38至v46当作少数矢量。然后,去除少数矢量(提取多数矢量)。通过这样做,呼吸频率计算单元32去除由对象s的身体运动引起的重心g的移动的轨迹,即在小身体运动确定步骤s1032的前半部分中获得的重心轨迹gt的身体运动分量,并且呼吸频率计算单元32提取由对象s的呼吸引起的重心g的移动的轨迹,即重心轨迹gt的呼吸分量(小身体运动确定步骤s1032的后半部分)

此外,呼吸速率计算单元32也以与上述相同的方式从在图9b和图9c中描绘的重心轨迹gt中的每一个中去除由对象s的身体运动引起的重心g的移动的轨迹(在小身体运动确定步骤s1032的前半部分中获得的重心轨迹gt的身体运动分量),并且呼吸频率计算单元32提取由对象s的呼吸引起的重心g的移动的轨迹(重心轨迹gt的呼吸分量)(小身体运动确定步骤s1032的后半部分)。注意,在小身体运动确定步骤s1032的前半部分中获得的小身体运动分量是只有身体的一个或多个部分即手、脚和/或脸(头)移动的移动。因此,可以通过利用机器学习等来判断与小身体运动对应的信号的内容来监测例如发生手指抽搐、呃逆等。此外,还允许通过使用小身体运动来估计对象是清醒还是睡眠。

在图11a至图11c中分别描绘了从在图9a至图9c中所描绘的重心轨迹gt中提取的呼吸分量。在图11a至图11c中描绘的重心轨迹gt的往复运动的总次数表示每1分钟对象s的呼吸频率。因此,呼吸速率计算单元32基于在图11a至图11c中描绘的重心轨迹gt来计算对象s的每1分钟的呼吸频率。

具体地,呼吸速率计算单元32首先将对象s的重心轨迹gt的呼吸分量旋转,使得模式矢量vf的方向与x轴方向一致(图12)。随后,呼吸速率计算单元32通过使用多级滤波器组来对在图12中描绘的重心轨迹gt执行多级滤波。高频分量在每级的滤波中作为噪声被去除。另一方面,对在由每级的滤波获得的低频分量执行下一级的滤波。在执行与预定级数对应的次数的滤波之后,可以将在最终级获得的低频分量当作呼吸的次数。此外,可以通过使用来自上述负载检测单元1的输出和呼吸频率计算单元32的数据来执行对对象是存在于床上还是不存在于床上的正确的监测。例如,当将任何行李等放置于床上时,负载检测单元1的输出变化。在该情况下,如果通过呼吸频率计算单元32基于负载检测单元1的输出来计算呼吸频率,则可以判断存在于床上的是人对象而不是行李等。此外,当基于其成功检测到呼吸的负载仍然存在但不再能检测到呼吸分量时,则认为发生了呼吸停止。如果也没有观察到心跳变化,则意味着发生了心脏骤停。换句话说,还可以判断对象在什么时间点死亡。还可以借助例如对在对象的死亡之前的时段期间提供的身体运动、呼吸和心跳进行分析来推测导致对象死亡的情形。例如,这对于调查任何医疗事故是极其重要的。

<呼吸换气量计算步骤>

在呼吸换气量计算步骤s104中,呼吸换气量计算单元33根据基于由呼吸频率计算单元32提取的呼吸(图12)的重心移动的轨迹来估计对象s的一个呼吸循环的换气量。注意,呼吸换气量是与呼吸的深度对应的物理量。

在图12中描绘的一个循环的振幅对应于一个呼吸循环。在呼吸大而深的情况下,当肺在吸气期间扩张时,则与正常吸气相比隔膜大幅地移动并且向下降低,并且内部器官也大幅地向下移动。另一方面,在呼气时,即当肺收缩时,则与正常呼气相比隔膜大幅地移动并且向上升高,并且内部器官也大幅地向上移动。相反,在呼吸小而浅的情况下,与正常状态相比,内部器官的移动小。根据本发明的发明人进行的研究,已经发现由内部器官的移动引起的重心g的稍微的移动受到呼吸的大小和幅值的影响。具体地,当呼吸大而深时与正常状态相比振幅增加,而当呼吸小而浅时与正常状态相比振幅减小。可以通过与振幅相关联来估计一个呼吸循环的呼吸换气量。例如,提前执行以下过程。即,在对象仰卧在床上的状态下对象进行大而深的呼吸,并且事先记录在该状态下获得的换气量和振幅。此外,对象进行小而浅的呼吸,并且事先记录在该状态下获得的换气量和振幅。使用所获取的基于呼吸的重心轨迹的振幅来计算呼吸换气量。还可以通过估计一个呼吸循环的换气量来估计分钟容量(每一分钟的换气量)。当已知每一分钟的呼吸的次数和分钟容量时,从而可以监测对象s的呼吸状况总体上处于良好状态还是不良状态。

<心率计算步骤>

在心率计算步骤s105中,心率计算单元34从由负载检测单元1馈送的负载信号提取心跳分量。具体地,使用以下方法。心跳分量是存在于0.5hz至2.5hz的频带中的信号分量。因此,心率计算单元34从四个负载检测器11至14的输出值提取在该频带中的信号分量。随后,心率计算单元34按照与在重心轨迹计算步骤s102中使用的方法相同或等同的方法来计算基于心跳分量的重心轨迹,以基于所计算的重心轨迹来计算对象s的每单位时间的心率。

<心输出量计算步骤>

在心输出量计算步骤s106中,心输出量计算单元35根据基于由心率计算单元34提取的心跳的重心轨迹来估计对象s的一个心跳循环的心输出量。以与呼吸换气量计算单元s104相同的方式,一个循环的振幅对应于一个心跳循环。因此,可以通过与振幅相关联来估计一个心跳循环的心输出量。例如,提前执行以下过程。即,对象处于对象仰卧在床上的状态,事先记录在该状态下获得的心输出量和振幅。根据基于所获取的心跳的重心轨迹从振幅来计算心输出量。根据心率和心输出量可以监测对象s的血压状态总体上处于良好的状态还是不良的状态。此外,可以通过结合心率和心输出量使用上述每一分钟的呼吸的次数和分钟容量来监测对象s的健康状态(健康状况)总体上处于良好状态还是不良状态。

<身体状况判断步骤>

在身体状况判断步骤s107中,身体状况判断单元36通过将由呼吸频率计算单元32确定的对象s的呼吸频率和由呼吸换气量计算单元33计算的对象s的呼吸换气量与存储在存储单元4中的参考数据进行比较来判断对象s的身体状况。

身体状况判断单元36可以将对象s的呼吸频率和呼吸换气量的计算值与存储在存储单元4中的参考数据的值进行比较,以监测例如对象s是处于睡眠状态还是清醒状态。此外,身体状况判断单元36可以检测对象s是否打鼾和对象s是否处于呼吸暂停状况。此外,身体状况判断单元36可以监测对象s是否进入不正常的呼吸状况,包括例如呼吸急促、呼吸徐缓、呼吸过度和呼吸不规律。此外,关于能够通过身体状况判断单元36判断的身体状况的其他示例,例如,不仅可以监测呼吸频率还可以监测呼吸停止的时间长度和对象进行呼吸的时间长度。此外,身体轴的方向是已知的。因此,例如还可以按照大身体运动来监测对象的翻身的方向。

<显示步骤>

在显示步骤s108中,在监视器上显示由呼吸频率计算单元32计算的对象s的呼吸频率、由呼吸换气量计算单元33计算的对象s的呼吸换气量、由心率计算单元34计算的对象s的心率、由心输出量计算单元35计算的对象s的心输出量以及由身体状况判断单元36判断的对象s的身体状况。用户可以通过查看或者在视觉上观察监测器来监测对象s的呼吸频率、呼吸换气量、心率、心输出量以及身体状况。

生物计量信息监测系统100的用户还可以进行设置,使得如果对象s结果处于预定状况,则通知单元6发出通知。例如,用户可以通过使用输入单元7来进行设置,使得如果对象s处于呼吸暂停状况,则发出通知。

如下总结了该实施方式的生物计量信息监测系统100的效果。

本实施方式的生物计量信息监测系统100通过使用布置在床bd的床脚下方的负载检测器11至14来计算对象s的呼吸频率。因此,不需要将任何测量设备附着至对象s的身体。不会对对象s带来不适和不协调的感觉。

本实施方式的生物计量信息监测系统100基于对象s的重心g的位置的轨迹(重心g的位置的时间变化)来计算对象s的呼吸频率。与包括在从负载传感器11至14中的每一个馈送的输出值中的与对象s的呼吸相关的信息不同,包括在对象s的重心g的位置的轨迹中的与对象s的呼吸相关的信息是稳定的,因为其输出强度是恒定的,不受在床上的对象s的位置影响。因此,该实施方式的生物计量信息监测系统100可以正确地计算对象s的呼吸频率,而不受在床上的对象s的位置影响。

本实施方式的生物计量信息监测系统100通过从对象s的重心轨迹gt去除由对象s的身体运动引起的重心g的移动的轨迹并且仅提取由对象s的呼吸引起的重心g的移动的轨迹来计算对象s的呼吸频率。因此,所计算的呼吸频率的准确度高。此外,还可以确定对象s的呼吸的换气量。

特别地,在本实施方式的生物计量信息监测系统100中,基于重心g的移动量从对象s的重心轨迹gt去除由大身体运动引起的重心g的移动的轨迹,然后基于重心g的移动方向去除由小身体运动引起的重心g的移动的轨迹。小身体运动包括重心位置以大致与呼吸的周期或者幅值相等的周期或者幅值变化的那些身体运动。因此,仅通过使用频率滤波器将它们分离是不容易的。然而,在上述实施方式中,基于重心g的移动方向去除由小身体运动引起的重心g的移动的轨迹。因此,可以以低噪声从重心轨迹gt提取仅由对象s的呼吸引起的重心g的移动的轨迹,并且可以高准确度地计算对象s的呼吸频率。

<修改的实施方式>

将参照图13至图19对用于通过使用根据修改的实施方式的生物计量信息监测系统200(图13)来检测例如对象的呼吸状况的方法的修改的实施方式进行说明。除了控制单元3还包括身体监测信息确定单元37以外,修改的实施方式的生物计量信息监测系统200与上述实施方式的生物计量信息监测系统100相同。修改的实施方式的方法与上述实施方式的方法不同之处在于负载检测步骤s201(图2)和呼吸频率计算步骤s203(图2)的处理内容。

<负载检测步骤>

在修改的实施方式的负载检测步骤s201中,还检测对象s停留在床bd上和对象s离开床bd。此外,还测量对象s的体重。

在图14b中描绘了在负载检测步骤s201中检测的示例性负载信号。图14b示出了在从时间t20至时间t26的时段期间输出的分别来自负载检测器11、12、13、14的负载信号s1(实线)、s2(虚线)、s3(单点划线)和s4(双点划线)。负载检测器11至14以与上述实施方式相同的方式分别设置在图4中所描绘的区域i至iv中。观察到以下事实。即,在从时间t20至时间t21的时段(时段p21)期间,对象s不在床上。在时间t21处对象s坐在床bd的区域ii、iii侧,然后在时间t22处对象s采取这样的位置:对象s仰卧在床bd的中央。此外,观察到了如下事实。即,在从时间t23至时间t24的时段(时段p24)期间,对象s采取任意姿势,然后在时间t24处对象s再次坐在床bd的区域ii、iii侧。之后,在时间t25处对象离开床bd。

在时段p21期间,对象s不在床bd上。因此,在时段p21期间,从负载检测器11至14馈送的全部信号s1至s4彼此相等,并且它们中的每一个呈现与床bd的重量的大约1/4对应的负载值。

在对象s坐在床bd的区域ii、iii的时间t21处,从负载检测器11至14馈送的信号s1至s4大幅地改变。具体地,在时间t21处,信号s1至s4中的每一个均增加。从与区域ii、iii对应的负载检测器12、13馈送的信号s2、s3的负载值的增加量比从与区域i、iv对应的负载检测器11、14馈送的信号s1、s4的负载值的增加量大。注意,在该部分中,为了便于说明,假设坐在床bd上的对象s将脚与地面分离,并且对象s的全部体重施加于床bd上。

在负载检测步骤s201中,通过重心位置计算单元31(离床/在床上判断单元)来检测在时间t21处生成的信号s1至s4的负载值的总值的大幅增加,并且基于该检测来判断对象s停留在床bd上。可以在显示单元5上显示判断的结果。

可以例如取决于由从负载检测器11至14馈送的信号s1至s4指示的负载值的总值的增加是否超过预定值(该值是例如40kg、55kg或70kg,并且该值可以通过使用例如输入单元7来任意地设置)来做出由重心位置计算单元31执行的对对象s停留在床bd上的判断。

在时间t21处坐在床bd的区域ii、iii的对象s大幅地改变姿势,使得对象s在时间t22处仰卧在床bd的中心部分。因此,在时间t22处,从负载检测器11至14馈送的信号s1至s4也大幅改变。与区域ii和区域iii对应的信号s2、s3的负载值减小,并且与区域i和区域iv对应的信号s1、s4的负载值增大。

在时段p23期间,对象s仰卧在床bd的中心部分。因此,在时段p23期间,从布置在对象s的头侧的负载检测器13、14馈送的信号s3、s4彼此大致相等,并且从布置在对象s的脚侧的负载检测器11、12馈送的信号s1、s2彼此大致相等。在该修改的实施方式中,如上所述的对象s在床bd上采取稳定姿势并且没有发生对象s的任何大身体运动的时段被称作“稳定姿势时段”。

此外,如在图14b中描绘的放大部分所描绘的,从负载检测器11至14馈送的信号s1至s4中的每一个由于例如在稳定姿势时段期间对象s的呼吸而也总是每分钟变化,并且信号s1至s4中的每一个由于对象s的小身体运动(在图14b的放大部分中描绘的变化sm)而偶发地变化。在该修改的实施方式中,在“稳定姿势时段”中包括的仅发生例如由呼吸引起的信号s1至s4的变化并且不发生由小身体运动引起的信号s1至s4的变化的时段被称作“稳定呼吸时段”。例如,可以在稳定呼吸时段期间特别令人满意地执行例如后面所述的呼吸和心跳的计算。

在对象s再次坐在床bd的区域ii、iii的时段p25期间提供的信号s1至s4与在时段p22期间提供的信号s1至s4相同。

在对象s离开床bd的区域ii、iii的时间t25处,从负载检测器11至14馈送的信号s1至s4中的每一个的负载值降低。此后在时段p26期间提供的s1至s4中的每一个的负载值等于仅呈现与床bd的重量的大约1/4对应的负载值的时段p21期间提供的值。

在负载检测步骤s201中,由重心位置计算单元31检测到在时间t25处生成的信号s1至s4的负载值的总值的大幅降低。基于该检测做出对象s已经离开床bd的判断。可以将判断结果显示在显示单元5上。

在该修改的实施方式(图14a)中,在重心位置计算单元31检测到对象s停留在床bd上之后直到检测到对象s从床bd离开的时段被称作“停留时段”。在该修改的实施方式中,将各种类型的滤波应用于在停留时段期间获得的对象s的重心轨迹,以获取生物计量信息例如对象s的呼吸频率。

在负载检测步骤s201中,可以通过使用重心位置计算单元31(体重测量单元)来测量在停留时段的任何单个时间点或者多个时间点处对象s的体重。对象s的体重可以通过从信号s1至s4的负载值的总值中减去预先存储在存储单元4中的床bd的重量来获取。

<呼吸频率计算步骤>

在呼吸频率计算步骤s203中,大身体运动确定步骤s2031的处理内容和小身体运动确定步骤s2032的处理内容与包括在呼吸频率计算步骤s103中的大身体运动确定步骤s1031的处理内容和小身体运动确定步骤s1032的处理内容不同。呼吸频率计算步骤s203的详细过程将以计算每一分钟的呼吸频率的情况为例进行说明。

首先,身体运动信息确定单元37从存储单元4提取包括在停留时段中的每一分钟的对象s的重心轨迹gt2。在图15a中描绘了经提取的重心轨迹gt2的示例。在图15a中描绘的重心轨迹gt2表示对象s按照大身体运动(翻身等)在床上沿左右方向进行一个往复运动的事实。此外,重心轨迹gt2表示在不发生大身体运动的稳定姿势时段期间,对象s的重心g在区域d、e、f中的每一个中移动。在区域d、e、f中的重心g的移动例如由对象s的呼吸和小身体运动引起。

包括在身体运动信息确定单元37中的大身体运动信息确定单元(第一身体运动信息确定单元)37a确定由对象s的大身体运动引起的重心移动的轨迹并且从重心轨迹gt2提取由对象s的大身体运动引起的重心移动的轨迹(大身体运动确定步骤s2031)。如果重心g在一定时段内沿一定方向移动超过一定距离,例如如果重心g在一定时间内从一个区域移动到另一区域,则呼吸频率计算单元32判断已经发生大身体运动。呼吸频率计算单元32提取在该时段期间提供的重心轨迹gt2。

在大身体运动确定步骤s2031中,通过使用以下方法来判断重心g是否在一定时段内沿一定方向移动超过一定距离。首先,将图15a中所描绘的重心轨迹gt2转换成基于较低采样频率的重心轨迹gt21(图15b)。可以通过减少在0.1秒的采样频率获取的重心位置g的数据和/或通过使用移动平均处理来执行该转换。替选地,还可以通过对重心轨迹gt2进行频率分解(frequencyresolution)并且借助低通滤波器提取预定低频率分量来执行该转换。

参照图15b,在点d1与点e1之间的轨迹呈现例如在0.5秒内向右方向移动超过30cm。因此,呼吸频率计算单元32判断在该间隔中的轨迹是大身体运动的轨迹。呼吸频率计算单元32从重心轨迹gt2去除在该间隔中的轨迹。类似地,在点e2与点f1之间的轨迹呈现例如在0.5秒内向左方向移动超过30cm。因此,大身体运动信息确定单元37a判断在该间隔中的轨迹是大身体运动的轨迹。大身体运动信息确定单元37a从重心轨迹gt2去除在该间隔中的轨迹。注意,从点d1至点e1的移动和从点e2至点f1的移动可以基于每个移动是从一个区域移动到另一区域的事实而被认为是与大身体运动相关的移动。

在图16a至图16c中描绘了通过从在图15a中描绘的重心轨迹gt2去除大身体运动的轨迹而获得的轨迹。图16a描绘了在区域d中的重心轨迹gt2,图16b描绘了在区域e中的重心轨迹gt2,图16c描绘了在区域f中的重心轨迹gt2。轨迹中的每一个是在稳定姿势时段期间的重心轨迹gt2。

注意,期望低采样频率具有短到足以提取大身体运动的程度的周期(大频率),并且期望低采样频率具有长到使得由除了大身体运动以外的任何其他因素例如小身体运动、呼吸等引起的重心的变化不会产生影响的程度的周期(小的频率)。此外,可以依照生物计量信息监测系统200的装置的特性来优化时间的长短和距离的大小,基于该时间的长短和距离的大小来判断当在该时间内发生该距离的移动时引起大身体运动。

随后,身体运动信息确定单元37的小身体运动信息确定单元(第二身体运动信息确定单元)37b在稳定姿势时段期间确定由对象s的小身体运动引起的重心移动的轨迹并且从重心轨迹gt2提取由对象s的小身体运动引起的重心移动的轨迹(小身体运动确定步骤s2032)。将对在稳定姿势时段期间从重心轨迹gt2去除由对象s的小身体运动引起的重心移动的轨迹的步骤进行说明。这里,将以从在区域e中的重心轨迹gt2(图16b)分离小身体运动轨迹和呼吸轨迹的过程为例进行说明。

在小身体运动确定步骤s2032中,由呼吸频率计算单元32使用过去测量的数据计算的并且沿特定方向周期性地振荡的重心轨迹被认为是基于呼吸的重心轨迹。与上述确定的重心轨迹不同的重心轨迹被当作是基于小身体运动的重心轨迹。

参照图16b,重心轨迹gt2包括表示由呼吸引起的重心g的移动的部分gt1、gt3和表示由小身体运动引起的重心g的移动的部分gt2(注意,部分gt2也表示由呼吸引起的重心g的移动)。表示由小身体运动引起的重心g的移动的部分gt2不会沿任何特定的方向周期性地振荡,这与表示由呼吸引起的重心g的移动的部分gt1、gt3的重心轨迹不同。

因此,有一种方法可以分离和提取由小身体运动引起的重心移动的轨迹。即,仅提取沿特定方向周期性地振荡的重心轨迹(gt1、gt3),并且将其当作重心移动的呼吸分量。然后,分离和提取其他部分(gt2)作为小身体运动。例如可以按照下述方法执行上述分离和提取。借助频率分析例如傅里叶分析等来检测周期性重复并且包括在稳定呼吸阶段中的在过去一定时段期间提供的重心变化中的重心变化。检测在相应的频率中呈现的重心变化的方向,并且将其当作由呼吸引起的重心变化。在那之后,提取当前测量的重心变化与由呼吸引起的重心变化之间的差作为由小身体运动引起的变化。在该过程中,如果具有相应频率的分量不包括在当前测量的重心变化中和/或当前测量的重心变化的振幅已经大幅地变化,则认为对象s的呼吸状况已经变化,并且不执行通过使用由呼吸引起的重心变化来获得该差。

如图17中所描绘的另一方法可用。即,不形成沿任何特定方向周期性地振荡的重心轨迹的部分(gt2)被分解成部分gt21和另一部分gt22,部分gt21构成沿特定方向周期性地振荡的重心轨迹的一部分。然后,仅将构成沿特定方向周期性地振荡的重心轨迹的一部分的部分gt21返回至在部分gt1与部分gt3之间的位置以获取如图18中所描绘的重心轨迹。这被用作重心移动的呼吸分量。同时,从部分gt2分解的部分gt22被分离和提取作为小身体运动。可以按照前述方法执行上述分离和提取。

此后,由身体运动信息确定单元37提取的重心移动的呼吸分量被馈送至呼吸频率计算单元32。在呼吸频率计算单元32中,通过与在上述实施方式中使用的方式相同或等同的方式来计算呼吸频率。注意,身体运动信息确定单元37仅确定由大身体运动引起的重心移动的轨迹和由小身体运动引起的重心移动的轨迹也是恰当的。即,从重心轨迹分离和提取由大身体运动和小身体运动引起的轨迹不一定是必不可少的。在该情况下,例如,呼吸频率计算单元32参照其中的每个是由身体运动信息确定单元37确定的由大身体运动引起的重心移动的轨迹和由小身体运动引起的重心移动的轨迹从重心轨迹提取呼吸分量。

还可以通过使用上述实施方式的生物计量信息监测系统100来执行该修改的实施方式的步骤。在该情况下,可以通过呼吸频率计算单元32来执行由身体运动信息确定单元37执行的步骤。相反,还可以通过使用该修改的实施方式的生物计量信息监测系统200来执行上述实施方式的步骤。在该情况下,可以通过大身体运动信息确定单元37a来执行大身体运动确定步骤s1031,并且可以通过小身体运动信息确定单元37b来执行小身体运动确定步骤s1032。

还可以在上述实施方式的生物计量信息监测系统100中采用以下修改的实施方式。

在上述实施方式的生物计量信息监测系统100中,通过从四个负载检测器11至14的输出值提取与心率分量对应的在0.5hz至2.5hz的频带中的信号分量来计算心率。然而,不存在对计算心率限制。心率具有组合有多个重心变化的唯一的周期,因此,心率计算单元34可以基于过去的计算结果来估计被认为是由当前心跳引起的重心的位移。因此,可以基于估计的重心的位移从重心轨迹提取由心跳引起的轨迹,并且可以基于所提取的轨迹来确定心率。

上述实施方式的生物计量信息监测系统100的身体状况判断单元36基于对象s的呼吸换气量和呼吸频率的值来判断对象s睡眠/清醒。然而,不存在对此的限制。例如,可以将可以用作用于判断清醒/睡眠的参考数据的另一系统的结果用作教师数据(teacherdata)。替选地,可以将按照摄像机或者医生的决定或判断与对象的状况相关地标记的数据用作教师数据。

身体状况判断单元36通过整体使用各种类型的生物计量信息的数据(例如,体重、身体运动、呼吸和心跳)来判断对象的身体状况。在该过程中,为了提高判断身体状况的准确度,还允许基于使用教师数据来执行机器学习。即,借助从大量生物计量信息(标记的教师数据)拟合来预先准备用于判断对象s是睡眠状态还是清醒状态的函数,并且将从该实施方式的生物计量信息监测系统100获得的各种类型的生物计量信息的数据代入该函数以获取身体状况(即,睡眠或清醒)。即,可以基于使用各种类型的生物计量信息例如从床离开、停留在床上、大身体运动、小身体运动、呼吸、呼吸暂停、打鼾、说话和心跳及其运算(包括例如四种算术运算、积分、微分和频率分析的数学分析)通过机器学习来获得睡眠/清醒的算法,如参照从对象采样的被标记为“在清醒期间”或“在睡眠期间”的教师数据从生物计量信息监测系统100获得。

上述实施方式的生物计量信息监测系统100的身体状况判断单元36还可以检测对象s从床bd跌落。具体地,如果在对象s处于睡眠状态时发生大身体运动和从床离开(或者仅离开床),则身体状况判断单元36可以判断对象s已经从床bd跌落。此外,还可以在显示单元5上显示判断结果。还可以通过使用通知单元6将判断结果通知给生物计量信息监测系统100的用户。注意,如果在对象s处于清醒状态发生大身体运动或者从床离开,则身体状况判断单元36可以判断对象s按照他/她本身的意图离开床。

上述实施方式的生物计量信息监测系统100的身体状况判断单元36可以基于由生物计量信息监测系统100获取的各种类型的生物计量信息来判断对象s是活着还是死亡。具体地,例如,如果对象的全部身体运动(根据重心g的移动获取的大身体运动和小身体运动)、呼吸和心跳在某一状况下停止,则身体状况判断单元36可以判断对象s死亡。可以基于作为用户的医生等的判断来设置所述某一状况。

上述实施方式的生物计量信息监测系统100的身体状况判断单元36还可以判断对象s处于作为睡眠呼吸暂停综合征的症状的呼吸暂停状况。如果睡眠呼吸暂停综合征的患者在睡眠期间进入呼吸暂停,则呼吸和身体运动在一定时段期间停止,然后进行大量吸气以引起呼吸和身体运动。在另一方面,心跳在整个上述时段持续。因此,如果呼吸和身体运动停止并且心跳持续的时段持续不少于一定时间段,则身体状况判断单元36可以检测到已经发生了呼吸暂停状况。

身体状况判断单元36可以在显示单元5上显示判断结果。可以通过使用通知单元6(护士呼叫)将判断结果通知给生物计量信息监测系统100的用户。此外,当将各种类型的测量的生物计量信息存储在存储单元4时,身体状况判断单元36可以对与发生呼吸暂停状况的时段对应的生物计量信息进行标记。由此,能够容易地在该事件之后(在事后)观察对象s的睡眠呼吸暂停综合征的症状。

上述实施方式的生物计量信息监测系统100的身体状况判断单元36还可以检测对象s的说话和打鼾。通常,说话与呼气同时进行。因此,例如,如果在清醒或睡眠期间的呼气时段内生成任何高频率分量,则可以判断高频率分量是由说话引起的。另一方面,通常在吸气期间发生打鼾。因此,例如,如果在睡眠期间的吸气时段中生成任何高频率分量,则可以判断高频率分量是由打鼾引起的。

当重心轨迹呈现与普通移动不同的移动时,则上述实施方式的生物计量信息监测系统100的通知单元6可以将该移动当作不正常的移动,并且通知单元6可以通过使用通知单元6(护士呼叫)来执行通知。可以适当地设置什么类型的移动是“与普通移动不同的移动”。例如,如果预定的大身体运动或者小身体运动以连续的方式持续不小于一定时间段,则可以判断已经发生“与普通移动不同的移动”,并且可以基于该判断来执行护士呼叫。当接收到护士呼叫信号时,还允许操作捕获床的情况的摄像机。

在上述实施方式的生物计量信息监测系统100中,可以在显示单元5上显示在大身体运动确定步骤s1031、s2031中提取的大身体运动和在小身体运动确定步骤s1032、s2032中提取的小身体运动。具体地,例如,如图19中所描绘的,可以在被设计成模拟床的上表面的屏幕区域上显示大身体运动的轨迹和小身体运动的轨迹。当连同时间一起显示大身体运动的历史时,用户例如医生等可以由此容易地掌握在睡眠期间对象s的行为的轮廓。

在上述实施方式中,将在一个大身体运动与另一大身体运动之间提供的时段定义为“稳定姿势时段”,并且从与稳定姿势时段对应的轨迹中提取重心轨迹的呼吸分量和小身体运动的分量。然而,观察到以下事实。即,对象s的重心不稳定,并且在紧挨发生大身体运动之前和紧挨发生大身体运动之后发生重心位置的相对大的变化。因此,仅通过从在下述时段期间提供的重心轨迹中提取呼吸分量和小身体运动的分量就可以更正确地获取生物计量信息例如呼吸频率等,所述时段是通过从“稳定姿势时段”进一步去除在紧挨大身体运动之前和之后提供的一定时段而获得的时间段。

在上述实施方式中,基于从负载传感器11至14馈送的信号s1至s4的负载值的总值来判断对象s离开床和停留在床上。然而,对此没有限制。参照图14b,来自床bd的负载在对象s不在床上的时段p21期间被均等地施加于负载传感器11至14。换句话说,重心g位于床bd的中心。当对象s在时间t21停留在床上时,重心g大幅地移动至区域ii、iii侧。如上所述,重心位置计算单元31可以基于重心g的大的移动来判断对象s停留在床上。还可以以与上述相同的方式来判断对象s从床离开。

在上述实施方式中,通过由呼吸频率计算单元32获取模式矢量vf的方向来获取对象s的身体轴延伸的方向。然而,还允许通过与呼吸频率计算单元32不同的任何装置或者任何处理单元来获取该方向。

在上述实施方式中,呼吸频率计算单元32用于分离和提取与大身体运动相关的身体运动信息(第一信息)和与小身体运动相关的身体运动信息(第二信息)。然而,对此没有限制。可以通过与呼吸频率计算单元32不同的任何装置(例如,大身体运动信息导出单元)来分离和提取与大身体运动相关的身体运动信息,并且类似地,可以通过与呼吸频率计算单元32不同的任何装置(例如,小身体运动信息导出单元)来分离和提取与小身体运动相关的身体运动信息。

在上述实施方式的生物计量信息监测系统100中,呼吸频率计算单元32通过使用小波变换来计算对象s的呼吸频率。然而,还可以使用任何其他方法。具体地,例如,从图12中所描述的重心轨迹gt首先获取位于在x轴方向的最靠正侧的点和位于在x轴方向的最靠负侧的点,以计算这两点的x坐标的中间值xm。如图12中所描绘的,中间值xm可以被当作是由对象s的呼吸引起的重心轨迹gt的振荡中心。随后,呼吸频率计算单元32获取重心轨迹gt在x轴方向上跨越中间值xm从负侧到正侧(或者从正侧到负侧)的移动的次数。基于所获取的次数,呼吸频率计算单元32计算由对象s的呼吸引起的重心轨迹gt的频率,即呼吸频率。

注意,在上述实施方式中,负载检测器11、12、13、14中的每一个不限于具有梁型负载单元的负载传感器。还可以使用例如力传感器。

注意,在上述实施方式中,负载检测器的数量不限于四个。还允许通过为床bd提供一个附加床脚或多个附加床脚来使用五个或更多个负载检测器。替选地,还允许为床bd中的仅三个床脚布置负载检测器。即使在使用三个负载检测器时,只要三个负载检测器没有被布置在直线上,就可以检测对象s在床bd的平面上的重心g的位置。

注意,在上述实施方式中,负载检测器11、12、13、14分别布置在附接至床bd的床脚的下端的脚轮c1、c2、c3、c4的下方。然而,对此没有限制。负载检测器11、12、13、14中的每一个可以分别设置在床bd的四个床脚之一与床bd的板之间。替选地,如果床bd的四个床脚中的每一个可以被分为上部和下部,则负载检测器11、12、13、14中的每一个可以设置在上床脚与下床脚之间。此外替选地,负载检测器11、12、13、14可以与床bd一体地形成,以构成包括床bd和该实施方式的生物计量信息监测系统100的床系统bds(图20)。注意,在本说明书中,“置于床上的负载检测器”是指这样的负载检测器:所述负载传感器中的每一个如上所述地设置在床bd的四个床脚之一与床bd的板之间,以及所述负载检测器中的每一个设置在上床脚与下床脚之间。

注意,在上述实施方式中,还允许在负载检测单元1与a/d转换单元2之间设置用于将从负载检测单元1馈送的负载信号放大的信号放大单元和/或用于从负载信号去除噪声的滤波单元。

注意,在上述实施方式的生物计量信息监测系统100中,显示单元5不限于在监视器上显示信息使得用户可以做出视觉识别的单元。例如,显示单元5可以是周期性地打印和输出对象s的呼吸状况(呼吸频率、呼吸换气量)、心跳的状态和身体状况的打印机。替选地,显示单元5可以是通过使用任何简单的视觉表达——例如使得在睡眠状态的情况下打开蓝灯、在清醒状态的情况下打开黄灯和/或在呼吸暂停状况的情况下打开红灯——来执行显示的单元。此外替选地,显示单元5可以是借助任何声音或语音将对象s的呼吸状况和身体状况报告给用户的单元。此外替选地,还允许生物计量信息监测系统100不具有显示单元5。生物计量信息监测系统100可以仅具有用于输出信息的输出端。被设置以执行显示的监测器(显示设备)等将借助输出端连接至生物计量信息监测系统100。

注意,上述实施方式的通知单元6在听觉上执行通知。然而,通知单元6可以被构造成借助例如光的闪烁或闪现来在视觉上执行通知。替选地,通知单元6可以被构造成借助振动来执行通知。此外,还允许上述实施方式的生物计量信息监测系统100不具有通知单元6。

注意,借助布线彼此连接的上述实施方式的生物计量信息监测系统100的部件可以以无线的方式彼此连接。

在上述实施方式中,通过重心位置计算单元31来测量体重。然而,可以允许在控制单元3中明显地设置体重测量单元。

在本发明的生物计量信息监测系统中,第二身体运动信息确定单元基于已经去除由第一身体运动信息确定单元确定的大身体运动的重心位置的时间变化来确定小身体运动。然而,此外或者代替地,还允许根据重心位置的移动的方向和/或基于呼吸的影响的周期性来确定小身体运动。

本发明的生物计量信息监测系统不仅可以同步地获取大身体运动信息、小身体运动信息和呼吸频率,还可以同步地获取体重、心跳和身体状况判断单元的判断结果。

本发明的生物计量信息监测系统的身体状况判断单元基于所获取的对象的身体运动信息和/或呼吸频率不仅可以判断对象是处于睡眠状态还是清醒状态,而且还可以判断对象是否处于神志失常状态。

本发明的生物计量信息监测系统的离床/在床判断单元基于所检测到的负载不仅可以判断对象是否在床上,而且还可以判断对象的体重和/或体重变化。

本发明的生物计量信息监测系统的显示单元可以将所获取的对象的身体运动信息、身体轴方向、呼吸、心跳的当前状态和时间变化显示为重心位置在床上移动的历史。

只要保持本发明的特征,本发明不限于上述实施方式。在本发明的技术构思的范围内可以想到的其他实施方式也包括在本发明的范围内。

工业适用性

根据本发明的生物计量信息监测系统,可以基于重心的位置变化来定量地测量呼吸频率和呼吸的换气量,并且可以以非侵入且非接触的方式连续地监测住院病人的呼吸状况。此外,根据本发明的生物计量信息监测系统,还可以通过仅使用放置于床下或者床上的负载检测器来同步地检测身体运动信息和呼吸信息例如呼吸频率等以及包括例如体重、心率、打鼾和从床离开或停留在床上的事件的检查项目。因此,不需要为各个项目将不同传感器附着于对象,并且不需要同步来自多个传感器的输出。此外,还可以将呼吸状况自动地输入到护士记录(重要记录)并且显示该呼吸状况,并且可以将关于呼吸状况的恶化的信息自动地发送至护士。因此,可以减少护士在夜晚检查患者的次数,可以减少护士的工作量,以及可以提高患者的睡眠质量。此外,例如,当发生医护人员未预期到的从床上掉下、呼吸停止、心脏停止或死亡时,还可以利用本发明的生物计量信息监测系统来调查其原因。

附图标记列表

1:负载检测单元,11、12、13、14:负载检测器,2:a/d转换单元,3:控制单元,31:重心位置计算单元,32:呼吸频率计算单元,33:呼吸换气量计算单元,34:心率计算单元,35:心输出量计算单元,36:身体状况判断单元,37:身体运动信息确定单元,4:存储单元,5:显示单元,6:通知单元,7:输入单元,100:生物计量信息监测系统,bd:床,bds:床系统,gt:重心轨迹,s:对象。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1