估计管腔内设备沿着管腔的管腔内路径的制作方法

文档序号:16816774发布日期:2019-02-10 14:45阅读:174来源:国知局
估计管腔内设备沿着管腔的管腔内路径的制作方法

本发明的一些应用总体上涉及自动图像处理。具体地,本发明的一些应用涉及医学成像和对这样的图像的分析。



背景技术:

医学成像用于处置和诊断疾病。存在用于生成医学图像的许多成像模态,包括视频、荧光检查、血管造影、超声、ct、mr、pet、pet-ct、ct血管造影、spect、伽马相机成像、光学相干断层摄影(oct)、近红外光谱(nirs)、振动响应成像(vri)、光学成像、红外成像、电标测成像、其他形式的功能成像、聚焦声学计算机断层摄影(fact)、光学频域成像(ofdi)。

存在用于治疗和诊断目的的多种管腔内医学设备。诸如血管内超声(ivus)探头、血流储备分数(ffr)和瞬时无波比(ifr)探头的设备通常在移动通过管腔时采集管腔内数据。



技术实现要素:

根据本发明的一些应用,包括一个或多个不透辐射部分的管腔内设备移动通过对象的管腔。通常,所述管腔是由于对象的心动周期、呼吸周期和/或对象的大的身体移动而移动的血管。例如,血管可以是冠状动脉。在所述管腔内设备移动通过所述管腔期间使用放射摄影成像设备来采集所述对象的身体中布置有所述管腔的部分的放射摄影图像的序列。例如,所述管腔内设备可以是当沿着所述管腔移动所述设备时从所述管腔内部采集数据的管腔内数据采集设备,例如,管腔内成像设备,例如,ivus探头。

计算机处理器通过分析所述放射摄影图像的序列来识别在所述管腔内设备移动通过所述管腔期间对所述管腔内设备的所述一个或多个不透辐射部分进行成像的位置。所述计算机处理器基于所识别的位置来定义在所述管腔内设备移动通过所述管腔期间布置有所述管腔内设备的所述一个或多个不透辐射部分的位置的集合。

例如,可以通过彼此叠加已经识别出所述管腔内设备的所述不透辐射部分的图像来生成组合图像,在所述组合图像中,所识别的位置形成集成的位置的集合。基于所述位置的集合来估计所述设备通过所述管腔的管腔内路径。通常,识别定义所述位置的集合的曲线,并且基于所述曲线来确定所述设备通过所述管腔的所述管腔内路径。基于所述设备沿着所述管腔的所估计的管腔内路径在输出设备上生成输出。

根据本发明的实施例的详细描述并结合附图,将更加充分地理解本发明,在附图中:

附图说明

图1是根据本发明的一些应用的在导管实验室中使用的装置的示意性图示;

图2a和图2b是示出根据本发明的一些应用的由处理器执行的算法的步骤的流程图;

图3a是根据本发明的一些应用的通过彼此叠加多幅二值图像而生成的组合图像的范例;

图3b和图3c是根据本发明的一些应用的通过将图像处理技术应用于图3a的组合图像而生成的图像的范例,以便在图3a中示出的组合图像中识别管腔内设备的不透辐射部分的位置;

图4是根据本发明的一些应用的管腔内设备通过管腔的估计的管腔内路径的范例,所述估计基于在图3c中示出的图像中识别的管腔内设备的不透辐射部分的位置;

图5a和图5b示出了根据本发明的一些应用的血管的血管造影图像(图5a)和具有如下项的血管的血管造影图像:(a)从血管造影图像中手动导出的血管的中心线,以及(b)管腔内设备通过血管的估计的管腔内路径,这两者都被叠加在血管造影图像上;

图6示出了根据本发明的一些应用的(a)从血管造影图像中手动导出的血管的中心线,以及(b)管腔内设备通过血管的估计的管腔内路径,这两者都被叠加在图3c中示出的图像上;

图7示出了根据本发明的一些应用的(a)管腔内设备通过血管的估计的管腔内路径,以及(b)使用管腔内设备通过血管的估计的管腔内路径自动导出的血管的估计的中心线,这两者都被叠加在血管的血管造影图像上。

具体实施方式

现在参考图1,图1是根据本发明的一些应用的在导管实验室中使用的装置的示意性图示。通常,使用管腔外成像设备(即,管腔外图像采集设备20,其可以包括在正被成像的对象的血管中不存在造影剂时采集荧光图像的荧光检查器)和/或以血管造影模式(当在正被成像的对象的血管中存在造影剂时)对对象进行成像。

图1额外地示出了已经通过导丝24插入到对象的管腔(例如,血管,例如,冠状动脉)中的引导导管22。已经通过引导导管并且通过导丝将管腔内设备26插入到对象的管腔(例如,对象的血管,例如,对象的冠状动脉)中。通常,管腔内设备包括不透辐射部分27(例如,不透辐射标记物)。对于一些应用(例如对于管腔内设备是ifr探头的应用),在不存在导丝24的情况下将管腔内设备插入到血管中。

对于一些应用,管腔内设备26包括管腔内数据采集设备,所述管腔内数据采集设备被配置为从对象的血管内部采集数据(例如,功能数据或图像)。对于一些应用,管腔内数据采集设备是成像探头,例如,ivus探头。对于一些应用,管腔内数据采集设备是采集除了图像以外的形式的数据的探头,例如,ffr探头和/或ifr探头。例如,数据可以包括与压力、流量、温度、电活动、氧合作用、生物化学成分或其任意组合有关的数据。

对于一些应用,管腔内设备26包括治疗设备,例如,支架、球囊(例如,血管成形球囊)、移植物、过滤器、瓣膜和/或不同类型的治疗管腔内设备。

计算机处理器28通常接收并处理图像(例如,管腔外图像或管腔内图像)。计算机处理器与存储器29通信。经由用户接口30,用户(例如,医师和/或导管实验室技师)向计算机处理器发送指令。对于一些应用,用户接口包括键盘32、鼠标34、控制杆36、触摸屏设备38(例如,智能手机或平板计算机)、触控板、跟踪球、语音命令接口和/或本领域中已知的其他类型的用户接口。通常,计算机处理器使用输出设备40来生成输出。通常,输出设备包括显示器,例如,监视器(如图1所示),并且输出包括被显示在显示器上的输出。对于一些应用,显示器包括平视显示器和/或头戴显示器,例如,google-对于一些应用,处理器在不同类型的视觉、文本、图形、触觉、音频和/或视频输出设备(例如,扬声器、耳机、智能手机或平板计算机)上生成输出。对于一些应用,用户接口30充当输入设备和输出设备两者。对于一些应用,处理器在计算机可读介质(例如,非瞬态计算机可读介质)(例如,磁盘或便携式usb驱动器)上生成输出。

应当注意,对于一些应用,超过一个计算机处理器用于执行本文所述的由计算机处理器28执行的功能。对于一些应用,超过一个管腔外成像设备与计算机处理器28一起使用。例如,第一管腔外成像设备可以用于采集管腔外图像的第一集合,并且第二管腔外成像设备可以用于采集管腔外图像的第二集合。

现在参考图2a-2b,图2a-2b是示出根据本发明的一些应用的被执行的算法的步骤的流程图。图2a示出了根据本发明的一些应用的被执行的一般算法,并且图2b示出了在图2a中示出的算法的步骤中的一些步骤内被执行的子步骤。

对于一些应用,沿着管腔(例如,血管)移动管腔内设备26。例如,可以通过将管腔内设备向前推动通过管腔或向后拉动通过管腔来将管腔内设备移动通过管腔。通常,沿着移动的血管移动管腔内设备26。例如,血管可以由于对象的心动周期、对象的呼吸周期、对象的大的身体运动和/或设备26沿着血管的移动(例如由于设备改变血管中布置有该设备的部分的形状)而经历运动。对于一些应用,血管是冠状动脉。对于一些应用,管腔内设备26是管腔内数据采集设备(例如,ivus探头),所述管腔内数据采集设备被配置为当沿着血管移动设备时在沿着血管的各个位置处从血管内部采集各个数据集。例如,在沿着血管的位置中的每个位置处采集的数据集可以是在该位置处采集的图像和/或在该位置处采集的指示该位置处的血管的功能特性的数据集(即,功能数据集)。

参考图2a,在第一步骤50中,在管腔内设备26移动通过血管期间采集放射摄影图像的序列。对于一些应用,图像的序列是在血管中不存在造影剂的情况下采集的荧光图像的序列。由于在血管中不存在造影剂,因此血管本身在该图像内基本上是不可见的,但是管腔内设备26的不透辐射部分27在该图像内是可见的。另外,其他不透辐射特征(例如,解剖特征(例如,对象的肋骨)和/或非解剖特征(例如,cabg夹或线))在属于放射摄影图像序列的图像内可以是可见的。应当注意,对于一些应用,当采集图像的序列时,将造影剂周期性地注入到血管中。

在第二步骤52中,计算机处理器28通过分析属于放射摄影图像序列的图像在属于该序列的图像中识别对管腔内设备26的(一个或多个)不透辐射部分27进行成像的位置。

参考图2b,对于一些应用,使用以下算法来执行步骤52。在第一子步骤80中,计算机处理器对属于图像的序列的图像执行预处理。例如,预处理可以包括减少静态和/或动态噪声、背景去除、背景归一化或其组合。对于一些应用,预处理包括对冠状动脉旁路移植(cabg)线、cabg夹、植入工具(例如,起搏器或除颤器)的线和/或电极和/或外部设备(例如,ecg监测器)的线和/或电极和/或外部除颤器的图像帧的检测和去除。

在第二子步骤81中,计算机处理器执行滤波,以便突出显示图像中针对管腔内设备的不透辐射部分的候选者的部分。

在第三子步骤82中,基于候选者表现出不透辐射部分的特性的程度对针对管腔内设备的不透辐射部分的候选者进行评分。

在第四子步骤83中,基于相对位置、距离、取向、视觉相似度和/或其他因素来确定具有超过阈值分数的分数的候选者是否能够彼此匹配或配对。将满足匹配和/或配对准则的候选者识别为对应于工具的不透辐射部分。

应当注意,如下文所描述的,参考步骤86并且参考图3a-3c,一些可见元件可能被错误地识别为对应于管腔内设备的不透辐射部分。通常,执行步骤86,以便考虑这样的元件。

对于一些应用,如果设备的不透辐射部分具有给定的机器可学习特性(例如,给定的形状或图案),则计算机处理器使用机器学习技术来识别设备的不透辐射部分。

对于一些应用,管腔内设备的(一个或多个)不透辐射部分包括不透辐射标记物,并且该标记物用在steinberg的us8781193中描述的技术中的一种或多种技术来识别,通过引用将其并入本文。对于一些应用,管腔内设备的(一个或多个)不透辐射部分包括细长不透辐射元件(例如,导丝的不透辐射顶端)。这样的元件可以通过检测具有高的最大特征值和低特征值的低绝对值的像素的集合来检测。对于一些应用,管腔内设备的(一个或多个)不透辐射部分使用如在klaiman的国际专利申请pct/il2015/050509(被公开为wo15/173821)中描述的用于识别图像中的对象的技术来识别,通过应用将其并入本文。

对于一些应用,使用以下步骤中的一个或多个来识别不透辐射标记物和/或细长不透辐射元件:

a.预处理:对沿着图像序列的个体图像帧(或这样的帧内的感兴趣区域(roi))进行预处理,以便促进对标记物的后续识别。这样的预处理通常包括减少静态和/或动态噪声、背景去除或其组合。对于一些应用,可以将中值滤波器、墨西哥帽形滤波器、方向墨西哥帽形滤波器和/或低通滤波器应用于个体图像帧。对于一些应用,预处理包括对cabg线、cabg夹、植入工具(例如,起搏器或除颤器)的线和/或电极和/或外部设备(例如,ecg监测器)的线和/或电极和/或外部除颤器的图像帧的检测和去除。

b.非标记物类特征的滤波:对沿着图像序列的个体图像帧(或这样的帧内的roi)进行处理,以滤除明显不是标记物的残留特征。对于一些应用,滤波包括将中值滤波器、墨西哥帽形滤波器、方向墨西哥帽形滤波器、最大稳定外部区域(mser)滤波器、类mser滤波器、hessian滤波器或其组合应用于图像帧。

对于一些应用,针对每个图像帧中的每个像素或图像帧的roi内的所有像素计算hessian特征值。通常,具有高的最小特征值的像素的局部像素集群表示图像中的“类抛物面”区并且被识别为潜在的不透辐射标记物。

c.评分:向沿着图像序列的个体图像帧(或这样的帧内的roi)中的残留特征分配描述它们是标记物的可能性的“适合性”分数(即,在最常用的标记物的情况下为“标记物”分数或“点”分数)。对于一些应用,根据上面提到的滤波来计算分数。

d.匹配:对个体图像帧(或这样的帧内的roi)中的残留特征进行分析以彼此进行匹配。例如,在旨在检测管腔内设备的两个不透辐射标记物的情况下,执行配对匹配。通常基于相对位置、距离、取向、视觉相似度和/或其他因素来执行这样的匹配。

e.检测:对于一些应用,在若干个相继的图像帧中以彼此相距相似的距离和/或彼此成相似的相对角度已经识别出一对集群(其中,这两个集群是工具标记物的强候选者)时,将该对集群确定为工具的两个标记物。

f.桥接:对于一些应用,如果检测到两个细长元件,则计算机处理器基于元件的位置和元件的端部的取向来确定元件的端部是否彼此匹配。用直线连接匹配的端部,使得两个元件被组合成单个细长元件。

通常,执行图2a的步骤52的输出是生成二值图像的集合,其中,在属于该集合的图像中的每幅图像中,想已经被识别为对应于管腔内设备的不透辐射部分的像素分配第一值,并且向尚未被识别为对应于管腔内设备的不透辐射部分的像素分配第二值。

再次参考图2a,在第三步骤54中,计算机处理器基于所识别的位置来定义在管腔内设备移动通过管腔期间布置有管腔内设备的一个或多个不透辐射部分的位置的集合。如图2b所示,对于一些应用,通过以下操作来执行第三步骤:首先通过彼此叠加在步骤52中生成的二值图像来执行生成组合图像的子步骤84。

现在参考图3a和图3b,图3a是根据本发明的一些应用的通过彼此叠加多幅二值图像而生成的组合图像(图3a)的范例,并且图3b是根据本发明的一些应用的通过对组合图像执行形态学操作而生成的图像(图3b)的范例。

图3a是通过当将具有不透辐射顶端的导丝向后拉动通过冠状动脉时采集人类对象的冠状动脉的放射摄影图像的序列来生成的。基于属于该序列的图像来生成二值图像,然后以上文描述的方式彼此叠加二值图像。如图所示,对被识别为对应于导丝的不透辐射顶端的可见元件进行成像的位置的集合是组合图像的白色部分。图3b是通过根据本发明的一些应用的在图3a中示出的组合图像内对导丝的不透辐射顶端进行成像的位置的集合执行闭合来生成的。

对于一些应用,血管由于对象的生理周期(例如,对象的心动周期或呼吸周期)而经历周期性运动。对于一些这样的应用,计算机处理器通过定义在对象的生理周期的给定阶段处对管腔内设备的一个或多个不透辐射部分进行成像的位置的集合来执行图2a的步骤54(即,定义位置的集合)。例如,计算机处理器可以接收对象的ecg信号,并且计算机处理器可以使用ecg信号来确定在心动周期的给定阶段处已经确定布置有管腔内设备的(一个或多个)不透辐射部分的位置。

对于一些应用,计算机处理器通过以下步骤来执行图2a的步骤54(即,定义位置的集合):识别管腔内设备的(一个或多个)不透辐射部分的所识别的位置的子集,使得所识别的位置的子集的每个成员都被布置在所识别的位置的子集的至少一个其他成员的给定距离内。例如,所识别的位置的子集可以被识别为使得子集的每个成员都与该子集的至少一个其他成员交叠并且/或者在该子集的至少一个其他成员的给定数量的像素内。计算机处理器然后将该子集识别为在管腔内设备移动通过管腔期间布置有管腔内设备的一个或多个不透辐射部分的位置的集合。

如上文所提及的,在图2a的步骤52中,一些可见元件可以被错误地识别为对应于管腔内设备的不透辐射部分。例如,在图3a(其示出了在已经应用了形态学操作之前的组合图像)和图3b(其示出了在已经应用了闭合之后的组合图像)中,除了具有大体上为管腔形状的白色部分92以外,还存在对应于存在于属于放射摄影图像序列的图像中的其他可见特征(例如,cabg夹或线)的其他白色部分94。通常,执行步骤54的子步骤86,以便考虑这样的元件。

在子步骤86中,计算机处理器区分在组合图像内识别出管腔内设备的(一个或多个)不透辐射部分的真实位置与错误位置。通常,计算机处理器识别在放射摄影图像序列内对不透辐射特征进行成像的、组合图像内的一个或多个位置并不对应于布置有管腔内设备的不透辐射部分的的位置,并且将所述一个或多个位置排除出所述位置的集合。

对于一些应用,计算机处理器分析放射摄影图像的序列,以便识别这样的可见特征:其(a)在放射摄影图像序列的过程中经历移动,并且(b)其移动包括基本上非周期性分量。设备在放射摄影图像序列的过程中沿着血管移动,而其他移动的可见元件可以被预期为基本上仅由于对象的身体的周期性运动(例如由于对象的心动周期或呼吸周期)而移动。因此,如果可见元件(a)在放射摄影图像序列的过程中经历移动并且(b)经历包括基本上非周期性分量的移动,则处理器将可见元件识别为对应于管腔内设备的(一个或多个)不透辐射部分。

由于管腔内设备的(一个或多个)不透辐射部分在放射摄影图像序列的过程中沿着管腔移动,因此管腔内设备的(一个或多个)不透辐射部分可以被预期为在任何特定位置处仅针对放射摄影图像序列的相对较小的部分进行成像。相比之下,由于图像内的其他可见部件(例如,cabg夹或线)可以被预期为相对于它们附接到的对象的身体的部分保持静止,因此这样的特征将会被预期为在整个放射摄影图像的序列中都保持在大致相同的位置处(除了对象的身体的部分经历的移动以外)。因此,对于一些应用,对于在该序列内识别出不透辐射元件的每个位置,计算机处理器确定哪幅图像在该位置处包括不透辐射元件。通过这种方式,计算机处理器能够区分(a)对应于管腔内设备的(一个或多个)不透辐射部分的被成像的不透辐射元件与(b)其他被成像的不透辐射元件。例如,处理器可以通过确定可见元件在该位置处被成像小于属于该序列的图像的给定百分比来将位置识别为对应于管腔内设备的(一个或多个)不透辐射部分的真实位置。

备选地或额外地,计算机处理器可以识别在放射摄影图像序列的过程中可见元件的位置的集合,当将所述位置的集合作为集成的位置的集合进行观察时,所述位置的集合具有管腔形状。由于管腔内设备在放射摄影图像序列的过程中沿着管腔移动,因此这样的位置被识别为对应于设备的(一个或多个)不透辐射部分的真实位置。

现在参考图3c,图3c示出了根据本发明的一些应用的已经对在图3b中示出的图像执行的步骤86的输出。如图所示,在应用步骤86之后,仅具有大体上为管腔形状的白色部分92出现在图像中,而其他白色部分(来自图3b的部分94)已经被去除。

再次参考图2a,在步骤56中,计算机处理器使用布置有管腔内设备的(一个或多个)不透辐射部分的位置的集合来估计设备沿着血管的管腔内路径。参考图2b,对于一些应用,通过执行识别曲线的子步骤88来执行步骤56。该曲线是通过集成位置的集合来导出的。对于一些应用,所识别的位置的中心线被识别为曲线。

如上文所描述的,对于一些应用,在识别曲线之前,计算机处理器对针对管腔内设备的不透辐射部分进行成像的所识别的位置的集合执行形态学操作。例如,可以对位置的集合执行闭合操作,并且可以基于闭合的位置集合来识别曲线。对于一些应用,闭合的位置集合的中心线被识别为曲线。在子步骤90中,基于所识别的曲线来估计设备的管腔内路径。通常,设备的管腔内路径被估计为曲线。

如上文所描述的,对于一些这样的应用,计算机处理器通过定义在对象的生理周期的给定阶段处对管腔内设备的一个或多个不透辐射部分进行成像被成像的位置的集合来执行图2a的步骤54(即,定义位置的集合)。对于这样的应用,基于位置的集合来估计设备通过管腔的管腔内路径。例如,可以被识别定义位置的集合的曲线。对于一些应用,所识别的位置的中心线被识别为曲线。

而且,如上文所描述的,对于一些应用,计算机处理器通过以下操作来执行图2a的步骤54(即,定义位置的集合):识别管腔内设备的(一个或多个)不透辐射部分的所识别的位置的子集,使得所识别的位置的子集的每个成员都被布置在在距离所识别的位置的所述子集的至少一个其他成员的给定距离内。对于这样的应用,基于所识别的位置的所识别的子集来估计设备通过管腔的管腔内路径。例如,可以识别定义位置的所识别的子集的曲线。对于一些应用,位置的子集的中心线被识别为曲线。

现在参考图4,图4是根据本发明的一些应用的管腔内设备通过管腔的估计的管腔内路径100的范例,所述估计基于在图3c中示出的图像中的管腔内设备的(一个或多个)不透辐射部分的位置的集合。通过根据上文描述的技术识别在图3c中识别的不透辐射导丝顶端的闭合的位置集合的中心线来估计在图4中示出的管腔内路径。

应当注意,对于一些应用,由计算机处理器执行算法操作,所述算法操作相当于生成组合图像(如图3a所示),对组合图像执行形态学操作(如图3b所示),识别管腔内设备的(一个或多个)不透辐射部分的真实位置(如图3c所示)和/或识别定义位置的集合的曲线。可以在没有实际显示(如图3a-3c所示的)图像的情况下和/或如图4所示的曲线的情况下执行这样的算法操作。可以由计算机处理器根据本文描述的技术基于上述正被执行的算法操作来生成输出。

参考图5a-5b,图5a-5b示出了根据本发明的一些应用的血管的血管造影图像(图5a)和具有以下项的血管的血管造影图像(图5b):(a)如使用手动输入从血管造影图像中导出的血管的中心线102,以及(b)管腔内设备26通过血管的估计的管腔内路径100,这两者都被叠加在血管造影图像上。还参考图6,图6示出了根据本发明的一些应用的(a)如从血管造影图像中导出的血管的中心线102,以及(b)管腔内设备26通过血管的估计的管腔内路径100,这两者都被叠加在图3c的组合的且经图像处理的图像上。

图5a是以放射摄影方式进行成像以便生成在图3a中示出的图像的相同血管的血管造影图像,该血管造影图像是已经在血管内部存在造影剂的情况下采集的,使得血管在图5a中是可见的。叠加在图5b中的血管造影照片上的曲线102是手动导出的可见血管的中心线(即,由用户基于可见血管导出中心线的位置)。在图5和图6两者中,都可以观察到如从血管造影图像中导出的血管的中心线102的形状与管腔内设备的估计的管腔内路径100之间存在对应关系。

应当注意,针对正在移动通过冠状动脉的导丝来估计路径100。由于冠状动脉经历实质的移动,因此导丝沿着血管的管腔内路径并不定义连续的曲线。尽管如此,如在图5b和图6中所指示的,如使用本文描述的技术估计的管腔内设备的路径并不提供管腔内设备沿其移动的管腔内路径的合理估计。因此,对于一些应用,估计的管腔内路径用于本文描述的技术中的一种或多种技术。再次参考图2a,通常,在该流程的最终步骤58中,基于基于管腔内设备的估计的管腔内路径来生成输出。通常在输出设备40(,例如,(如图1所示的)显示器)上生成输出。

对于一些应用,计算机处理器28通过以下操作来校准管腔内设备的估计的管腔内路径:确定血管的纵向部分的物理长度与对应于血管的该纵向部分的估计的管腔内路径的部分中的像素(例如,沿着血管的以mm为单位的长度、沿着估计的管腔内路径的每个像素)的数量之间的关系。应当注意,通常,与图像中的管腔内设备的管腔内路径的各个纵向部分相关联的校准因子由于血管的各个部分以相对于腔外成像设备的各个角度进行布置并且因此具有与之相关联的各个透视缩短量而变化。因此,通常,计算机处理器确定沿着估计的管腔内路径的多个局部校准因子,以便确定设备的估计的管腔内路径的各个部分的透视缩短程度。

对于一些应用,总体上与如在steinberg的us2014/0094691中描述的用于确定沿着道路图路径的局部校准因子的技术类似的技术用于估计沿着管腔内设备的估计的管腔内路径的局部校准因子,通过引用将其并入本文。

对于一些应用,基于与管腔内设备的(一个或多个)不透辐射部分相关联的已知尺寸来执行校准。例如,计算机处理器可以使用管腔内设备的不透辐射部分的已知长度和/或两个不透辐射部分之间的已知分离度。由于估计的管腔内路径是基于被成像的不透辐射部分来确定的,因此计算机处理器能够通过以下操作在沿着管腔内路径的任何给定位置处确定与该位置相关联的校准因子:识别图像(其中在该位置处出现(一个或多个)不透辐射部分)内的不透辐射部分,并且确定与图像内的(一个或多个)不透辐射部分相关联的尺寸。

对于一些应用,即使并不知晓与(一个或多个)不透辐射部分相关联的物理尺寸,计算机处理器也基于以下来确定管腔内设备的估计的管腔内路径的各个纵向部分的相对校准因子:当管腔内设备被布置在沿着估计的管腔内路径的各个位置处时给定的不透辐射部分的相对像素数量或不透辐射部分之间的分离度。

对于一些应用,基于所确定的校准因子沿着道路图图像的道路图路径放置长度尺度。

如上文所描述的,对于一些应用,管腔内设备26是管腔内数据采集设备,所述管腔内数据采集设备被配置为当沿着血管移动设备时在沿着血管的各个位置处从血管内部采集各个数据集。对于一些应用,腔内数据采集设备是成像探头,例如,ivus探头。对于一些应用,腔内数据采集设备是采集除了图像以外的形式的数据的探头,例如,ffr探头和/或ifr探头。例如,数据可以包括与压力、流量、温度、电活动、氧合作用、生物化学成分或其任意组合有关的数据。因此,根据一些应用,在沿着血管的位置中的每个位置处采集的数据集是在该位置处采集的图像和/或在该位置处采集的表示该位置处的血管的功能特性的数据集(即,功能数据集)。

对于一些这样的应用,计算机处理器28将各个管腔内数据集配准到沿着设备通过管腔的估计的管腔内路径的各个位置。例如,计算机处理器可以确定:当采集给定的管腔内数据集时,采集属于放射摄影图像的序列的放射摄影图像中的一幅放射摄影图像。计算机处理器可以基于放射摄影图像内的管腔内设备的(一个或多个)不透辐射部分的位置来导出管腔内数据集关于管腔内设备的估计的管腔内路径的位置。

对于一些应用,通过上述方式,计算机处理器将各个腔内数据共配准到沿着管腔内设备通过管腔的估计的管腔内路径的各个位置而不需要用户输入对血管管腔的形状和/或位置的指示。对于一些这样的应用,计算机处理器响应于来自用户希望执行管腔内数据集到管腔路径的共配准的单个输入来自动执行共配准。

对于一些应用,计算机处理器28使用管腔内数据集来确定沿着管腔内设备的估计的管腔内路径的各个位置处的血管直径。通过这种方式,计算机处理器可以例如识别血管内的病灶(例如,部分堵塞)关于管腔内设备的估计的管腔内路径的位置,并且/或者可以对血管执行关于设备的估计的管腔内路径的定量分析。对于一些应用,计算机处理器测量所识别的病灶的尺寸,选择工具(例如,支架或血管成形球囊)以响应于病灶而将工具放置在病灶处。

备选地或额外地,计算机处理器可以在显示器上生成血管的虚拟表示。例如,计算机处理器可以使用管腔内设备的估计的管腔内路径来提供关于血管的形状的信息,并且使用导出的血管直径来提供关于沿着血管的各个纵向位置处的血管直径的信息。

对于一些应用,计算机处理器从由计算机处理器接收的血管的血管造影图像中导出血管中心线的位置。根据相应的应用,在将管腔内设备放置在管腔内之前、在将管腔内设备布置在管腔内时,或者在从管腔内移除管腔内设备之后采集血管造影图像。例如,图5示出了如从在其上叠加中心线的血管造影图像中导出的中心线102。

应当注意,中心线102是手动导出(即,基于来自用户的输入)的。然而,对于一些应用,计算机处理器从由计算机处理器接收的血管的血管造影图像中自动导出血管中心线的位置。例如,计算机处理器可以使用主动轮廓方法,使用估计的路径曲线作为输入来导出血管中心线的位置。或者,计算机处理器可以对表示图像中的脉管系统的曲线图执行优化。

备选地或额外地,计算机处理器可以从用户接收在血管的血管造影图像上对血管中心线的位置的指示。例如,计算机处理器可以使用steinberg的us8781193中描述的技术(通过引用将其并入本文)来导出血管中心线的位置。对于一些应用,用户使用输入设备在显示的血管造影图像上指示血管中心线的位置。对于一些应用,计算机处理器基于手动输入结合自动图像处理步骤从由计算机处理器接收的血管的血管造影图像中导出血管中心线的位置。例如,可以显示自动导出的中心线,并且计算机可以允许用户在自动导出的中心线上执行局部校正。

对于一些应用,计算机处理器确定变换函数,所述变换函数用于将管腔内设备的估计的管腔内路径的形状变换为(如从血管造影图像中(手动或自动)导出的)血管中心线的形状。例如,可以使用cohen的us2010/0222671和/或steinberg的us2014/0094691中描述的技术来确定变换函数,通过引用将这两份文献并入本文。通过这种方式,计算机处理器将沿着设备通过管腔的估计的管腔内路径的各个位置配准到沿着管腔的血管造影图像内的管腔的中心线的各个位置。

对于一些应用,计算机处理器使用上述变换函数来确定沿着管腔内设备的估计的管腔内路径的各个纵向位置与沿着如从血管造影图像中导出的血管中心线的各个纵向位置之间的对应关系。如上所述,对于一些应用,计算机处理器28将各个管腔内数据集配准到沿着设备通过管腔的估计的管腔内路径的各个位置。对于一些这样的应用,在随后的步骤中,计算机处理器将各个管腔内数据集共配准到沿着如从血管造影图像中导出的血管中心线的各个纵向位置。通常,计算机处理器基于沿着管腔内设备的估计的管腔内路径的各个纵向位置与沿着如从血管造影图像中导出的血管中心线的各个纵向位置之间的所确定的对应关系来执行上述共配准步骤。因此,通过以下步骤来执行管腔内数据集到血管中心线的共配准:首先将各个管腔内数据集配准到沿着估计的管腔内路径的各个位置,然后将估计的管腔内路径配准到血管中心线。备选地,通过将各个管腔内数据集直接共配准到沿着血管中心线的各个位置来执行管腔内数据集到血管中心线的共配准。

如上所述,对于一些应用,计算机处理器将各个管腔内数据集共配准到沿着管腔内设备通过管腔的估计的管腔内路径的各个位置而不需要用户输入对管腔的路径的形状和/或位置的指示。备选地或额外地,计算机处理器将各个管腔内数据集共配准到沿着使用如上所述地估计的管腔内路径导出的自动导出的血管中心线的各个位置。对于一些应用,计算机处理器响应于来自用户的指示用户希望执行管腔内数据集到血管中心线的共配准的单个输入而使用本文所述的共配准技术来自动执行共配准。

对于一些应用,计算机处理器基于各个管腔内数据集到沿着如从血管造影图像中导出的血管中心线的各个纵向位置的共配准来识别血管内的病灶(例如,部分堵塞)关于血管中心线的位置(例如,部分闭塞)。对于一些应用,计算机处理器测量所识别的病灶的尺寸,并且任选地,选择工具(例如,支架或血管成形球囊)以响应于病灶而将工具放置在病灶处。

对于一些应用,计算机处理器28对血管执行关于血管中心线的定量分析。对于一些应用,计算机处理器在显示器上生成血管的虚拟表示。例如,计算机处理器可以使用如从血管造影图像中导出的血管中心线来提供关于血管的形状的信息,并且使用导出的血管直径来提供关于沿着血管中心线的各个纵向位置处的血管直径的信息。

对于一些应用,至少部分地通过使用如从血管造影图像中(手动或自动)导出的血管中心线作为输入来识别管腔内路径100。通常,血管中心线是结合放射摄影图像的序列上的管腔内设备的(一个或多个)不透辐射部分的所识别的位置来使用的。例如,计算机处理器可以执行最佳拟合操作,以使血管中心线最佳拟合到管腔内设备的(一个或多个)不透辐射部分的所识别的位置。

现在参考图7,图7示出了根据本发明的一些应用的具有以下项的血管的血管造影图像:(a)管腔内设备26通过血管的估计的管腔内路径100,以及(b)基于估计的管腔内路径100自动导出的血管中心线104,这两者都被叠加在血管造影图像上。

对于一些应用,计算机处理器使用管腔内设备通过管腔的估计的管腔内路径作为用于确定管腔的中心线的位置的输入。例如,计算机处理器可以接收血管的血管造影图像,并且使用管腔内设备通过血管的估计的管腔内路径作为用于确定血管中心线关于血管造影图像的位置的输入。如上文参考图5b和图6所指出的,血管的中心线的形状与管腔内设备通过血管的估计的管腔内路径之间通常存在对应关系。因此,对于一些应用,计算机处理器使用估计的管腔内路径作为用于估计血管的中心线的输入。通过这种方式,可以自动确定血管中心线而不需要来自用户的输入。如在图7中可以观察到的,自动导出的中心线提供了对血管中心线的位置的合理估计。

对于一些应用,将上述用于使用管腔内设备通过血管的估计的管腔内路径作为用于确定血管中心线关于血管造影图像的位置的输入的技术应用于多幅血管造影图像,以例如生成多幅在其上指示有血管中心线的血管造影图像。对于一些这样的应用,计算机处理器然后基于所得的中心线的质量来选择要被用于额外的处理步骤(或要显示给用户)的血管中心线中的一条血管中心线。例如,在选择中心线时,计算机处理器可以使用包括输入图像与所得的中心线之间的形状匹配形状的质量和/或基于所得的中心线的图像中的血管值的强度的标准。对于一些应用,计算机处理器允许用户选择要使用哪条中心线。

应当注意,尽管本文描述的一些技术主要是关于管腔外荧光/血管造影图像来描述的,但是本发明的范围包括将本文描述的技术应用于其它形式的管腔外图像(加以必要的修改)。

尽管本文描述的一些技术主要被描述为在动脉上执行,但是本申请的范围包括对血管系统、呼吸道、消化道、泌尿道中的任何管腔、患者体内的任何其它管腔结构或患者体内的任何其它合适的解剖结构执行类似的技术(加以必要的修改)。可以应用本文描述技术的解剖结构的范例包括冠状动脉血管、冠状动脉病灶、血管、血管病灶、管腔、管腔病灶和/或瓣膜。

本文描述的本发明的应用能够采取可从计算机可用介质或计算机可读介质(例如,非瞬态计算机可读介质)存取的计算机程序产品的形式,所述计算机可用介质或计算机可读介质提供用于由计算机或任何指令执行系统使用的或与其结合使用的程序代码。出于本说明书的目的,计算机可用介质或计算机可读介质能够是能够包括、存储、通信、传播、或传输用于由指令执行系统、装置或设备使用的或与其结合使用的程序的任何装置。所述介质能够是电子、磁性、光学、电磁、红外或半导体系统(或装置或设备)或传播介质。通常,计算机可用介质或计算机可读介质是非瞬态计算机可用介质或计算机可读介质。

计算机可读介质的范例包括半导体或固态存储器、磁带、可移动计算机软盘、随机存取存储器(ram)、只读存储器(rom)、硬磁盘以及光盘。光盘的范例包括压缩盘-只读存储器(cd-rom)、压缩盘-读/写(cd-r/w)以及dvd。

适用于存储和/或执行程序代码的数据处理系统将包括直接地或通过系统总线间接地耦合到存储器元件(例如,存储器29)的至少一个处理器(例如,计算机处理器28)。存储器元件能够包括在实际执行程序代码期间使用的本地存储器、大容量存储设备以及高速缓冲存储器,所述高速缓冲存储器提供对至少一些程序代码的临时存储,以便减少在执行期间必须从大容量存储设备检索代码的次数。所述系统能够在程序存储设备上读取创造性指令,并且遵循这些指令来执行本发明的实施例的方法。

网络适配器可以被耦合到处理器,以使得处理器能够通过介入私有网络或公共网络而变为被耦合到其它处理器或远程打印机或存储设备。调制解调器、电缆调制解调器以及以太网卡只是当前可用的网络适配器类型中的一些网络适配器类型。

用于执行本发明的操作的计算机程序代码可以用一种或多种编程语言的任何组合来编写,所述一种或多种编程语言包括面向对象的编程语言(例如,java、smalltalk、c++等)和常规的过程编程语言(例如,c编程语言或类似的编程语言)。

应当理解,在图2a-2b中示出的流程图的每个框和流程图中的框的组合都能够由计算机程序指令来实施。这些计算机程序指令可以被提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器以产生机器,使得经由计算机的处理器(例如,计算机处理器28)或其它可编程数据处理装置执行的指令创建用于实施本申请中描述的流程图和/或算法中指定的功能/动作的单元。这些计算机程序指令还可以被存储在计算机可读介质(例如,非瞬态计算机可读介质)中,所述计算机可读介质能够指示计算机或其它可编程数据处理装置以特定方式运行,使得存储在计算机可读介质中的指令产生包括实施流程图框和算法中指定的功能/动作的指令单元的制品。计算机程序指令还可以被加载到计算机或其它可编程数据处理装置上,以使得在计算机或其它可编程装置上执行一系列操作步骤,而从产生计算机实施的过程,使得在计算机或其它可编程装置上执行的指令提供用于实施本申请中描述的流程图和/或算法中指定的功能/动作的过程。

计算机处理器28通常是用计算机程序指令编程的用于产生专用计算机的硬件设备。例如,当被编程为执行参考图2a-2b描述的算法时,计算机处理器28通常充当专用的设备路径估计计算机处理器。通常,本文描述的由计算机处理器28执行的操作根据使用的存储器的技术将存储器29的物理状态(其是真实的物理物品)变换为具有不同的磁极性、电荷等。

因此,根据本发明的一些应用,提供了一种用于与管腔内设备一起使用的方法,所述管腔内设备包括一个或多个不透辐射部分并且移动通过对象的管腔,所述方法包括:

在所述管腔内设备移动通过所述管腔期间使用放射摄影成像设备来采集所述对象的身体中布置有所述管腔的部分的放射摄影图像的序列,并且

使用至少一个计算机处理器:

通过分析所述放射摄影图像的序列来识别在所述管腔内设备移动通过所述管腔期间对所述管腔内设备的所述一个或多个不透辐射部分进行成像的位置;

基于所识别的位置来定义在所述管腔内设备移动通过所述管腔期间布置有所述管腔内设备的所述一个或多个不透辐射部分的位置的集合;

基于所述位置的集合来估计所述设备通过所述管腔的管腔内路径;并且

在输出设备上生成输出。

在一些应用中,所述管腔包括经历运动的所述对象的管腔,并且估计所述管腔内路径包括估计所述设备通过经历运动的所述管腔的管腔内路径。

在一些应用中,所述方法还包括:基于所估计的管腔内路径,通过考虑在额外图像的采集与所述放射摄影图像的序列的采集之间所述对象的身体的所述部分的位置的变化来将所述对象的身体的所述部分的当前位置配准到所述对象的身体的所述部分的所述额外图像。

在一些应用中,所述方法还包括:使用所述计算机处理器通过分析多幅放射摄影图像来确定所述设备通过所述管腔的所述管腔内路径的各个部分的透视缩短程度。

在一些应用中,所述管腔包括由于所述对象的生理周期而经历周期性运动的管腔,并且定义所述位置的集合包括识别在所述对象的生理周期的给定阶段处对所述管腔内设备的所述一个或多个不透辐射部分进行成像的位置的集合。

在一些应用中,定义所述位置的集合包括:

识别对所述管腔内设备的所述一个或多个不透辐射部分进行成像的所识别的位置的子集,使得所识别的位置的所述子集的每个成员都被布置在距离所识别的位置的所述子集的至少一个其他成员的给定距离内;并且

将所识别的位置的所述子集定义为在所述管腔内设备移动通过所述管腔期间布置有所述管腔内设备的所述一个或多个不透辐射部分的所述位置的集合。

在一些应用中,所述方法还包括:使用所述计算机处理器:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;

接收对接收到的所述管腔的图像内的所述管腔的中心线的指示;并且

将沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置配准到沿着所述接收到的所述管腔的图像内的所述管腔的所述中心线的各个位置。

在一些应用中,所述方法还包括:使用所述处理器:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;并且

接收对接收到的所述管腔的图像内的所述管腔的中心线的指示;并且

估计所述设备通过所述管腔的所述管腔内路径包括结合使用所述位置的集合和所述管腔中心线来估计所述设备通过所述管腔的所述管腔内路径。

在一些应用中,所述管腔内设备包括管腔内数据采集设备,所述管腔内数据采集设备被配置为在沿着所述管腔的各个位置处采集多个管腔内数据集,所述方法还包括:将各个管腔内数据集配准到沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置。

在一些应用中,所述方法还包括:使用所述计算机处理器:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;并且

基于各个管腔内数据集到沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置的所述配准来将所述各个管腔内数据集配准到沿着接收到的图像中的所述管腔的各个位置。

在一些应用中,所述方法还包括:基于所述各个管腔内数据集到沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置的所述配准来确定沿着所述设备通过所述管腔的所估计的管腔内路径的所述各个位置处的所述管腔的直径。

在一些应用中,所述方法还包括:基于所确定的所述管腔的直径来识别沿着所述设备通过所述管腔的所估计的管腔内路径的病灶的位置。

在一些应用中,定义所述位置的集合包括通过彼此叠加已经识别出所述管腔内设备的所述不透辐射部分的图像来生成组合图像,在所述组合图像中,所识别的位置形成集成的位置的集合。

在一些应用中,定义所述位置的集合还包括:识别在所述放射摄影图像的序列内对不透辐射特征进行成像的、所述组合图像内的一个或多个位置并不对应于布置有所述管腔内设备的所述不透辐射部分的位置,并且将所述一个或多个位置排除出所述位置的集合。

在一些应用中,估计所述设备通过所述管腔的所述管腔内路径包括:识别定义所述组合图像内的所述位置的集合的曲线,并且估计所述设备通过所述管腔的所述管腔内路径沿着所识别的曲线。

在一些应用中,所述方法还包括:基于所述设备的所估计的管腔内路径来估计所述管腔的中心线的位置。

在一些应用中,估计所述管腔的所述中心线的所述位置包括:

使用所述计算机处理器,接收所述管腔的图像,在所述图像中,所述管腔是可见的;并且

估计所述中心线关于接收到的所述管腔的图像的位置,使用所述设备的所估计的管腔内路径作为用于估计所述中心线的所述位置的输入。

在一些应用中,所述管腔内设备包括管腔内数据采集设备,所述管腔内数据采集设备被配置为在沿着所述管腔的各个位置处采集多个管腔内数据集,所述方法还包括:将各个管腔内数据集配准到沿着所估计的中心线的各个位置。

在一些应用中,将各个管腔内数据集配准到沿着所估计的中心线的各个位置包括将各个管腔内数据集直接配准到沿着所估计的中心线的各个位置。

在一些应用中,将各个管腔内数据集配准到沿着所估计的中心线的各个位置包括:

将各个管腔内数据集配准到沿着所述设备的所估计的管腔内路径的各个位置;并且

将所估计的管腔内路径配准到所估计的中心线。

根据本发明的一些应用,还提供了一种装置,包括:

管腔内设备,其包括一个或多个不透辐射部分并且被配置为移动通过对象的管腔;

放射摄影成像设备,其被配置为在所述管腔内设备移动通过所述管腔期间采集所述对象的身体中布置有所述管腔的部分的放射摄影图像的序列;

输出设备;以及

至少一个计算机处理器,其被配置为:

通过分析所述放射摄影图像的序列来识别在所述管腔内设备移动通过所述管腔期间对所述管腔内设备的所述一个或多个不透辐射部分进行成像的位置;

基于所识别的位置来定义在所述管腔内设备移动通过所述管腔期间布置有所述管腔内设备的所述一个或多个不透辐射部分的位置的集合;

基于所述位置的集合来估计所述设备通过所述管腔的管腔内路径;并且

在所述输出设备上生成输出。

在一些应用中,所述管腔包括经历运动的所述对象的管腔,并且其中,所述计算机处理器被配置为估计所述设备通过经历运动的所述管腔的管腔内路径。

在一些应用中,所述计算机处理器被配置为:基于所估计的管腔内路径,通过考虑在额外图像的采集与所述放射摄影图像的序列的采集之间所述对象的身体的所述部分的位置的变化来将所述对象的身体的所述部分的当前位置配准到所述对象的身体的所述部分的所述额外图像。

在一些应用中,所述计算机处理器被配置为:通过分析多幅放射摄影图像来确定所述设备通过所述管腔的所述管腔内路径的各个部分的透视缩短程度。

在一些应用中,所述管腔包括由于所述对象的生理周期而经历周期性运动的管腔,其中,所述计算机处理器被配置为:通过识别在所述对象的生理周期的给定阶段处对所述管腔内设备的所述一个或多个不透辐射部分进行成像的位置的集合来定义所述位置的集合。

在一些应用中,所述计算机处理器被配置为通过以下操作来定义所述位置的集合:

识别对所述管腔内设备的所述一个或多个不透辐射部分进行成像的所识别的位置的子集,使得所识别的位置的所述子集的每个成员都被布置在距离所识别的位置的所述子集的至少一个其他成员的给定距离内;并且

将所识别的位置的所述子集定义为在所述管腔内设备移动通过所述管腔期间布置有所述管腔内设备的所述一个或多个不透辐射部分的所述位置的集合。

在一些应用中,所述计算机处理器被配置为:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;

接收对接收到的所述管腔的图像内的所述管腔的中心线的指示;并且

将沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置配准到沿着所述接收到的所述管腔的图像内的所述管腔的所述中心线的各个位置。

在一些应用中,所述计算机处理器被配置为:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;并且

接收对接收到的所述管腔的图像内的所述管腔的中心线的指示;

通过结合使用所述位置的集合和所述管腔中心线估计所述设备通过所述管腔的所述管腔内路径来估计所述设备通过所述管腔的所述管腔内路径。

在一些应用中,所述管腔内设备包括管腔内数据采集设备,所述管腔内数据采集设备被配置为在沿着所述管腔的各个位置处采集多个管腔内数据集,并且其中,所述计算机处理器被配置为将各个管腔内数据集配准到沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置。

在一些应用中,所述计算机处理器被配置为:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;并且

基于所述各个管腔内数据集到沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置的所述配准来将各个管腔内数据集配准到沿着接收到的图像中的所述管腔的所述各个位置。

在一些应用中,所述计算机处理器被配置为:基于所述各个管腔内数据集到沿着所述设备通过所述管腔的所估计的管腔内路径的各个位置的所述配准来确定沿着所述设备通过所述管腔的所估计的管腔内路径的所述各个位置处的所述管腔的直径。

在一些应用中,所述计算机处理器被配置为:基于所确定的所述管腔的直径来识别沿着所述设备通过所述管腔的所估计的管腔内路径的病灶的位置。

在一些应用中,所述计算机处理器被配置为通过以下操作来定义所述位置的集合:通过彼此叠加已经识别出所述管腔内设备的所述不透辐射部分的图像来生成组合图像,在所述组合图像中,所识别的位置形成集成的位置的集合。

在一些应用中,所述计算机处理器被配置为通过以下操作来定义所述位置的集合:

识别在所述放射摄影图像的序列内对不透辐射特征进行成像的、所述组合图像内的一个或多个位置并不对应于布置有所述管腔内设备的所述不透辐射部分的位置,并且

将所述一个或多个位置排除出所述位置的集合。

在一些应用中,所述计算机处理器被配置为通过以下操作来估计所述设备通过所述管腔的所述管腔内路径:识别定义所述组合图像内的所述位置的集合的曲线,并且估计所述设备通过所述管腔的所述管腔内路径沿着所识别的曲线。

在一些应用中,所述计算机处理器被配置为:基于所述设备的所估计的管腔内路径来估计所述管腔的中心线的位置。

在一些应用中,所述计算机处理器被配置为通过以下操作来估计所述管腔的所述中心线的所述位置:

接收所述管腔的图像,在所述图像中,所述管腔是可见的;并且

估计所述中心线关于接收到的所述管腔的图像的位置,使用所述设备的所估计的管腔内路径作为用于估计所述中心线的所述位置的输入。

根据发明的一些应用,还提供了一种用于与管腔内设备和放射摄影成像设备一起使用的计算机软件产品,所述管腔内设备包括一个或多个不透辐射部分并且移动通过对象的管腔,所述放射摄影成像设备被配置为在所述管腔内设备移动通过所述管腔期间采集所述对象的身体中布置有所述管腔的部分的放射摄影图像的序列,所述计算机软件产品包括非瞬态计算机可读介质,在所述非瞬态计算机可读介质中存储有程序指令,所述程序指令当由计算机读取时使得所述计算机执行以下步骤:通过分析所述放射摄影图像的序列来识别在所述管腔内设备移动通过所述管腔期间对所述管腔内设备的所述一个或多个不透辐射部分进行成像的位置;基于所识别的位置来定义在所述管腔内设备移动通过所述管腔期间布置有所述管腔内设备的所述一个或多个不透辐射部分的位置的集合;基于所述位置的集合来估计所述设备通过所述管腔的管腔内路径;并且在输出设备上生成输出。

根据本发明的一些应用,还提供了一种方法,包括:

在管腔内数据采集设备沿着管腔的部分移动的同时:

使用所述管腔内数据采集设备从沿着所述管腔的各个位置采集多个管腔内数据集;并且

使用管腔外成像设备采集所述管腔内部的所述管腔内设备的管腔外图像的序列;

使用至少一个计算机处理器将各个管腔内数据集共配准到沿着所述管腔的路径的各个位置而不需要用户向所述计算机处理器输入对所述管腔的所述路径的形状的指示。

本申请的范围包括将本文描述的装置和方法与以下申请中的任何一个申请中描述的装置和方法进行组合,通过引用将全部这些申请并入本文:

·由iddan于2008年3月9日递交的标题为“imagingandtoolsforusewithmovingorgans”的国际申请pct/il2008/000316(公布为wo08/107905);

·由iddan于2008年3月10日递交的标题为“imagingandtoolsforusewithmovingorgans”的美国专利申请12/075252(公布为us2008/0221440);

·由iddan于2009年6月18日递交的标题为“stepwiseadvancementofamedicaltool”的国际申请pct/il2009/000610(公布为wo09/153794);

·由iddan于2009年6月18日递交的标题为“stepwiseadvancementofamedicaltool”的美国专利申请12/487315(发表为us8700130);

·由steinberg递交的美国专利申请12/666879(发表为us8781193),该申请是由cohen于2009年11月18日递交的标题为“imageprocessingandtoolactuationformedicalprocedures”的pct申请no.pct/il2009/001089(公布为wo10/058398)的进入美国国家阶段;

·由cohen于2010年5月17日递交的标题为“identificationandpresentationofdevice-to-vesselrelativemotion”的美国专利申请12/781366(公布为us2010/0222671);

·由cohen于2011年5月17日递交的标题为“identificationandpresentationofdevice-to-vesselrelativemotion”的国际专利申请pct/il2011/000391(公布为wo11/145094);

·由tolkowsky于2011年9月8日递交的美国13/228229(公布为us2012/0004537),该申请是由tolkowsky于2011年7月28日递交的标题为“co-useofendoluminaldataandextraluminalimaging”的国际申请no.pct/il2011/000612(公布为wo12/014212)的延续;

·由barzelay递交的美国专利申请14/128243(公布为us2014/0140597),该申请是于2012年6月21日递交的标题为“luminalbackgroundcleaning”的国际专利申请pct/il2012/000246(公布为wo12/176191)的进入美国国家阶段;

·由steinberg于2013年12月5日递交的标题为“co-useofendoluminaldataandextraluminalimaging”的美国专利申请14/097922(公布为us2014/0094691),该申请是由steinberg于2013年5月21日递交的标题为“co-useofendoluminaldataandextraluminalimaging”的国际申请pct/il2013/050438(公布为wo13/175472)的延续;

·由tolkowsky于2013年12月27日递交的标题为“determiningacharacteristicofalumenbymeasuringvelocityofacontrastagent”的美国专利申请14/142082(公布为us2014/0121513),该申请是由tolkowsky于2013年6月26日递交的标题为“flow-relatedimageprocessinginluminalorgans”的国际申请pct/il2013/050549(公布为wo14/002095)的延续;

·由klaiman于2015年4月2日递交的标题为“imageanalysisinthepresenceofamedicaldevice”的国际专利申请pct/il2015/050372(公布为wo15/155770),该申请要求享有由klaiman于2014年4月10日递交的标题为“imageanalysisinthepresenceofamedicaldevice”的美国临时专利申请61/977891的优先权;以及

·由klaiman于2015年5月13日递交的标题为“objectidentification”的国际专利申请pct/il2015/050509(公布为wo15/173821),该申请要求享有由klaiman于2014年5月14日递交的标题为“imageanalysisinthepresenceofamedicaldevice”的美国临时专利申请61/993123的优先权。

本领域技术人员将理解,本发明不限于上文具体示出和描述的内容。而是,本发明的范围包括上文描述的各种特征的组合和子组合二者,以及本领域技术人员在阅读前述描述时将做出的现有技术中不存在的变型和修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1