负载前体药物的介孔纳米钌系统及制备和在制备治疗耐药细菌感染药物中的应用的制作方法

文档序号:16532321发布日期:2019-01-05 10:51阅读:518来源:国知局
负载前体药物的介孔纳米钌系统及制备和在制备治疗耐药细菌感染药物中的应用的制作方法

本发明属于抗菌药物技术领域,特别涉及一种负载前体药物和mos2的介孔纳米钌系统及其制备方法和在制备治疗耐药细菌感染药物中的应用。



背景技术:

由细菌感染引起的传染性疾病会导致人员死亡,造成巨大的医疗和经济负担。目前,治疗细菌感染广泛使用抗生素。然而,抗生素的过度使用导致耐药细菌的快速出现,经常面临无药可治的细菌肆虐,不仅降低治疗效果而且导致高死亡率。大多数持续性细菌感染以及耐药性的产生均与在活体组织上生物膜的形成有关。生物膜是微生物存在于胞外聚合物质基质(eps)中的固着三维细菌群落,eps中的细菌受到高度保护而免受外源性物质的影响,从而导致传统抗生素的失活并引发极度抗性。因为一般的抗菌剂或抗菌纳米颗粒很难渗透无法达到治疗效果,最近研究发现,纳米颗粒的药物递送显示出解决这个问题的潜力。药物递送系统通过可控触发靶向递送到达感染部位,达到增强局部杀菌浓度的同时也消除药物的过早释放,最终达到高速有效地分散顽固的生物膜,灭活嵌入在eps中细菌的功效。

在众多载药纳米材料中,最有发展前景的是介孔纳米载体。其中,介孔二氧化硅由于良好的生物相容性、结构稳定及易修饰的表面,被用于各种药物的传递和控制释放。一直以来,纳米钌(runps)作为催化剂应用于电化学领域,但本课题组的前期研究发现,不同形貌的runps在负载药物上也具有良好的能力,其能够有效负载抗癌药物靶向进入到细胞内,而且可以在运输过程中保护药物,免受体内蛋白的吸附。此外,研究还发现runps具有良好的光热效应,为抗肿瘤提供了光热治疗效果。现有技术中有关纳米钌作为药物的载体,在负载和输送药物过程中,主要存在负载效率低、未到达靶标而过早释放的问题。

因此,设计合成一种具有介孔结构的runps,将其光热性能以及大孔容结合起来,然后将药物导入其开孔中,在其表面包裹可以对靶点微环境作出响应的可降解分子,构建一种选择性响应的靶向递送抗菌系统,对于解决上述问题具有重要的作用。透明质酸作为无毒并可被生物降解的细胞外基质组分,它可以与癌细胞中过表达cd44特异性相互作用并被透明质酸酶(hyal)降解,因此被广泛用作癌症治疗的靶向封端剂。

本发明提供一种介孔钌纳米材料,可以用于负载前体药物,能携带抗菌药物到达靶向部位释放抗菌药物,而且能发挥光热协同抗菌效果。至今未发现有关介孔钌纳米负载前体药物和光热协同用于制备具有治疗细菌感染尤其是耐药细菌感染药物的报道。



技术实现要素:

为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种负载前体药物和mos2的介孔纳米系统的制备方法。

本发明方法通过向十六烷基三甲基溴化铵(ctab)溶液中加入三氯化钌和硼氢化钠,制备新型介孔纳米钌,这种介孔纳米钌孔径均匀,稳定性高,分散性好,具有良好的生物相容性。介孔纳米钌负载前药抗坏血酸(aa),然后用透明质酸(ha)进行包封,将具有过氧化物酶样活性的mos2纳米粒子预包被能够靶向革兰氏阳性以及革兰氏阴性细菌的喹诺酮类抗生素(如环丙沙星(cip)),然后将其包被在介孔纳米钌的表面,构建了靶向细菌感染部位的纳米系统aa@ru@ha-mos2nps。

本发明另一目的在于提供上述方法制备的负载前体药物和mos2的介孔纳米钌系统。本发明的介孔纳米钌系统能够靶向细菌,特别是耐药细菌感染部位,且能特异性响应靶点微环境。

本发明再一目的在于提供上述负载前体药物和mos2的介孔纳米钌系统在制备治疗耐药细菌感染药物中的应用。

本发明的靶向细菌感染部位的纳米系统aa@ru@ha-mos2nps到达感染部位以后,封端剂ha会被目标细菌分泌的透明质酸酶hyal降解,随后释放包封的aa,由粘附于细菌细胞膜的mos2直接催化转化为有害的·oh。与此同时,介孔钌纳米发挥优异的nir光热效应,从而进行化学和光热协同抗菌作用。靶向递送抗菌系统不仅对耐药性革兰氏阳性和革兰氏阴性细菌提供快速有效的杀伤效果,而且可以有效地分散顽固的生物膜,使得嵌入的细菌灭活,在生物医学等中显示出巨大的应用前景。

本发明的目的通过下述方案实现:

一种负载前体药物和mos2的介孔纳米系统(aa@ru@ha-mos2nps)的制备方法,包括以下步骤:(1)把三氯化钌和硼氢化钠加入十六烷基三甲基溴化铵(ctab)溶液中,制备介孔纳米钌(runps);负载前药抗坏血酸(aa),用透明质酸(ha)进行包封,得到包封介孔纳米钌(aa@ru@hanps);(2)将mos2纳米粒子预包被喹诺酮类抗生素;将其包被在包封介孔纳米钌(aa@ru@hanps)表面,得到介孔纳米系统(aa@ru@ha-mos2nps)。

本发明方法首先制备得到新结构的介孔纳米钌,其孔径均匀,稳定性高,分散性好,具有良好的生物相容性。

本发明采用能够靶向革兰氏阳性以及革兰氏阴性细菌的喹诺酮类抗生素进行预包被(优选为环丙沙星(cip))。

进一步的,本发明负载前体药物和mos2的介孔纳米系统(aa@ru@ha-mos2)的制备方法包括以下具体步骤:

(1)把三氯化钌、硼氢化钠加入十六烷基三甲基溴化铵溶液中,加热搅拌反应a,得到介孔纳米钌(runps);将其与前药抗坏血酸(aa)在pbs溶液中混合搅拌b,得到负载前药抗坏血酸(aa)的介孔纳米钌(aa@runps);

(2)将负载前药抗坏血酸(aa)的介孔纳米钌加入peg水溶液中搅拌c,加入1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(edc)和n-羟基琥珀酰亚胺(nhs)活化,再加入透明质酸(ha)搅拌d,得到包封介孔纳米钌(aa@ru@hanps);

(3)将mos2纳米片(mos2nps)和喹诺酮类抗生素分散水溶液中,搅拌e,得到功能化的mos2纳米;

(4)把功能化的mos2纳米加入包封介孔纳米钌(aa@ru@hanps)水溶液中,搅拌f,得到负载前体药物和mos2的介孔纳米系统(aa@ru@ha-mos2nps)。

步骤(1)中,所用三氯化钌、十六烷基三甲基溴化铵的质量比优选为1:50~1:100。

步骤(1)中,所用三氯化钌、硼氢化钠的摩尔比优选为1:1~1:2。

步骤(1)中,所用介孔钌纳米、抗坏血酸的质量比优选为1:2~1:3。

步骤(2)中,所用负载前药抗坏血酸(aa)的介孔纳米钌、peg、透明质酸的质量比优选为1:(2~3):(2~3)。

步骤(3)中,所用mos2纳米片、喹诺酮类抗生素的质量比优选为2:1~3:1。

步骤(1)中,所述加热搅拌a的温度优选为70~85℃,更优选为80℃。

步骤(1)中,所述的十六烷基三甲基溴化铵溶液优选先用碱调节ph值为9~11,更优选为采用氢氧化钠调整。

步骤(1)中,更优选为将十六烷基三甲基溴化铵溶液预热,加入三氯化钌溶液,保温搅拌反应g,再加入硼氢化钠,保温继续搅拌反应h,得到介孔纳米钌。

步骤(1)中,所述保温搅拌反应g的时间优选为1.5h~2.5h,更优选为2h。

步骤(1)中,所述保温继续搅拌反应h的时间优选为1~3h,更优选为2h。

步骤(1)中,所用抗坏血酸优选为l-抗坏血酸。

步骤(1)中,所述搅拌b的时候优选为22~26h,更优选为24h。

步骤(1)中,所述pbs溶液的ph优选为7.4。

步骤(1)中,所述得到负载前药抗坏血酸(aa)的介孔纳米钌优选通过离心分离、洗涤得到。所述离心优选为在10000~12000rpm离心10~15min。所述洗涤优选为采用pbs洗涤。

步骤(2)中,所述搅拌c可为搅拌过夜,优选为8~12h。

步骤(2)中,所述活化的时间优选为3~5h。

步骤(2)中,所述搅拌d可为搅拌10~12h,优选为12h。

步骤(2)中,所用负载前药抗坏血酸(aa)的介孔纳米钌、edc、nhs的质量比为1:1.5:1.5~1:2:2。

步骤(2)反应优选在24~26℃室温下进行。

步骤(2)中,所述得到包封介孔纳米钌a(ru@ha)可通过离心分离、pbs洗涤得到。所得的包封介孔纳米钌a(ru@ha)重悬于水中,得到ru@ha水溶液。

步骤(3)中,所述搅拌e的时间优选为20~25h,更优选为24h。

步骤(3)中,所述得到功能化的mos2纳米优选通过离心分离、洗涤得到。所述离心优选在8000~10000rpm离心10~15min。

步骤(3)中,所述mos2纳米片可通过常规方法制备得到,如将mos2粉末在少量n-甲基吡咯烷酮水溶液润湿下进行研磨,再分散于n-甲基吡咯烷酮水溶液超声处理,离心后重复研磨及超声、离心多次,最终得到mos2纳米片。所述超声的功率优选为100w。

步骤(4)中,所述包封介孔纳米钌(aa@ru@hanps)水溶液的浓度优选为2mm。

步骤(4)中,所述搅拌f的时间优选为12~24h。所述搅拌后优选静置、离心分离、洗涤,得到目标产物。所述离心优选在8000~10000rpm离心10~15min。

本发明还提供上述负载前体药物和mos2的介孔纳米钌系统在制备治疗耐药细菌感染药物中的应用。

本发明介孔纳米钌系统具有高效的抗菌效果、稳定的光热性能,及良好的生物相容性,而且可通过化学-光热协同作用,增强抗菌活性;其充分利用介孔纳米钌、透明质酸及mos2三者特性,使其快速靶向并特异性分布,并通过细菌微环境特异性响应控制前药的释放,从而达到快速抑制耐药细菌治疗细菌感染的目的,可应用于制备具有识别诊断并治疗细菌感染药物中。

本发明的靶向细菌感染部位的纳米系统aa@ru@ha-mos2nps到达感染部位以后,封端剂ha会被目标细菌分泌的透明质酸酶hyal降解,随后释放包封的aa,由粘附于细菌细胞膜的mos2直接催化转化为有害的·oh。与此同时,介孔钌纳米发挥优异的nir光热效应,从而进行化学和光热协同抗菌作用。靶向递送抗菌系统不仅对耐药性革兰氏阳性和革兰氏阴性细菌提供快速有效的杀伤效果,而且可以有效地分散顽固的生物膜,使得嵌入的细菌灭活,在生物医学等中显示出巨大的应用前景。

本发明首次以新型介孔钌纳米粒子(runps)作为纳米载体,负载前药抗坏血酸(aa),然后利用透明质酸(ha)包封,预包被了喹诺酮类抗生素的二硫化钼(mos2)作为靶向酶催化剂结合在其表面,构建了多功能靶向递送抗菌系统aa@ru@ha-mos2nps。本发明递药系统通过对细菌微环境进行响应性释放药物并利用化学-光热协同治疗耐药性细菌感染,有效克服了药物的过早释放以及在生物膜中难渗透的缺点,而且通过协同治疗增强了抗耐药细菌的活性。

本发明采用透明质酸包封通过与细菌微环境中透明质酸酶的特异性反应不仅增强了治疗体系的靶向性和生物相容性而且在透明质酸酶水解作用下实现了药物在细菌感染区域的控制释放。

本发明采用喹诺酮类抗生素预包被的mos2纳米片能有效的靶向细菌表面,粘附于细菌细胞膜表面,催化产生高毒性的·oh,有效提高了杀死耐药细菌的能力。

和现有技术相比,本发明的优点是兼具了药物载体和治疗功能,对细菌微环境特异性响应并控制前体药物释放的功能,以及特异性靶向粘附细菌细胞膜产生·oh的治疗功能,从而在化学-光热的联合作用下发挥了快速杀死耐药细菌,分散生物膜的功能。其中对细菌微环境的特异性响应功能是因为本发明中包含的ha能特异性的与hyal发生水解作用,此外,特异性粘附细菌细胞膜产生·oh的靶向和治疗功能是因为本发明中包含了喹诺酮类抗生素包被的mos2纳米片能靶向耐药细菌细胞膜并催化aa产生·oh,因此使得最终合成的功能化介孔纳米钌不仅可以特异性靶向细菌,而且缓释作用和联合治疗作用下达到高效治疗细菌感染的效果。

本发明相对于现有技术,具有如下的优点及有益效果:

(1)本发明提供了一种多功能介孔钌纳米抗菌系统,能够通过细菌微环境特异性响应控制释放前体药物,增强药物在细菌感染部位的积累,并且通过mos2纳米片的催化作用产生高毒性·oh联合杀死耐药细菌治疗细菌感染。

(2)本发明首先制备得到一种新型的介孔纳米钌,其不仅具有通过介孔结构负载抗菌药物的载体功能,还可以利用其良好的光热作用具有协同抗菌功能。

(3)本发明制备的新型介孔纳米钌、透明质酸修饰的介孔纳米钌和透明质酸-mos2纳米片修饰的介孔纳米钌,直接将透明质酸或mos2纳米片与新型介孔纳米钌耦合,制备过程及产物体系简单,产品可直接保存和使用,且制备方法简便。

(4)本发明制备的载抗菌药物的介孔纳米钌系统aa@ru@ha-mos2nps,具有良好的稳定性和靶向性,可以靶向到细菌的细胞膜,从而增加与细菌的相互作用,抑制生物膜的形成,从而达到更高的抗菌活性。本发明与现有技术相比,在技术上有检测其稳定性以及靶向性。

附图说明

图1为介孔纳米钌(runps)、mos2纳米片(mos2nps)以及功能化介孔纳米钌(aa@ru@ha-mos2nps)的透视电镜图。

图2为样品体外模拟透明质酸酶响应释放前药和催化产生·oh效果图。

图3为样品的体外光热效果图。

图4为样品的体外抗菌实验mtt和平板效果图。

图5为样品分散耐药细菌生物膜效果图。

图6为功能化介孔纳米钌(aa@ru@ha-mos2nps)体内治疗耐药细菌感染图。

具体实施方式

下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。

下列实施例中涉及的物料均可从商业渠道获得。

下列实施例中选择多种购自广东省菌种保藏中心的菌株,包括耐甲氧西林金黄色葡萄球菌(atcc16404)、耐药性绿脓杆菌(atcc27853)。

实施例1功能化介孔纳米钌合成实验

(1)将0.1~0.2g十六烷基三甲基溴化铵(ctab)溶于46ml水中在室温下搅拌,然后加入7mm氢氧化钠至ph为9,待搅拌溶解后将溶液升温至80℃。其次,边搅拌边往混合溶液中滴加2ml的rucl3(1mg/ml),继续在80℃搅拌反应2h。最后,滴加5.0~6.0ml硼氢化钠(nabh4,0.02m),继续搅拌。反应完成后,收集产品,得到介孔runps。在其介孔中负载aa,即将介孔runps(20mg)和aa(40~60mg)在pbs溶液(ph=7.4)中室温下搅拌24h,离心并用pbs洗涤数次即可得到aa@ru。

(2)aa@ru@hanps的合成方法:先将40~60mgpeg溶于10ml水中备用,其次将上述得到的介孔runps配制成10mg/ml溶液,取2ml加入上述peg水溶液中,在室温下搅拌过夜。之后,将所得溶液在室温下用edc(30~40mg)和nhs(30~40mg)活化3~4h后,加入40~60mg的ha在室温下搅拌12h,16000rpm离心10min,收集沉淀并用pbs洗涤3次后重悬,即得到aa@ru@hanps水溶液。

(3)mos2的合成方法:取50mg的mos2粉末分散在装有1ml50mg/ml的n-甲基吡咯烷酮(nmp)的研钵中,研磨30min后转移到3ml的nmp溶液中,冰浴中超声2h,离心10min,将上清液倒出继续研磨,然后再将其转移超声离心,用1.5ml的nmp溶液将其重悬,最后在冰浴中超声2h后在8000rpm下离心15min,将上清液取出用0.2μm的过滤器过滤,收集起来即得到mos2纳米片(mos2nps)。在mos2nps表面上涂覆靶向分子环丙沙星(cip),简单地说,就是将20mg的cip溶解在上述所得的mos2纳米片(40~60mg)溶液中,然后在室温下搅拌24h,离心洗涤后重悬,即得到mos2-cip水溶液。

(4)aa@ru@ha-mos2nps的合成方法:将上述所得mos2-cip水溶液在不断搅拌下滴加到10mlaa@ru@hanps(5mm)水溶液中,继续搅拌12~24h,得到aa@ru@ha-mos2nps,室温下放置24h,副产物和未反应的化学物质借助于离心以及反复洗涤除去,真空干燥。

对上述制备得到的runps、mos2nps和aa@ru@ha-mos2nps进行透视电镜观察,结果见图1。

实施例2:功能化介孔纳米钌体外模拟催化产生·oh和透明质酸酶响应前药释放实验

(1)取适量的h2o2,通过过氧化物酶(tmb,3,3',5,5'-四甲基联苯胺,为过氧化酶的底物,在过氧化物酶的催化下,会产生可溶性蓝色产物。该蓝色产物通常可以测量其在652nm处的吸光度检测)的催化氧化来研究aa@ru@ha-mos2nps的过氧化物酶样活性。常温下,使用12μg/mlaa@ru@ha-mos2nps,10mmh2o2和1mmtmb在10mm的pbs(ph=4.0)溶液,以时间过程模式进行动力学测量。使用lineweaver-burk曲线计算表观动力学参数:1/v=(km/vmax)/[s]+1/vmax,其中v是初始速度,vmax是最大反应速度,km是michaelis常数,[s]为底物浓度,结果见图2。

(2)取12μg/mlaa@ru@ha-mos2nps分别加入到mdrs.aureus,mdrp.aeruginosa,透明质酸酶hyal以及ph为7.4的pbs缓冲液中,在12h内每隔一小时,通过紫外检测aa@ru@ha-mos2nps中的aa在溶液中总的累积量,据此判断其释放情况。

实验结果:通过h2o2的michaelis-menten曲线,检测到功能化介孔纳米钌的酶动力学参数米氏常数(km)和最大初始速度(vmax)分别为0.2671×10-3m和7.948×10-8m/s。结果表明催化反应过程遵循常规酶动力学调节,aa@ru@ha-mos2nps具有良好催化活性。随后,通过荧光探针检测aa@ru@ha-mos2nps纳米载体催化aa产生·oh显示,与aa@ru@ha-mos2nps一起孵育的aa溶液,荧光强度明显到增强,表明有大量·oh的生成,由此表明aa@ru@ha-mos2nps纳米具有通过产生·oh杀死耐药细菌的能力,结果见图2。

aa@ru@ha-mos2nps纳米在pbs缓冲液中释放出的aa可以忽略不计。当透明质酸酶hyal或细菌存在时,可以检测到aa的显著释放,累计释放超过80%。这些结果表明ha可以对介孔内的药物进行有效的封堵并可在hyal存在下释放负载的药物,因此,aa@ru@ha-mos2nps可以用来负载aa并在细菌触发下进行控制释放。

实施例3:功能化介孔纳米钌的体外光热效果检测

将功能化介孔纳米钌配制不同浓度(0~20μg/ml)的分散液,分别将其置于1ml的ep管中,使用不同功率(0.5~1.0w/cm2)的808nm的近红外激光进行照射,通过数显温度计flire40近红外成像系统进行成像,记录不同时间间隔的温度,结果见图3。

实验结果:在不同功率的808nm激光照射不同浓度aa@ru@ha-mos2nps纳米,溶液的温度变化结果表明,aa@ru@ha-mos2nps纳米的光热效应呈激光功率强度和浓度依赖性。当功率强度为0.5w/cm2,浓度为4μg/ml,照射7min后时温度达到43℃,而当浓度为12μg/ml时,溶液温度达到52℃。同时光热稳定性检测显示aa@ru@ha-mos2nps溶液(12μg/ml)在808nm(0.5w/cm2)六轮激光开/关闭合循环情况下溶液温度的变化情况相同,表明其具有良好的光热效应以及近红外光热稳定性,可以作为光热剂用于光热协同化疗治疗细菌感染。

实施例4:功能化介孔纳米钌的体外抑制耐药细菌实验

(1)mtt测试方法

取对数期的耐药性金黄色葡萄球菌和绿脓杆菌(mdrs.aureus和p.aeruginosa)分别在lb培养基中在37℃下在摇床上以200rpm培养6h。然后将细菌用lb培养基稀释至浓度为106cfu/ml。向96孔板的每个孔中加入被稀释后的细菌(10μl,106cfu/ml)。再分别加入10μl浓度为12μg/ml的两种样品(ru@ha-mos2,aa@ru@ha-mos2)溶液,同时分为不加光照和光照组,光照组为用808nm近红外激光仪照射7min,并设置阴性对照为等体积pbs缓冲液,加样组和对照组均设4个复孔置于37℃,孵育24h,然后加入mtt(5mg/ml)20μl/孔,在空气振荡培养箱中继续培养4h,然后加入三联溶液100μl孔,采用振荡器使其混合均匀,然后继续在37℃下培养,放置过夜。用酶标仪在570nm波长下测定od值。计算细胞存活率。

细菌存活率(%)=加药孔的实际od值/阴性对照孔的od值;

细菌抑制率(%)=100%-细胞存活率,结果见图4。

实验结果:mtt实验结果表明,实验组三组的杀菌效率均具有浓度依赖性,aa@ru@ha-mos2nps+nir抗菌效果最好。随着浓度的增加,mdrs.aureus和p.aeruginosa的存活度明显降低,说明其具有浓度依赖性,在浓度为12μg/ml时,有光照的aa@ru@ha-mos2nps对mdrs.aureus和p.aeruginosa的抑制率分别达到了89.2%和81.9%,表明aa@ru@ha-mos2nps纳米在激光照射下,能有效地杀死耐药细菌。

(2)平板稀释法抑制细菌生长实验

利用琼脂糖平板细菌菌落生长数量直观的观察分别在nir,ru@ha-mos2+nir,aa@ru@ha-mos2和aa@ru@ha-mos2+nir条件下的抑菌效果。未作任何处理的作为对照组。取对数期(od600=0.5)的细菌,用lb培养基稀释至1.0×107cfu/ml。取20μl稀释后的菌液加入到lb培养基中,然后均匀的铺在平板上等培养基凝固后,再将样品(12μg/ml)涂布在培养基上,需要激光照射的组则采用808nm激光照射7min,然后在37℃下培养60min(每组至少三次重复)。通过观察菌落数来判断抗菌活性。观察实验结果见图4。

实验结果:经过nir照射的组与对照组相比没有明显差异,观察到存活菌落,表现出可忽略的抗菌作用;单独aa@ru@ha-mos2处理的平板菌落数量低于ru@ha-mos2+nir,说明化疗抗菌效果高于光热治疗;而在含有aa@ru@ha-mos2并用nir照射的平板上则观察到明显的抗菌效果,平板上菌落数量明显少于其他组,几乎完全阻止了菌落的形成。上述结果均表明,aa@ru@ha-mos2+nir具有最强的协同抗菌作用。

(3)破坏耐药细菌生物膜实验

将含有对数生长期的mdrs.aureus的lb培养基置于24孔板中,在37℃下在空气中孵育48h,培养基每24h更新一次。用pbs缓冲液洗涤除去未结合的细菌和培养基。生物膜的分散测定是将获得的mdrs.aureus生物膜分别与不同纳米组分进行共孵育12h,然后用pbs(1.0ml)冲洗,残留的生物膜用1.0%的结晶紫染色测定,将染色后的生物膜漂洗3次,然后加入乙醇(1.0ml),残余的生物膜通过用多功能酶标仪测定590nm的吸光度来检测。而为了抑制生物膜形成,则是分别采用不同组分处理s.aureus,将它们在37℃下共温育48h,生成的生物膜用结晶紫染色并用上述方法定量。其中加入生理盐水的组分作为空白对照,而不同组分又分为不加光照以及光照组,光照组为用808nm近红外激光仪照射7min,结果见图5。

实验结果:结果显示,单独的nir照射对生物膜几乎不起分散消除作用,生物膜仍然一体地固定在孔的表面。ru@ha-mos2+nir和aa@ru@ha-mos2则分别可以通过去除大约26%以及51%的生物膜质量,仅引起生物膜破坏的中等效应,还能观察到其余清晰的生物膜谱带,而aa@ru@ha-mos2+nir则去除了约91%的生物膜,显示出最大的生物膜破坏效果,生物膜几乎完全根除。因此,aa@ru@ha-mos2纳米体系可以有效地分散形成的生物膜并抑制新的生物膜的形成。

实施例5:功能化介孔纳米钌的体内治疗耐药细菌感染实验

取5只6~8周龄,均重为32.0g左右的雌性昆明小鼠进行伤口造模,伤口直径为3cm,然后分别将含有1×108cfu的mdrs.aureus和p.aeruginosa的pbs悬浮液(100μl)分别置于小鼠的左右侧伤口部位来诱发细菌感染。手术后每天用不同组分在固定时间处理伤口区域,未处理组作为对照,不同组分又分为不加光照以及光照组,光照组为用808nm近红外激光仪照射植入部位7min。用手机拍摄来自五个不同组的小鼠伤口的照片观察其感染情况。在此期间,同时每天在伤口区域进行取样并将其在lb琼脂板上培养检测抗菌活性,结果见图6。

实验结果:第四天时,对照组伤口仍能观察到红斑和水肿,而且形成了生物膜。只用nir照射处理的组伤口处也类似,而用单独的ru@ha-mos2+nir和aa@ru@ha-mos2处理组伤口也都能观察到不同程度的腐烂,说明其对细菌感染抑制作用较弱,而用aa@ru@ha-mos2+nir作用的组则没有观察到明显的溃疡现象,甚至观察到结痂的症状,其左右伤口大小约减少了明显减小,表明其可有效预防伤口感染,促进创面愈合过程。在第十天时,用aa@ru@ha-mos2+nir处理的小鼠的伤口完全愈合并开始在伤口周围长出毛发。而用其他几组处理的小鼠的伤口未完全愈合,个别还能观察到轻微的红肿。进一步通过标准细菌培养方法计数在每次治疗时收集的各组伤口的细菌。计数结果显示aa@ru@ha-mos2+nir处理的组,在第六天的时候细菌数量显著降低,第十天的时候几乎没有发现细菌菌落,表明从感染中完全恢复,这与体内实验结果一致。这些结果表明,本发明的纳米体系不仅可以有效地杀灭浮游细菌,根除抗生素耐药性生物膜,还可以有效抵抗伤口感染。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1