聚氨酯/纳米金刚石骨修复复合材料及其制备方法与流程

文档序号:21404149发布日期:2020-07-07 14:37阅读:437来源:国知局
聚氨酯/纳米金刚石骨修复复合材料及其制备方法与流程

本发明属于抗菌复合材料领域,涉及一种生物医用复合材料,具体涉及聚氨酯/纳米金刚石骨修复复合材料及其制备方法。



背景技术:

对于创伤、感染、肿瘤以及发育异常等原因引起较大的骨缺损,单纯依靠骨组织自身的修复无法自然愈合,就需进行骨移植手术治疗。聚氨酯(pu),由多元醇,异氰酸酯和扩链剂制备而成。其柔韧性高,磨损大,强度好,耐化学性好和足够的生物相容性,但是机械性能不足和不具备抗菌性等缺点限制了其应用。

比如之前有文献报道了使用无毒成分通过发泡方法合成了脂肪族聚氨酯(pu)支架。此外,将羟基磷灰石(ha)颗粒引入该过程中以增加pu基质的生物活性。模拟体液测试表明,掺入40wt%ha颗粒显着促进了pu支架的生物矿化能力。在pu/ha复合物上也观察到种子间充质干细胞的增强的体外增殖和成骨分化。但是,pu/ha复合材料却不具备抗菌性能,影响了人工植入物的寿命,限制了其在临床上更好的应用。(yangw,bothsk,zuoy,etal.biologicalevaluationofporousaliphaticpolyurethane/hydroxyapatitecompositescaffoldsforbonetissueengineering[j].journalofbiomedicalmaterialsresearchparta,2015,103(7):2251-2259.)

再有研究报道合成了聚氨酯丙烯酸酯/甲基丙烯酸羟乙酯接枝的纳米金刚石复合材料(apua/nd-hema)。结果表明:apua和nd-hema之间适当的界面相互作用,使结晶度增加,同时在具有聚氨酯优异性的基础上,提高了其机械性能;使用人类骨肉瘤细胞(mg-63细胞系)的复合材料的细胞毒性评估显示对生物相容性无不良影响。但是,其制备的复合材料无法抵御细菌感染,不利于实际应用于骨修复领域。(alishirim,

shojaeia,abdekhodaiemj.biodegradablepolyurethaneacrylate/hema-graftednanodiamondcompositeswithboneregenerativepotentialapplications:structure,mechanicalpropertiesandbiocompatibility[j].rscadvances,2016,6(11):8743-8755.)



技术实现要素:

本发明提供了一种抗菌聚氨酯/纳米金刚石复合材料的制备方法,应用于骨修复领域,增强其机械性能,并抵御细菌感染,延长植入物寿命。

实现本发明的目的技术解决方案是:

聚氨酯/纳米金刚石骨修复复合材料及其制备方法的制备方法,包括如下步骤:

步骤1:使用3-溴丙基三甲氧基硅烷偶联剂在纳米金刚石表面引入4-乙烯基吡啶和甲基丙烯酸羟乙酯的共聚物,然后加入溴乙基甲基丙烯酸酯(bema),最后加入溴己烷进行季铵化反应24小时后离心干燥得到季铵盐改性纳米金刚石;

步骤2:首先在氮气保护下,往聚ε-己内酯二醇中加入六亚甲基二异氰酸酯合成预聚物,然后逐滴加入封端剂甲基丙烯酸羟乙酯合成聚氨酯;

步骤3:将季铵盐改性纳米金刚石与两种丙烯酸hema和egdma的混合稀释液,和引发剂分散均匀,形成混合液;然后混合液和聚氨酯通过引发剂共聚,分散均匀,然后除气泡,注入模具中,固化成型。

进一步的,步骤1中,硅烷偶联剂加入量为纳米金刚石质量的5%,共聚物中4-乙烯基吡啶和甲基丙烯酸羟乙酯的摩尔比例是9:1,共聚物与纳米金刚石的质量比为1:1,溴乙基甲基丙烯酸酯为纳米金刚石质量的30%,溴己烷加入量为纳米金刚石质量的30%。

进一步的,步骤2中,原料的摩尔比聚ε-己内酯二醇:六亚甲基二异氰酸酯:甲基丙烯酸羟乙酯=1:2:2。

进一步的,步骤2中,合成预聚物反应温度为85℃。

进一步的,季铵盐改性纳米金刚石为聚氨酯质量的0.5%-1.5%,稀释剂中hema和egdma的质量比为70:30稀释剂的加入量为聚氨酯质量的30%。

进一步的,步骤3中,引发剂为偶氮二异丁腈,为季铵盐改性纳米金刚石与聚氨酯混合物质量的1%。

进一步的,步骤3中,固化成型的温度为80℃,时间为3小时。

本发明与现有技术相比,其显著优点:

1、本发明的复制备方法简单操作,高效易行。

2、本发明制得的复合材料,相对于聚氨酯本身,纳米金刚石的加入使复合材料的机械性能和亲水性提高。同时赋予了聚氨酯抵御细菌的能力,有应用于骨修复领域的前景。

附图说明

图1为预聚物及不同复合材料(a)ipu,(b)apu,(c)apu/0.5%qnd,(d)apu/1%qnd,(e)apu/1.5%qnd的红外谱图。

图2为(a)apu/1%qnd,(b)apu/1.5%qnd的透射电镜图。

图3为(a)apu,(b)apu/0.5%qnd,(c)apu/1%qnd,(d)apu/1.5%qnd的xrd图。

图4为apu,apu/0.5%qnd,apu/1%qnd,apu/1.5%qnd的拉伸性能图,(a)拉伸模量,(b)拉伸强度,(c)断裂伸长率。

图5为apu,apu/0.5%qnd,apu/1%qnd,apu/1.5%qnd的接触抗菌平板图。

图6为apu,apu/0.5%qnd,apu/1%qnd,apu/1.5%qnd的接触角图。

具体实施方式:

下面结合实施例和附图对本发明作进一步详述。

实施例1:复合材料的制备过程

把400mg纳米金刚石(nd)分散于水-乙醇(1:9)混合液中,加入1000ul3-溴丙基三甲氧基硅烷,50℃下反应24h。然后加入400mg4-乙烯基吡啶和甲基丙烯酸羟乙酯的共聚物,并加入0.2g溴乙基甲基丙烯酸酯引入双键,最后加入2ml溴己烷季铵化反应48小时,离心分离,把产物25℃下真空干燥,得到季铵盐改性纳米金刚石(qnd)。

接着把4g聚ε-己内酯二醇(pcl-diol)置于50ml三口烧瓶中在真空干燥箱中60℃下脱水24h。然后使用油浴60℃加热,氮气保护,在机械搅拌下逐滴加入0.65ml六亚甲基二异氰酸酯(hdi),升温至85℃反应2小时,此时得到预聚物(ipu)。然后,把反应温度降为40℃,往烧瓶中逐滴加入0.5ml甲基丙烯酸羟乙酯(hema),接着升温至80℃继续反应至异氰酸酯基团完全消失。然后加入预先配置好的稀释剂(30wt%),qnd和引发剂aibn(1wt%)混合物,搅拌2小时使分散均匀。稀释剂为两种丙烯酸hema和egdma的混合液,两者质量比为70:30。然后去除气泡,用注射器取出放入聚四氟乙烯模具中,80℃固化3h,得到聚氨酯apu及其复合材料apu,apu/0.5%qnd,apu/1%qnd,apu/1.5%qnd。

复合材料的红外表征

采用日本-岛津公司生产的irprestige-21型傅立叶变换红外光谱仪(ftir)对制备的材料进行结构测试。

从图1看出在预聚物ipu谱图里,2855-2955cm-1为-ch2和-ch3的吸收峰;2266cm-1归结于-nco伸缩振动吸收峰;1150cm-1为c-o-c的吸收峰。3380cm-1和1720cm-1为-nh和-co-o的伸缩振动峰;1529cm-1为-nh的弯曲振动;1471cm-1处出现的吸收峰为-cn的伸缩振动,在apu谱图里,没有出现nco的伸缩振动吸收峰,说明异氰酸酯基团已反应完全。因此,从红外谱图上可以得出,聚氨酯材料已成功制备。

复合材料的分散性测试

apu/1%qnd和apu/1.5%qnd样品使用超薄切片机切片后,在透射电子显微镜(tem)下观察不同比例纳米金刚石在聚氨酯中的分散情况及形貌。

从图2中的透射电镜图可以看出,1%的纳米粒子在聚合物apu中可以均匀分散,而apu/1.5%qnd材料表面纳米粒子出现一定的团聚现象。

复合材料的xrd测试使用x射线衍射仪测试复合材料的结晶情况。xrd测试条件:样品的扫描角度范围为10°~80°,扫描速度为0.02°min-1

图3为复合材料的xrd谱图。所有样品在2θ=21°和24.5°处均显示出两个峰。2θ=21°处的加宽峰可能是由于晶体结构的存在或pcl晶体的衍射。而2θ=24.5°处的峰值与硬段中晶体结构的形成有关。相比于apu,apu/0.5%qnd,apu/1%qnd和apu/1.5%qnd的结晶峰明显增强,其中apu/1%qnd结晶程度最高。

复合材料的机械性能测试使用万能力学试验机对材料进行机械性能测试。测试条件参照astm-d638标准,拉伸测试样品为哑铃型,测试速率为2mmmin-1。

图4为复合材料的拉伸性能图。纳米粒子的加入,复合材料的拉伸强度和,模量有所提高,断裂伸长率下降,而加入1.5%的qnd,拉伸模量和强度却下降,这是由于纳米粒子在聚合物中分散不均匀导致的。因此,apu/1%qnd的机械性能最优。

复合材料的接触抗菌性能测试首先把细菌滴在样品表面,培养24小时。然后放入无菌pbs中,不断稀释,然后取100ul均匀涂布在固体培养基平板上,培养18小时后观察板上细菌增殖情况。

图5为复合材料的抗菌性能图。纳米粒子的加入,使复合材料赋予了抗菌性能。apu/0.5%qnd,apu/1%qnd,apu/1.5%qnd与s.aureus直接接触24h后的细菌存活率分别为85%、55%和57%。因此,apu/1%qnd的抗菌效果最好。

复合材料的亲水性测试本实验使用jgw-360b型接触角测量仪测量apu,apu/0.5%qnd,apu/1%qnd,apu/1.5%qnd样品的水接触角大小。

如图6为复合材料的接触角测试图。由于pcl-二醇的疏水性,apu的水接触角为84.5°。然后加入0.5-1.5%qnd,接触角逐渐变小,材料的亲水性逐渐提高。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1