标测和表征冠状血管以进行心外膜消融的系统和方法与流程

文档序号:22926889发布日期:2020-11-13 16:22阅读:164来源:国知局
标测和表征冠状血管以进行心外膜消融的系统和方法与流程

相关申请的交叉引用

本申请要求于2018年2月7日提交的临时申请号62/627,727的优先权,该临时申请通过引用整体并入本文。

本公开涉及用于心脏标测的医疗设备和方法。更具体地,本公开涉及用于生成心外膜血管心脏图(cardiacmap)的系统和方法。



背景技术:

使用微创手术(诸如导管消融)来治疗各种心脏疾病(诸如室上性和室性心律失常)的情况变得越来越普遍。这样的手术涉及诸如在心内膜和/或心外膜表面上的各种位置处(例如,基于心脏信号)标测心脏中的电活动(“心脏标测”),以识别心律失常的起源部位,然后靶向地消融该部位。为了执行这种心脏标测,可以将具有一个或多个电极的导管插入患者体内。

在实施例中,例如,当关键峡部位于中层心肌或心外膜下心肌中时,很难进行室性心动过速的心内膜消融,并且在这些情况下,通常使用心外膜方法来完成消融,从而横切峡部并终止心律失常。通常期望避免在某些心外膜结构(诸如例如脂肪、神经、静脉、动脉等)上进行消融。例如,应避免在冠状动脉上进行消融,以防止心包积液并使进一步的缺血性心脏病最小化。心外膜消融的复杂性已将该技术限制于高规格临床中心。由于复杂性和不精确性,现有的用于针对心外膜消融的标测和表征冠状动脉的工具在实用性上受到很大限制,并且例如包括导管电描记图、三维(3d)图像积分和荧光检查。



技术实现要素:

在示例1中,一种用于促进显示与患者心脏相关联的心脏信息的系统包括:显示设备,其被配置为呈现心外膜血管图(vascularmap),该心外膜血管图包括以心外膜血管结构的表示注释的心外膜心脏图;以及处理单元,其被配置为:接收从血管标测导管和磁跟踪导管中的至少一个获得的多个电信号,其中血管标测导管包括一个或多个电极,并且其中磁跟踪导管包括一个或多个附加电极;根据电信号确定与血管标测导管的一个或多个电极相关联的多个阻抗测量结果;访问场图(fieldmap),该场图包括基于磁跟踪导管的一个或多个附加电极的确定位置确定的预期阻抗测量结果;基于多个阻抗测量结果和场图,确定血管标测导管的一个或多个电极的多个位置;基于血管标测导管的一个或多个电极的多个位置,生成心外膜血管结构;访问心外膜心脏图;以心外膜血管结构的表示注释心外膜心脏图,从而生成心外膜血管图;并且促进经由显示设备显示心外膜血管图。

在示例2中,根据示例2所述的系统,还包括血管标测导管,其中血管标测导管被配置为插入与心脏相关联的血管中。

在示例3中,根据示例1或2中任一所述的系统,还包括:磁跟踪导管,其中,磁跟踪导管被配置为插入患者体内;以及跟踪系统,其被配置为确定磁跟踪导管的一个或多个附加电极在患者体内的位置。

在示例4中,根据示例1-3中任一项所述的系统,其中,血管标测导管包括导丝。

在示例5中,根据示例4所述的系统,其中,导丝的一个或多个电极包括导丝的一部分。

在示例6中,根据示例1-5中任一项所述的系统,其中,跟踪系统还被配置为磁跟踪血管标测导管的位置。

在示例7中,根据示例1-6中任一项所述的系统,其中,多个电信号通过血管标测导管的一个或多个电极获得,并且其中,多个电信号对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。

在示例8中,根据示例7所述的系统,其中,场发生器包括设置在患者体外的一个或多个贴片。

在示例9中,根据示例1-6中任一项所述的系统,其中,多个电信号通过磁跟踪导管的一个或多个附加电极获得,并且其中,多个电信号对应于由血管标测导管生成的能量场。

在示例10中,一种促进显示与受试者的心脏相关联的心外膜血管信息的方法包括:接收从血管标测导管和磁跟踪导管中的至少一个获得的多个电信号,其中血管标测导管包括一个或多个电极,并且其中磁跟踪导管包括一个或多个附加电极;根据电信号确定与血管标测导管的一个或多个电极相关联的多个阻抗测量结果;访问场图,该场图包括基于磁跟踪导管的一个或多个附加电极的确定位置确定的预期阻抗测量结果;基于多个阻抗测量结果和场图,确定血管标测导管的一个或多个电极的多个位置;基于血管标测导管的一个或多个电极的多个位置,生成心外膜血管结构;访问心外膜心脏图;以心外膜血管结构的表示注释心外膜心脏图,从而生成心外膜血管图;并且促进经由显示设备显示心外膜血管图。

在示例11中,根据示例10所述的方法,其中,血管标测导管包括导丝。

在示例12中,根据示例11所述的方法,其中,导丝的一个或多个电极包括导丝的一部分。

在示例13中,根据示例10-12中任一项所述的方法,其中,多个电信号通过血管标测导管的一个或多个电极获得,并且其中,多个电信号对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。

在示例14中,根据示例10-12中任一项所述的方法,其中,多个电信号通过磁跟踪导管的一个或多个附加电极获得,并且其中,多个电信号对应于由血管标测导管生成的能量场。

在示例15中,根据示例10-14中任一项所述的方法,还包括使用磁跟踪导管生成心外膜心脏图。

在示例16中,一种用于促进显示与患者心脏相关联的心脏信息的系统包括:显示设备,其被配置为呈现心外膜血管图,该心外膜血管图包括以心外膜血管结构的表示注释的心外膜心脏图;以及处理单元,其被配置为:接收从血管标测导管和磁跟踪导管中的至少一个获得的多个电信号,其中血管标测导管包括一个或多个电极,并且其中磁跟踪导管包括一个或多个附加电极;根据电信号确定与血管标测导管的一个或多个电极相关联的多个阻抗测量结果;访问场图,该场图包括基于磁跟踪导管的一个或多个附加电极的确定位置确定的预期阻抗测量结果;基于多个阻抗测量结果和场图,确定血管标测导管的一个或多个电极的多个位置;基于血管标测导管的一个或多个电极的多个位置,生成心外膜血管结构;访问心外膜心脏图;以心外膜血管结构的表示注释心外膜心脏图,从而生成心外膜血管图;并且促进经由显示设备显示心外膜血管图。

在示例17中,根据示例16所述的系统,还包括血管标测导管,其中,血管标测导管被配置为插入与心脏相关联的血管中。

在示例18中,根据示例16所述的系统,还包括:磁跟踪导管,其中,磁跟踪导管被配置为插入患者体内;以及跟踪系统,其被配置为确定磁跟踪导管的一个或多个附加电极在患者体内的位置。

在示例19中,根据示例16所述的系统,其中,血管标测导管包括导丝。

在示例20中,根据示例19所述的系统,其中,处理单元还被配置为确定与心外膜血管结构相对应的血管的直径。

在示例21中,根据示例16所述的系统,其中,跟踪系统还被配置为磁跟踪血管标测导管的位置。

在示例22中,根据示例16所述的系统,其中,多个电信号通过血管标测导管的一个或多个电极获得,并且其中,多个电信号对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。

在示例23中,根据示例22所述的系统,其中,场发生器包括设置在患者体外的一个或多个贴片。

在示例24中,根据示例16所述的系统,其中,多个电信号通过磁跟踪导管的一个或多个附加电极获得,并且其中,多个电信号对应于由血管标测导管生成的能量场。

在示例25中,一种用于促进显示与患者心脏相关联的心脏信息的系统包括:血管标测导管,其被配置为插入与心脏相关联的血管中并包括一个或多个电极;磁跟踪导管,其被配置为插入患者体内并包括一个或多个附加电极;跟踪系统,其被配置为确定一个或多个附加电极在患者体内的位置;显示设备,其被配置为呈现心外膜血管图,该心外膜血管图包括以心外膜血管结构的表示注释的心外膜心脏图;以及处理单元,其被配置为:接收来自血管标测导管和磁跟踪导管中的至少一个的多个电信号;根据电信号确定与血管标测导管的一个或多个电极相关联的多个阻抗测量结果;访问场图,该场图包括基于一个或多个附加电极的确定位置确定的预期阻抗测量结果;基于多个阻抗测量结果和场图,确定血管标测导管的一个或多个电极的多个位置;基于血管标测导管的多个位置,生成心外膜血管结构;访问心外膜心脏图;以心外膜血管结构的表示注释心外膜心脏图,从而生成心外膜血管图;并且促进经由显示设备显示心外膜血管图。

在示例26中,根据示例25所述的系统,其中,血管标测导管包括导丝。

在示例27中,根据示例26所述的系统,其中,导丝的一个或多个电极包括导丝的一部分。

在示例28中,根据示例25所述的系统,其中,跟踪系统还被配置为磁跟踪血管标测导管的位置。

在示例29中,根据示例25所述的系统,其中,多个电信号通过血管标测导管的一个或多个电极获得,并且其中,多个电信号对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。

在示例30中,根据示例29所述的系统,其中,场发生器包括设置在患者体外的一个或多个贴片。

在示例31中,根据示例25所述的系统,其中,多个电信号通过磁跟踪导管的一个或多个附加电极获得,并且其中,多个电信号对应于由血管标测导管生成的能量场。

在示例32中,一种促进显示与受试者的心脏相关联的心外膜血管信息的方法包括:接收从血管标测导管和磁跟踪导管中的至少一个获得的多个电信号,其中血管标测导管包括一个或多个电极,并且其中磁跟踪导管包括一个或多个附加电极;根据电信号确定与血管标测导管的一个或多个电极相关联的多个阻抗测量结果;访问场图,该场图包括基于磁跟踪导管的一个或多个附加电极的确定位置确定的预期阻抗测量结果;基于多个阻抗测量结果和场图,确定血管标测导管的一个或多个电极的多个位置;基于血管标测导管的一个或多个电极的多个位置,生成心外膜血管结构;访问心外膜心脏图;以心外膜血管结构的表示注释心外膜心脏图,从而生成心外膜血管图;并且促进经由显示设备显示心外膜血管图。

在示例33中,根据示例32所述的方法,其中,血管标测导管包括导丝。

在示例34中,根据示例32所述的方法,其中,多个电信号通过血管标测导管的一个或多个电极获得,并且其中,多个电信号对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。

在示例35中,根据示例32所述的方法,其中,多个电信号通过磁跟踪导管的一个或多个附加电极获得,并且其中,多个电信号对应于由血管标测导管生成的能量场。

尽管公开了多个实施例,但是当前公开的主题的其他实施例将从以下详细描述中变得对本领域技术人员而言显而易见,所述详细描述示出并描述了所公开的主题的说明性实施例。因此,附图和详细描述本质上被认为是说明性的而非限制性的。

附图说明

图1是描绘根据本文公开的主题的实施例的说明性心脏标测系统的概念示意图。

图2是描绘根据本文公开的主题的实施例的说明性处理单元的框图。

图3a和图3b描绘了根据本文公开的主题的实施例的表示患者心脏的一部分的说明性心外膜血管图。

图4是描绘根据本文公开的主题的实施例的用于提供心外膜血管图的说明性方法的流程图。

尽管所公开的主题可顺应于各种修改和替代形式,特定实施例在附图中已通过示例的方式示出并且在下面进行详细地描述。然而,意图不是将本公开限制到所描述的特定实施例。相反,本公开旨在覆盖落入由所附权利要求限定的本公开的范围内的所有修改、等同物和替代物。

如本文中所使用的关于有形事物(例如产品、库存等)和/或无形事物(例如数据、货币的电子表示、账目、信息、事物的份额(例如百分比、分数)、运算、数据模型、动态系统模型、算法、参数等)的测量结果(尺寸、特性、属性、成分等)及其范围的术语,“大约”和“近似”可以可互换地使用以指代如下测量结果,其包括所述测量结果并且还包括相当接近所述测量结果但可能有相当小量差异的任何测量结果,该相当小量差异诸如由相关领域的普通技术人员将理解并易于确定可归因于:测量结误差;测量结果和/或制造仪器校准中的差异;读取和/或设置测量结果时的人为误差;鉴于其他测量结果(例如与其他事物相关联的测量结果)而做出的用以优化性能和/或结构参数的调整;特定的实施场景;人、计算设备和/或机器对事物、设置和/或测量结果的不精确调节和/或操纵;系统公差;控制回路;机器学习;可预见的变化(例如,统计上无关紧要的变化,混乱的变化,系统和/或模型的不稳定性等);偏好等。

尽管本文中可以使用术语“框”来表示说明性采用的不同元件,但该术语不应当被解释为暗示对本文所公开的各种框的任何要求或者其之中或之间的特定顺序。类似地,尽管说明性方法可以由一个或多个附图(例如,流程图,通信流程等)表示,但附图不应被解释为暗示本文公开的各种步骤之中或之间的任何要求或特定顺序。然而,如本文中可能明确描述的和/或如可以根据步骤本身的性质理解的,某些实施例可能需要某些步骤和/或某些步骤之间的某些顺序(例如,一些步骤的执行可能取决于前一步骤的结果)。此外,项目的“集合”、“子集”或“组”(例如,输入、算法、数据值等)可以包括一个或多个项目,并且类似地,项目的子集或子组可以包括一个或多个项目。“多个”意味着不止一个。

如本文所使用的,术语“基于”并不意味着是限制性的,而是表示通过至少使用“基于”之后的术语作为输入来执行确定、识别、预测、计算等。例如,基于特定的一条信息预测结果可以附加地或可替代地基于另一条信息进行相同的确定。

具体实施方式

本文描述的系统和方法的实施例促进处理感测到的心脏电信号,以经由通过显示设备呈现的图形用户界面(gui)呈现心外膜血管图。在实施例中,心外膜血管图是指心外膜血管(例如,分布在患者心脏的心外膜之上或其附近的血管)的一个或多个方面的视觉表示,诸如例如心外膜血管结构(例如,一个或多个心外膜血管的视觉几何电解剖模型),其可以与心外膜心脏图(例如,心外膜表面的视觉几何电解剖模型)一起显示(例如在其上进行注释)。在实施例中,可以确定一个或多个血管的一个或多个特性,并且其表示也可以或者可替代地经由gui来呈现。

根据实施例,为了执行本文描述的方法的实施例的方面,可以从(例如,与标测系统相关联的)标测导管、记录系统、冠状窦(cs)导管或其他参考导管(在实施例中,其可以是血管标测导管)、消融导管、存储设备(例如,本地存储器、云服务器等)、通信组件、医疗设备(例如,可植入医疗设备、外部医疗设备、遥测设备等)等获得心脏电信号。

如本文中使用的术语,感测到的心脏电信号可以指一个或多个感测到的信号。每个心脏电信号可以包括在患者心脏中感测到的多个心内电描记图(egm),并且可以包括可以由系统100的各个方面确定的任何数量的特征。心脏电信号特征的示例包括但不限于阻抗测量结果、激动(activation)时间、激动、激动波形、滤波后的激动波形、最小电压值、最大电压值、最大电压负时间导数(maximumnegativetime-derivativeofvoltage)、瞬时电位、电压幅度、主频率、峰间电压等。心脏电信号特征可以指从一个或多个心脏电信号中提取的一个或多个特征,从提取自一个或多个心脏电信号的一个或多个特征导出的一个或多个特征等。另外,在心脏和/或表面图上的心脏电信号特征的表示可以表示一个或多个心脏电信号特征、多个心脏电信号特征的插值等。

每个心脏信号还可以与对应于感测心脏电信号的位置的一组相应位置坐标相关联。用于感测到的心脏信号的相应位置坐标中的每一个可以包括三维笛卡尔坐标、极坐标等。在实施例中,可以使用其他坐标系。在实施例中,使用任意原点,并且相应位置坐标是指相对于该任意原点的空间位置。在实施例中,由于可以在心脏表面上感测心脏信号,因此相应位置坐标可以在心内膜表面、心外膜表面、患者心脏的中层心肌、血管表面之内或之上和/或在其中之一的附近。

图1示出了心脏标测系统100的示例性实施例的示意图。如上所述,本文公开的主题的实施例可以实施在标测系统(例如,标测系统100)中,而其他实施例可以实施在消融系统、记录系统、计算机分析系统等中。标测系统100包括可移动导管110。导管110可以是、类似于、包括和/或被包括于磁跟踪导管、血管标测导管、导丝、消融导管等。另外,导管110可以表示任何数量的不同导管,诸如例如,一对导管(一个磁跟踪导管和一个血管标测导管、两个磁跟踪导管、一个或多个磁跟踪血管标测导管等)。

导管110可包括一个或多个电极。例如,在实施例中,导管110可包括多个空间分布的电极。在心脏标测程序的信号采集阶段期间,导管110可被移位到导管110插入其中的心脏腔室和/或心脏周围的腔室内的多个位置。在实施例中,导管110可以包括一个电极,该电极可以例如是导管110本身的一部分(例如,在将导丝用作血管标测导管的实施方式中)。在实施例中,导管110的远端可以装配有多个稍微均匀地分布在导管上的电极。例如,电极可以按照3d橄榄体形状、篮状物形状等安装在导管110上。可以将电极安装在这样一种设备上,所述设备能够在心脏内部时将电极展开为期望的形状并且在导管从心脏中移除时使电极缩回。为了允许在心脏中展开成3d形状,可以将电极安装在球囊、形状记忆材料(诸如镍钛诺)、可致动的铰接结构等上。

根据实施例,导管110可以是标测导管、消融导管、诊断导管、cs导管等。例如在2017年12月26日授予明尼苏达州maplegrove的波士顿科学医学有限公司的美国专利号9,848,795中描述了这种导管的说明性示例,该专利的公开内容出于所有目的在此通过引用整体并入本文。例如,如本文所描述的导管110的实施例的各方面、使用导管110获得的电信号以及电信号的后续处理也可以适用于具有可以被配置为获取心脏电信号的记录系统、消融系统和/或任何其他具有带电极的导管的系统的实施方式中。

在导管110移动到的每个位置处,导管的多个电极获取由心脏中的电活动产生的信号。因此,可以基于在多个位置处获取的信息来重构并向用户(例如医生和/或技术人员)呈现与心脏的电活动有关的生理数据,从而提供更准确和如实的心外膜表面生理行为的重构。在心脏腔室或心脏周围的腔室中的多个导管位置处采集信号,使得导管能够有效地充当“巨型导管”,其有效电极数和电极跨度与其中执行信号获取的位置的数量和导管具有的电极数量的乘积成比例。

为了增强重构的心外膜表面处的生理信息的质量,在一些实施例中,将导管110移动到超过三个的位置(例如,超过5个、10个、甚至50个位置)。另外,在一些实施例中,基于在单个导管位置或在多个位置的多个心跳上测量的信号来计算重构的生理信息。在重构的生理信息是基于多个心跳上的多次测量的情况下,测量可以彼此同步,从而使测量在心动周期的大致相同阶段执行。可以基于从生理数据(诸如表面心电图(ecg)和/或心内电描记图(egm))检测到的特征来同步多个心跳上的信号测量。

心脏标测系统100还包括处理单元120,该处理单元120执行与标测程序有关的多个操作,包括确定心外膜表面(例如,如上所述)和/或心脏腔室和/或心脏周围的腔室内的生理信息的重构程序。处理单元120还可以执行导管配准程序。处理单元120还可以生成3d网格,该3d网格用于聚集由导管110捕获到的信息并且促进显示该信息的部分。

可以使用常规感测和跟踪系统180来确定插入患者体内的导管110的位置,该常规感测和跟踪系统180提供导管和/或其电极相对于如由感测和跟踪建立的导管的坐标系的3d空间坐标。这些3d空间位置可用于构建3d网格。系统100的实施例可以使用将阻抗定位与磁定位技术相结合的混合定位技术。这种组合可以使系统100能够准确跟踪连接到系统100的导管。磁定位技术利用定位在患者台下面的定位发生器生成的磁场来跟踪带有磁传感器的导管。阻抗定位技术可用于跟踪可能未配备磁定位传感器的导管,并且可利用表面ecg贴片。

在实施例中,为了执行标测程序并重构心外膜表面上的生理信息,处理单元120可以将导管110的坐标系与心外膜表面的坐标系对准。处理单元110(或系统100的某些其他处理组件)可以确定坐标系变换函数,该变换函数将导管位置的3d空间坐标变换成以心外膜表面的坐标系表示的坐标,和/或反之亦然。在实施例中,这样的变换可能不是必需的,因为本文描述的3d网格的实施例可以用于捕获接触和非接触egm,并基于与3d网格的节点相关联的统计分布来选择标测值。处理单元120还可以对生理信息执行后处理操作,以提取信息的有用特征并将其显示给系统100的操作者和/或其他人(例如,医师)。

根据实施例,由导管110的一个或多个电极获取的信号经由电模块140传递到处理单元120,该电模块140可以例如包括信号调节组件。电模块140可以被配置为接收从导管110传送的信号,并且在将信号转发到处理单元120之前对信号执行信号增强操作。电模块140可以包括可以用于放大、滤波和/或采样由一个或多个电极测量到的心脏内电位的信号调节硬件、软件和/或固件。心脏内信号通常具有60mv的最大幅度,其中平均幅度为几毫伏。

在一些实施例中,信号被带通滤波在(例如,0.5-500hz的)频率范围中,并且通过(例如,1khz下15位分辨率的)模数转换器进行采样。为了避免干扰室内的电气设备,可以对信号进行滤波以消除与电源相对应的频率(例如60hz)。也可以进行其他类型的信号处理操作,诸如频谱均衡、自动增益控制等。例如,在实施例中,心内信号可以是相对于诸如例如冠状窦导管或威尔逊中心电端(wct)的参考(其可以是虚拟参考)测量出的单极信号,信号处理操作可以根据该单极信号计算差以生成多极信号(例如,双极信号、三极信号等)。可以在生成多极信号之前和/或之后以其他方式处理(例如,滤波、采样等)信号。所得经处理的信号由模块140转发到处理单元120以进行进一步处理。

在实施例中,处理单元120可以被配置为处理所得经处理的信号。在实施例中,由于处理单元120可以被配置为处理任何数量的不同类型的电信号,无论它们是否已经被预处理,因此术语“电信号”、“心脏电信号”和包括前面提到的电信号中的一个或多个的术语,应被理解为是指电信号、经处理(例如“预处理”)的电信号、原始信号数据、插值电信号、估计的电信号和/或如本文所描述的表示电信号的任何其他类型的信息。在实施例中,处理单元120可以被配置为促进处理感测到的心脏电信号,以经由gui呈现与心外膜心脏图相关联的心外膜血管结构的表示。

处理单元120的实施例可以被配置为接收多个电信号,诸如例如心脏电信号(例如,电描记图)。处理单元120可以从电模块140、从存储设备、从导管(例如,导管110)、从另一计算设备、经由用户输入设备从用户等接收电信号。在实施例中,处理单元120可以接收与每个电信号相对应的测量位置的指示。处理单元120可以被配置为基于电信号生成可以经由显示设备170呈现的心脏图(例如,心外膜血管图)。在实施例中,心脏图包括表示多个心脏信号特征的多个注释,其可以包括例如一个或多个心外膜血管结构、血管特性、阻抗测量结果、激动时间、最小电压值、最大电压值、最大电压负时间导数、瞬时电位、电压幅度、主导频率和/或峰间电压。

在实施例中,例如,处理单元120可以被配置为:接收从血管标测导管和磁跟踪导管中的至少一个获得的电信号,其中血管标测导管包括一个或多个电极,并且其中磁跟踪导管包括一个或多个附加电极;并且根据电信号确定与血管标测导管的一个或多个电极相关联的阻抗测量结果。处理单元120可以进一步被配置为:访问场图,该场图包括基于磁跟踪导管的一个或多个附加电极的确定位置确定的预期阻抗测量结果;并且基于阻抗测量结果和场图确定血管标测导管的一个或多个电极的多个位置。

根据实施例,处理单元120可以进一步被配置为:基于血管标测导管的一个或多个电极的位置来生成心外膜血管结构;访问(和/或生成)心外膜心脏图;并且以心外膜血管结构的表示注释心外膜心脏图,从而生成心外膜血管图。在实施例中,处理单元可以被配置为促进经由显示设备170显示心外膜血管图。

如图1进一步所示,心脏标测系统100还可以包括外围设备,诸如打印机150和/或显示设备170,两者都可以互连到处理单元120。另外,标测系统100包括存储设备160,该存储设备160可以用于存储由各种互连模块获取的数据,包括体积图像、电极测量的原始数据和/或由此计算出的所得心内膜表示,用于加快标测程序的部分计算出的变换、重构的对应于心外膜表面的生理信息等。

在实施例中,处理单元120可以被配置为通过使用一种或多种人工智能(即,机器学习)技术、分类器等来自动提高其算法的准确性。在实施例中,例如,处理单元可以使用一种或多种有监督和/或无监督的技术,诸如例如支持向量机(svm)、k最近邻技术、人工神经网络等。在实施例中,可以使用来自用户的反馈信息、其他度量等来训练和/或调整分类器。

图1中示出的说明性心脏标测系统100不旨在对本公开的实施例的使用范围或功能提出任何限制。说明性心脏标测系统100也不应被解释为具有与其中所示的任何单个组件或组件组合相关的任何依赖性或要求。可替选地,在实施例中,图1中描绘的各种组件可以与其中描绘的各种其他组件(和/或未示出的组件)集成,所有这些组件都被认为是在本文公开的主题的范围内。例如,电模块140可以与处理单元120集成在一起。另外地或可替代地,心脏标测系统100的实施例的各方面可以实施在计算机分析系统中,该计算机分析系统被配置为从存储设备(例如,云服务器、标测系统存储器等)接收心脏电信号和/或其他信息,并执行本文描述的用于处理心脏信息(例如,生成心外膜血管结构等)的方法的实施例的各方面。也就是说,例如,计算机分析系统可以包括处理单元120,但是不包括标测导管。

图2是根据本公开的实施例的说明性处理单元200的框图。处理单元200可以是、类似于、包括或被包括于图1中描绘的处理单元120中。如图2所示,处理单元200可以实施在包括处理器202和存储器204的计算设备上。尽管处理单元200在本文中以单数形式表示,但是处理单元200可以实施在多个实例(例如,作为服务器群集)中、分布在多个计算设备上、在多个虚拟机内实例化等。用于促进心脏标测的一个或多个组件可以存储在存储器204中。在实施例中,处理器202可以被配置为实例化一个或多个组件以处理从电极接收到的电信号、从一个或多个电信号中提取一个或多个电信号特征206(例如,阻抗测量结果)、以及生成一个或多个场图208和/或心外膜心脏图210,其中的任一个都可以存储在存储器204中。

如图2中进一步描绘的,处理单元200可以包括被配置为接收电信号的接收器212。接收器212可以被配置为从导管(例如,图1中描绘的标测导管110)、存储设备(例如,存储器204)、服务器等接收电信号。所测量的电信号可以包括在患者心脏内感测到的多个心内电描记图(egm)、在患者心脏外感测到的心外电描记图等。接收器212还可以接收与电信号中的每个相对应的测量位置的指示。在实施例中,接收器212可以被配置为确定是否接受已经接收到的电信号。接收器212可以利用任何数量的不同组件和/或技术(诸如过滤、心跳匹配、形态分析、位置信息(例如,导管运动)、呼吸门控等)来确定接受哪些电信号或心跳。

所接受的电信号由特征提取器214接收,该特征提取器214被配置为从电信号中的每个中提取至少一个电信号特征。在实施例中,提取的电信号特征可以用于注释心脏图,在这种情况下,提取的电信号特征可以可互换地称为注释特征。在电信号是心脏电信号的实施例中,提取的信号特征可以互换地称为心脏电信号特征。在实施例中,至少一个电信号特征包括与至少一个注释度量相对应的至少一个值。至少一个特征可以包括至少一个事件,其中至少一个事件包括与至少一个度量相对应的至少一个值和/或至少一个对应的时间(对于每个注释特征不一定存在对应的时间)。

根据实施例,至少一个电信号特征可以包括例如激动时间、检测到的激动(例如,激动波形的分量)、激动波形、激动直方图、最小电压值、最大电压值、最大电压负时间导数、瞬时电位、电压幅度、主导频率、峰间电压、激动持续时间、注释波形(例如,激动波形)、阻抗测量结果、心外膜血管结构、血管特性等。心脏电信号特征可以指从一个或多个心脏电信号中提取的一个或多个特征,从提取自一个或多个心脏电信号的一个或多个特征导出的一个或多个特征等。另外,在心脏和/或表面图上的心脏电信号特征的表示可以表示一个或多个心脏电信号特征、多个心脏电信号特征的插值等。

如图2所示,处理单元200包括跟踪组件216。根据实施例,跟踪组件216被配置为促进跟踪一个或多个导管的位置。跟踪组件216可以是、类似于、包括或被包括于、或以其他方式对应于跟踪系统180。跟踪组件216的说明性示例可以包括例如在2012年5月1日授予马萨诸塞州伯灵顿的rhythmia医疗有限公司的美国专利号8,167,876中公开的跟踪系统的一个或多个方面,该专利的公开内容出于所有目的在此通过引用整体并入本文。

也就是说,例如,本文公开的实施例包括用于使用场的预定模型(例如,场图)来确定导管在患者心外膜血管系统中的位置的方法和系统,该场的预定模型提供患者体内的各个位置处的场的预期信号测量结果。例如,本文描述的实施例提供了一种用于跟踪安装在心脏腔体内和相对于心脏腔体(包括该腔体内的任何数量的腔室以及该腔体周围的血管)安装的导管上的电极的方法,但是该方法也可以用于跟踪其他身体器官中的导管。可以将电极安装在一个或多个导管上,并且通过跟踪这些电极,可以确定这种导管的位置并且可以跟踪导管。通过了解导管的物理特性和电极在其上的位置,可以跟踪导管的特定部分(例如尖端)或确定导管的形状和定向(例如,通过在相同导管的多个电极的位置上使用样条拟合法(splinefittingmethod))。电极也可以安装在需要在心脏腔体内进行跟踪的其他设备上。

在某些方面,通过使用定位并固定在稳定位置(例如冠状窦、心耳、心尖)的电流注入电极(cie)以生成多个场,并且使用安装在其他导管上的电极上的相同场的测量结果以定位电极,来完成跟踪。cie的目的是将电流注入到心脏腔体和/或心脏周围的腔体。例如,每个cie对可以分别定义用于注入电流的源电极和灌电极(sinkelectrode)。

通常,在实施例中,使用下述场标测导管来生成场图,所述场标测导管包括可以测量场(例如,响应于由cie提供的电流来测量心脏腔体中的电位)并且同时可以由独立跟踪系统跟踪的一个或多个电位测量电极(pme)。场图提供了在心脏腔体、心脏周围的腔体和/或心外膜血管系统内各个位置处的场的预期信号测量结果。场图是该场的预定模型的示例。存在并可以使用其他用于生成场的预定模型的方法。例如,可以基于介质的体积图像(ct或mri)以及基于该图像的介质分析来生成预定模型,以生成介质中的场的物理模型。

独立的跟踪系统可以在实施例中使用,并且可以包括任何用于跟踪体内的导管的系统,诸如基于外部生成并由附于导管的一个或多个跟踪元件检测到的电信号或磁信号的系统,或基于从导管内部地生成并由附于其他导管的体内或体外的一个或多个传感器检测的电信号或磁信号的系统。这样的系统可以例如基于跟踪外部生成并由附于导管的一个或多个跟踪元件(诸如传感器)检测到的电信号或磁信号。附加地或替代地,附于导管的跟踪元件(诸如发射器或信标)可以发射电信号或磁信号,其由独立的跟踪系统检测到并用于确定发射器的位置从而确定导管的位置和定向。例如,定向为检测正交磁场并形成传感器的微型线圈的集合可以放置在导管之内以检测所生成的磁场。独立跟踪系统通常以一定距离放置在患者体外,该距离使得系统产生适当强度的辐射(即,生成其幅度不会伤害患者或以其他方式干扰设置在感测和跟踪系统附近的其他装置的操作的信号),或者检测由附于导管的发射器发出的磁辐射或电辐射。

2013年9月17日授权的美国专利号8,538,509,其公开内容通过引用整体并入本文,描述了一种替代的独立跟踪系统,其利用多电极阵列(mea)来生成和感测腔体中的场以跟踪pme和导管。该系统利用固定在稳定位置的参考电极将跟踪坐标系参考到器官,以补偿腔体在空间中的运动,该运动可能是由诸如患者运动或患者呼吸的不同原因引起的。

根据实施例,如本文所述,跟踪组件216可以被配置为生成一个或多个场图208。场图208可包括例如阻抗场图,该阻抗场图可使用从磁跟踪导管、血管标测导管等获得的阻抗测量结果来生成。在实施例中,于2012年5月1日授予马萨诸塞州伯灵顿的rhythmia医疗有限公司的美国专利号8,167,876中描述了生成场图的方法的说明性示例,该专利的公开内容出于所有目的在此通过引用整体并入本文。

在实施例中,使用场测量结果和由场标测导管收集的位置测量结果来生成场的模型。可以基于介质的物理特性来生成模型。场的模型将场测量结果(例如,阻抗测量结果)与空间中的每个位置相关联。一旦生成了场图,在实施例中,可以关闭独立跟踪系统,可以将用于生成场图的系统的任何内部元件从身体中取出,并且还可以将场标测导管从身体中取出。然而,用于生成场的cie可能会留在其稳定位置,以用于后续跟踪其他电极。在实施例中,当出于临床原因期望在身体器官内具有较少导管时,或者当某些跟踪场干扰手术室中的其他仪器时,去除用于生成场图的电位测量电极可能是有利的。使用场图,可以确定可以测量场图覆盖的体积内的所生成的场(例如,使用电流注入电极生成的场)的任何电极的位置。通过比较测量出的场值和建模的场值来确定被跟踪电极的位置。保持与被跟踪电极的测量结果匹配的值的场图中的位置被分配为该电极的位置。

在一些实施例中,响应于注入电流而测量的电位(例如,跟踪信号)可以用于连续地监视心脏腔体、心脏周围的腔体和/或心外膜血管系统中的一个或多个导管的位置,即使导管在其中移动。

在一些方面,该系统在不使这些电极注入电流或发射任何需要检测的场的情况下跟踪体内的电极。相反,可以通过被定位在相对于器官的固定位置(例如,外部贴片、导管上的电极等)处的cie来生成场。这允许同时跟踪大量的电极,这是因为跟踪的电极不会像一些其他跟踪方法那样一个接一个地轮询。

在一些附加方面,该系统不需要将任何外部贴片附接到身体或任何其他外部能量发射器。在一些实施例中,系统仅使用内部电极来注入电流。此外,该方法不需要关于电流注入电极的空间位置的任何知识。在一些实施例中,cie可以被定位成使得电流注入是从固定在心脏自身上的对象发生的,从而减少了来自参照外部坐标系的系统所经历的运动伪差的不准确性。

根据实施例,电信号可以通过血管标测导管的一个或多个电极获得,并且可以对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。场发生器可以包括一个或多个导管、一个或多个外部贴片等。在实施例中,电信号可以通过磁跟踪导管的一个或多个附加电极获得,并且可以对应于由血管标测导管生成的能量场。也就是说,例如,电活性导丝可以用作血管标测导管,并且可以被配置为经由一个或多个电极注入在磁跟踪导管的一个或多个电极处灌入的电流。在任一情况下,血管标测导管的一个或多个电极可以包括独立的电极,其耦合到血管标测导管的一部分、导管本身的一部分(例如,导丝的导电金属部分)等。

另外,处理单元200包括标测引擎(mappingengine)218,该标测引擎被配置为促进基于电信号呈现与心脏表面相对应的心外膜图210。在实施例中,图210可包括电压图、激动图、分级图(fractionationmap)、速度图、置信度图、阻抗图等。在实施例中,标测引擎218可以是、包括、类似于、被包括于跟踪组件216和/或以其他方式与跟踪组件216集成。在实施例中,标测引擎218可以被配置为促进经由显示设备显示心脏图和/或电信号的表示。

例如,图3a描绘了根据本文公开的主题的实施例的说明性gui300,其被配置为呈现心外膜心脏图302,该心外膜心脏图302表示与(图3b中描绘的)患者心脏304相关联的信息。根据实施例,图302包括心外膜心脏图306,其表示心脏304的心外膜表面308。图302还包括一个或多个心外膜血管结构的一个或多个表示310,其被生成以表示一个或多个心外膜血管312(例如冠状动脉等)。心脏图302还可以包括作为一个或多个血管特性的表示的注释314。

如所示出的,例如,心脏图302包括以与其其他部分不同的颜色显示的血管结构的表示310的一部分。这种颜色差异可以例如表示局部缺血,其可以对应于坏死心脏组织的表示316,从而使临床医生能够区分例如可能两者被表示为具有相似电压的例如病变结构和脂肪结构318。如图3a所示,心脏图可以包括诸如例如颜色差异的注释320,以表示注释值的不同范围(例如,电压、阻抗水平等)。

图2中所示的说明性处理单元200和说明性gui300不旨在对本公开的实施例的使用范围或功能提出任何限制。说明性处理单元200和/或gui300都不应被解释为具有与其中所示的任何单个组件或组件的组合相关的任何依赖性或要求。此外,在实施例中,图2、图3a和图3b中描绘的组件和/或特征中的任何一个或多个可以与其中描绘的各种其他组件和/或特征(和/或未示出的组件)集成,所有这些组件都被认为是在本文公开的主题的范围内。

处理单元200可以(单独地和/或与图1描绘的系统100的其他组件和/或其他未示出的组件组合)执行与心脏标测相关联的任何数量的不同功能和/或过程(例如,触发、消隐、场标测等),诸如例如在标题为“electroanatomicalmapping”的美国专利8,428,700、标题为“electroanatomicalmapping”的美国专利8,948,837、标题为“cathetertrackingandendocardiumrepresentationgeneration”的美国专利8,615,287、标题为“estimatingtheprevalenceofactivationpatternsindatasegmentsduringelectrophysiologymapping”的美国专利公开2015/0065836、标题为“systemsandmethodsforguidingmovableelectrodeelementswithinmultiple-electrodestructure”的美国专利6,070,094、标题为“cardiacmappingandablationsystems”的美国专利6,233,491、标题为“systemsandprocessesforrefiningaregisteredmapofabodycavity”的美国专利6,735,465中描述的那些,其公开内容在此通过引用明确地并入本文。

根据实施例,可以在一个或多个计算设备上实施图1所示的标测系统100和/或图2所示的处理单元200的各种组件。计算设备可以包括适合于实施本公开的实施例的任何类型的计算设备。参考系统100和/或处理单元200的各种组件,计算设备的示例包括专用计算设备或通用计算设备,诸如“工作站”、“服务器”、“膝上型计算机”、“台式机”、“平板计算机”、“手持设备”、“电子模块”、“处理单元”、“通用图形处理单元(gpgpu)”等,所有这些都被考虑在图1和图2的范围内。

在实施例中,计算设备包括总线,其直接和/或间接地耦合以下设备:处理器、存储器、输入/输出(i/o)端口、i/o组件和电源。计算设备中还可以包括任何数量的附加组件、不同组件和/或组件的组合。总线表示可以是一个或多个总线(例如,地址总线、数据总线或其组合)的内容。类似地,在实施例中,计算设备可以包括多个处理器、多个存储器组件、多个i/o端口、多个i/o组件和/或多个电源。可替选地,任何数量的这些组件或其组合可以被分布和/或复制在多个计算设备上。

在实施例中,存储器(例如图1中描绘的存储设备160和/或图2中描绘的存储器204)包括易失性和/或非易失性存储器形式的计算机可读介质,并且可以是可移动的、不可移动的或其组合。介质示例包括随机存取存储器(ram);只读存储器(rom);电子可擦除可编程只读存储器(eeprom);闪存;光学或全息介质;磁带盒、磁带、磁盘存储或其他磁存储设备;数据传输;和/或可被用于存储信息并且可以由计算设备访问的任何其他介质,诸如例如量子态存储器等。在实施例中,存储器160和/或204存储计算机可执行指令290,用于使处理器(例如,图1中描绘的处理单元120和/或图2中描绘的处理器202)实施本文所讨论的系统组件的实施例的方面和/或执行本文所讨论的方法和程序的实施例的方面。

计算机可执行指令可以包括例如计算机代码、机器可用指令等,诸如例如能够由与计算设备相关联的一个或多个处理器执行的程序组件。此类程序组件的示例包括电信号(电描记图208)、电信号特征206、图210、接受器212、特征提取器214、跟踪组件216和/或标测引擎218。可以使用任何数量的不同编程环境(包括各种语言、开发工具包、框架等)来编程程序组件。本文考虑的一些或所有功能还可以或替代地以硬件和/或固件来实施。

图4是描绘根据本公开的实施例的呈现心外膜血管图的说明性方法400的流程图。方法400的实施例的各方面可以例如由处理单元(例如,图1中描绘的处理单元120和/或图2中描绘的处理单元200)执行。方法400的实施例包括接收多个电信号(框402)。可以从导管、存储设备、计算设备等接收电信号。每个电信号可以是、包括、类似于或被包括于电描记图,并且可以使用一个或多个导管(例如,磁跟踪导管、血管标测导管等)获得。导管可以是具有一个或多个电极的任何导管(例如,图1中描绘的标测导管110、cs导管、消融导管、导丝等),该一个或多个电极被配置为获得电信号。

根据实施例,电信号可以通过血管标测导管的一个或多个电极获得,并且可以对应于由磁跟踪导管和场发生器中的至少一个生成的能量场。场发生器可以包括一个或多个导管、一个或多个外部贴片等。在实施例中,电信号可以通过磁跟踪导管的一个或多个附加电极获得,并且可以对应于由血管标测导管生成的能量场。也就是说,例如,电活性导丝可以用作血管标测导管,并且可以被配置为经由一个或多个电极注入在磁跟踪导管的一个或多个电极处灌入的电流。在任一情况下,血管标测导管的一个或多个电极可以包括独立的电极,其耦合到血管标测导管的一部分、导管本身的一部分(例如,导丝的导电金属部分)等。

感测到心脏电信号的相应点中的每个点可以具有一组对应的三维位置坐标。例如,点的位置坐标可以用笛卡尔坐标表示。也可以使用其他坐标系。在实施例中,任意原点被使用,并且相应位置坐标相对于任意原点定义。在一些实施例中,这些点具有不均匀的间隔,而在其他实施例中,这些点具有均匀的间隔。在实施例中,与每个感测到的心脏电信号相对应的点可以位于心脏的心外膜表面上,心脏的心内膜表面上,和/或心脏的心外膜表面、和/或心脏的心内膜表面的上方和/或下方。

如图4所示,方法400的实施例包括从电信号确定与血管标测导管的一个或多个电极相关联的多个阻抗测量结果(框404)并访问场图(框406)。在实施例中,场图可包括基于磁跟踪导管的一个或多个电极的先前确定的位置而确定的预期阻抗测量结果。如图4所示,该方法还包括基于阻抗测量结果和场图确定血管标测导管的一个或多个电极的多个位置(框408)。可基于血管标测导管的位置生成心外膜血管结构(框410)。在实施例中,处理单元还可以被配置为基于由心外膜血管结构建模的血管的电信号和附加感测信号中的至少一个来确定一个或多个特性。在实施例中,例如,阻抗值可以用于确定血管的一个或多个特性。在实施例中,例如,病变血管可以诸如通过钙化而至少部分地重组,这导致血管变窄。实施例可以促进使用阻抗、光学传感器、化学传感器、代谢传感器等来识别和/或分类血管的钙化/变窄。

根据实施例,例如,方法400可还可以包括确定血管的一个或多个直径或其他尺寸大小。该进一步的信息可以促进在心脏图上提供血管结构的更准确的表示。在实施例中,可以使用来自血管内的多电极导管的局部阻抗值来测量和/或估计血管的直径或大小。可以应用相对直接的公式来确定尺寸大小,诸如例如v=ρ(l2/r),其中ρ是血液的电阻率,l是测量电极之间的距离,r是在测量电极之间测量出的电阻。在实施例中,可以在计算估计中使用圆柱形或锥形圆锥模型,并且在实施例中,可以将标准尺寸模板应用于血管。

方法400的实施例还包括访问心外膜心脏图(框412),并用心外膜血管结构的表示来注释心外膜心脏图以生成心外膜血管图(框414)。方法400的实施例还包括促进呈现心外膜血管图在显示设备上(框416)。在实施例中,可以(例如,使用诸如例如通过经由剑状突起下方穿刺插入导管而设置在心脏周围的空间内、心脏腔室内等的磁跟踪导管)生成心外膜心脏图,和/或至少部分地基于阻抗测量结果对心外膜心脏图进行注释。

在实施例中,还可至少部分地使用任何数量的其他信号、技术等来生成和/或注释心脏图。例如,实施例可以利用阻抗标测技术来生成和/或注释心脏图的一个或多个部分,诸如例如在其上表示电信号特征的解剖外壳。在实施例中,可以将表面装配在与心脏电信号相关联的一个或多个点上,以生产表示一个或多个心脏结构的心外膜表面的外壳。在实施例中,表面也可以装配在与电信号相关联的一个或多个点上,以生成表示心内膜表面或其他可兴奋心脏组织的外壳。

实施例可以包括在心脏图上显示表示从电信号中提取和/或从其他特征导出的特征的注释,诸如例如,心外膜血管结构、阻抗测量结果、激动时间、最小电压值、最大电压值、最大电压负时间导数、瞬时电位、电压幅度、主导频率、峰间电压等。心外膜血管结构可以被表示在心脏图上,并且可以是或包括从电信号中提取和/或从一个或多个这样的特征中导出的任何特征。例如,血管结构或其特性可以由一种或多种颜色、纹理等来表示。

根据实施例,用于呈现图的gui可以包括用于操纵图的任何数量的不同输入工具。例如,gui可以包括播放/暂停按钮、被配置为促进手动选择一个或多个直方图面元(histogrambin)的工具、被配置为促进手动调整参数(例如,信号基线定义、阈值、egm特性、滤波器等)的工具等。在实施例中,例如,gui可以包括选择工具,该选择工具可以促进对突出显示的egm的细化选择,选择特定的egm和/或激动等。

可以对此处所讨论的示例性实施例作出各种修改和添加,而不脱离当前公开的主题的保护范围。例如,尽管上面描述的实施例指代特定特征,但此公开的范围还包括具有特征的不同组合的实施例和不包括所有所描述的特征的实施例。因此,当前公开的主题的保护范围旨在包含所有落在权利要求范围内的替换、修改、变体以及所有其等同物。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1