一种计算放疗射线平面探测器剂量的方法和系统与流程

文档序号:21471139发布日期:2020-07-14 16:56阅读:257来源:国知局
一种计算放疗射线平面探测器剂量的方法和系统与流程

本发明涉及一种放射线探测器剂量的计算方法,具体涉及一种计算放疗射线平面探测器剂量的方法和系统。



背景技术:

当代的放疗技术,如适形调强放疗(imrt)和容积调强放疗(vmat)等,需要通过控制放疗设备以较为复杂的方式从不同角度照射病人体内包含肿瘤或癌症部位,以便在尽可能减少对周边的人体组织的伤害的情况下提高治疗有效率和安全性。这使得放射治疗计划日趋复杂,计划验证的重要性也日益提高。

在对患者的放疗计划做计划验证时,需要在特定水模上执行对应的验证计划,并使用放疗射线探测器来获取指定位置处吸收的辐射剂量。利用放疗设备模型和放疗计划也可以计算探测器的预期吸收剂量。一般通过比较以上两种测量和计算剂量可以确定放疗计划的剂量计算的准确性。平面探测器的原理是利用探测器阵列以测量指定平面上的剂量分布。阵列中的每个像素探测器可以为电离室(如matrixx)或者半导器探测器(如mapcheck)。

研究者在临床使用中发现,平面探测器的测量结果对射束的入射角度存在依赖性。当射束垂直射向探测器时,探测器的剂量测量值与模型计算值较为符合。而当治疗机头的方向与垂直方向的角度增加时,特别在接近90度时,探测器的剂量测量值与模型计算值的偏差可以很大,甚至接近11%。有研究者试图以唯象的方法通过引入“修正场”来修正这一偏差。但是由此得到的“修正场”,在一定的角度上表现出了对入射角变化的敏感性,并且无法显式地表示为设备参数和计划参数的函数。因此,平面探测器在实际临床质控工作中,经常被用作0度角射野的剂量验证。而在复合野验证中(即每个射野不转动到0度角,而是位于计划中设定的原始位置),物理师一般选择具有特殊设计的非平面探测器(例如:arccheck),从而在设计上消除射野角度对平面探测器的影响,但是费用较为昂贵;或者选择没有角度依赖性的高精度胶片来测量,但是胶片的校准和扫描过程相当复杂繁琐。

目前,作为一种放疗计划剂量验证工具,平面探测器缺少一种基于自身结构特点来修正非垂直入射的射线在探测器上的计算剂量以符合探测器测量值的方法。这样的方法有助于在计划验证工作中利用平面探测器进行复合野验证,相比于arccheck和胶片,降低成本,提高质控工作效率。



技术实现要素:

这一部分用于简单介绍本发明的内容,详细介绍见“具体实施方式”。这里的内容,不用于对本发明的关键因素、重要特征、权利声明提出限制。

基于上文提到的放疗射线平面探测器的剂量计算方法的必要性,本发明提出一种基于探测器自身结构特点考虑了每个像素探测器角度依赖特性的计算放疗射线平面探测器剂量的方法和系统,使得在计划验证工作中可以利用平面探测器进行复合野验证,从而降低成本,提高质控工作效率。

本发明提供了一种计算放疗射线平面探测器平面剂量的方法。该方法包括以下步骤:

步骤1:校准测量平面的深度偏差模型的参数;

步骤2:从放疗治疗计划系统(tps)接收三维患者外照射治疗计划以及测量平面深度位置;

步骤3:根据每一个射野的治疗机头角度以及测量平面的深度偏差模型计算该射野的测量平面的深度偏差;

步骤4:根据治疗计划和每一个射野的深度偏差计算深度位置偏移后测量平面上的剂量分布;

步骤5:将各个射野在偏移后测量平面上的剂量分布叠加起来,生成校准后的探测器测量平面上的剂量。

在一些实施例中,所述的深度偏差模型可以采用公式:

其中,δd为位置深度偏差,θ为射野治疗头角度,a和b为探测器像素探头的有效测量点轨迹的半椭圆模型的半长轴长度的半短轴长度。

在一些实施例中,所述的步骤1至少包括如下步骤:

步骤1.1:将由准直器构成的方形射野绕等中心点转动若干个角度;

步骤1.2:在每一个角度上照射固定机器条数的射线剂量;

步骤1.3:在用需要校准的探测器在等中心平面测量每一个角度的平面剂量分布;

步骤1.4:计算每一个角度射野在等中心平面的剂量分布;

步骤1.5:计算每一个角度射野在等中心平面的计算剂量分布与测量剂量分布之间的平移偏差δx;

步骤1.6:计算用下列公式优化拟合参数a和b;

其中,δx为计算剂量分布与测量剂量分布之间的平移偏差,θ为射野治疗头角度,a和b为探测器像素探头的有效测量点轨迹的半椭圆模型的半长轴长度的半短轴长度;优化目标为最小化每一个角度射野在等中心平面的计算剂量分布与测量剂量分布之间的平移偏差δx与本步骤中计算公式所得平移偏差之间的差值的均方平均值。

在一些实施例中,所述的射线包括并不限于:光子射线、电子射线、质子射线和重离子射线。

在一些实施例中,所述的平面探测器包括并不限于:电离室矩阵探测器和半导体矩阵探测器。

在一些实施例中,所述的放疗剂量计算方法包括并不限于:查表插值法、卷积叠加法和蒙特卡洛法。

本发明关于所述的计算放疗射线平面探测器平面剂量的系统,提出了一种具有存储于非挥发性存储介质中的计算机代码的、可以用来计算放疗射线平面探测器平面剂量的系统。该系统包括以下部分:

一个探测器校准模块,负责校准像素探头有效测量点的轨迹模型的参数;一个平面剂量计算模块,负责从放疗治疗计划系统(tps)接收患者外照射治疗计划以及测量平面深度位置;根据每一个射野的治疗机头角度以及测量平面的深度偏差模型计算该射野的测量平面的深度偏差;根据治疗计划和每一个射野的深度偏差计算深度位置偏移后测量平面上的剂量分布;将各个射野在偏移后测量平面上的剂量分布叠加起来,生成校准后的探测器测量平面上的剂量。其中,探测器校准模块和平面剂量计算模块之间通过数据总线或者数据网络进行数据通讯。

在一些实施例中,所述的深度偏差模型可以采用公式:

其中,δd为位置深度偏差,θ为射野治疗头角度,a和b为探测器像素探头的有效测量点轨迹的半椭圆模型的半长轴长度的半短轴长度。

在一些实施例中,所述的校准像素探头有效测量点的轨迹模型的参数的步骤至少包括如下步骤:

步骤2.1:将由准直器构成的方形射野绕等中心点转动若干个角度;

步骤2.2:在每一个角度上照射固定机器条数的射线剂量;

步骤2.3:在用需要校准的探测器在等中心平面测量每一个角度的平面剂量分布;

步骤2.4:计算每一个角度射野在等中心平面的剂量分布;

步骤2.5:计算每一个角度射野在等中心平面的计算剂量分布与测量剂量分布之间的平移偏差δx;

步骤2.6:计算用下列公式优化拟合参数a和b;

其中,δx为计算剂量分布与测量剂量分布之间的平移偏差,θ为射野治疗头角度,a和b为探测器像素探头的有效测量点轨迹的半椭圆模型的半长轴长度的半短轴长度;优化目标为最小化每一个角度射野在等中心平面的计算剂量分布与测量剂量分布之间的平移偏差δx与本步骤中计算公式所得平移偏差之间的差值的均方平均值。

在一些实施例中,所述的射线包括并不限于:光子射线、电子射线、质子射线和重离子射线。

在一些实施例中,所述的平面探测器包括并不限于:电离室矩阵探测器和半导体矩阵探测器。

在一些实施例中,所述的放疗剂量计算方法包括并不限于:查表插值法、卷积叠加法和蒙特卡洛法。

附图说明

下列示意图用于配合较为详细的具体实施方式来更清晰的介绍本发明,而不是用于对本发明的权利要求提出限制。

图1是本发明的计算放疗射线平面探测器平面剂量的方法的流程图。

图2是本发明用于校准测量平面的深度偏差模型的参数的子流程图。

图3是本发明一个实施例的系统示意图。

图4是本发明的一个实施例中在测量剂量分布时模体和平面探测器的设置示意图。

图5是本发明的深度偏差模型所描述的平面探测器关于辐射束入射角度依赖性的示意图。

图6是本发明的一个实施例中等效测量平面剂量分布和测量平面剂量分布之间的差异的示意图。

图7是本发明的一个实施例中对公式1、2、3、4的推导的示意图。

具体实施方式

下面结合附图,应用一组术语,来对本发明较佳的实施例进行详细阐述,以方便本领域技术人员理解本发明的优点和特征,从而对本发明的保护范围作出更清楚明确的界定。

本发明包含的创新概念具有多种实施例。因此不应该以这里关于较佳的实施例进行的详细阐述,作为本发明关于创新概念提出的权利要求的边界,而应当将这里的说明用于帮助本领域专业人员理解本发明所包含的创新概念。此外,示意图中物体的层面和部位的大小和相对大小会做适当变形以免重叠。

这里会以引用序号的形式来在示意图中指出一段说明的描述对象。但是,在本发明的实施例的示意图中,并非所有的组成部分都会编号。原因包括:1)相关领域中的公开的信息不会在这里做详细描述;2)与上下文重复的部分不会赘述。

这里在描述本发明时,会使用“包括”来引用本发明所含的对象。如果在上下文中没有明确说明,则这种引用是未尽的,表示描述中省略了部分信息,并且认为这种省略不会影响本领域专业人员对本发明的方法的理解。

这里的详细描述会使用一些带有先后关系的词汇来方便罗列需要描述的对象。这些词汇不应当被看作是对本发明的方法的组成和结构做出的限制,而只应当看作是为了方便区分所叙内容而暂时添加的标记,调换所叙内容的先后顺序,例如,将“第一项”与“第二项”这两个词组交换位置,不会影响这里对本发明的创新概念的描述。类似的,当这里使用“和/或”这样的词汇来连接一组陈述时,并不对这些陈述的对象的先后顺序的组合提出限制。任意改变这些对象的陈述顺序都是可以接受的。

除非这里作出明确的说明来赋予指定术语以独特的定义,否则在详细描述中使用的术语与本发明所属领域的专业人员的使用习惯保持一致。此外,这里的描述会使用一些日常使用的词汇来描述本发明。如果读者发现这些词汇在理想情况下的定义,或者非正式的场合下的使用习惯,与上下文不一致,此时除非给出了明确的定义,否则,应当认为这里在使用这些日常词汇时,已经基于通用的各类词典里的解释对这些词汇做了符合本领域使用习惯的调整。

“放疗”或“放射治疗”是指使用可定向的放射治疗设备向病人体内被癌细胞或肿瘤占据的区域发射一束由高能粒子组成的“辐射束”,以便在该区域形成一定的辐射吸收剂量,来直接破坏该区域内细胞的dna,或通过在细胞内生成带电粒子来间接破坏其dna。细胞会对dna损伤进行修复,当修复能力不足以恢复dna损伤时,细胞会停止分裂或死亡。但是这个过程也会给该区域周边的重要器官和解剖结构的健康细胞造成损伤。因此,放射治疗计划过程的重要环节之一是基于高精度的医学影像做出精确的分割,以便在做放疗计划时确保回避重要器官,尽量减少在健康组织中形成的吸收计量,以及完整覆盖整个靶区以便降低复发概率。

“放疗计划”或“放射治疗计划设计”是放射治疗过程中的一个步骤,指由一组专业人员,包括:放射肿瘤医生、放射治疗师、医学物理师、医学剂量师,来设计用于为肿瘤患者做体外放疗的计划;由此得到的治疗计划称为“放疗计划”。通常,需要先对病人的医学影像做处理,得到一个“分割”,然后据此设计一个放疗计划。这里的“分割”是指用一组感兴趣区来描述医学影像中的像素与人体内的靶区,重要器官,和其他人体解剖结构的对应关系。

“放射治疗计划系统”(treatmentplanningsystem,tps)通常是指可用于快速辅助设计放射治疗计划的计算机软件。在本文中特指由本公司开发的一种用于帮助医生设计、评估放射治疗计划的全流程放射治疗计划系统软件。

“放疗计划的剂量验证”是指依据放疗计划操作放疗设备对模体实施放疗并同时使用剂量测量设备在指定的测量点测量吸收剂量;将由此测量得到的吸收剂量分布与放疗计划提出的预期剂量分布做比较,依照一定标准(例如:3%/3mm)统计测量点处剂量的计划预期值与实际测量值的符合程度。统计结果可用于描述放疗设备与该设备的模型的符合程度。

“电离室”是一种探测电离辐射的气体探测器。当探测器受到射线照射时,射线与气体中的分子作用,产生由一个电子和一个正离子组成的离子对。这些离子向周围区域自由扩散。扩散过程中,电子和正离子可以复合重新形成中性分子。但是,若在构成气体探测器的收集极和高压极上加直流的极化电压,形成电场,那么电子和正离子就会分别被拉向正负两极,并被收集,从而形成电信号。在放射治疗领域,电离室可以用来测量指定点处的辐射吸收剂量。

“平面探测器”可用于在放疗计划验证过程中关于指定平面测量放疗射线的吸收剂量,一般由二维探测器点阵组成,包括并不限于:电离室矩阵探测器和半导体矩阵探测器。

“电离室矩阵探测器”

由二维电离室点阵组成的平面探测器。常用的电离室矩阵探测器品牌包括:i’mrtmatrixx(ibadosimetry,德国)。

本发明的实施例主要用于在使用平面探测器为辐射束做剂量测量时,依据深度偏差模型来对测量结果做修正,以便能获得准确的平面剂量测量数据。在一些实施例中,依据本发明设计制作的软件和硬件也可用于帮助医生更有效的完成放疗计划质量验证的工作。在一些实施例中,本发明作为一种放射治疗计划系统(tps)的组成部分,用于在放疗计划质量验证环节处理平面剂量数据和消除平面探测器因其对辐射束入射角度的依赖性而为测量数据带来的偏差,以便能更准确地完成放疗计划质量验证的工作。

图1是本发明的计算放疗射线平面探测器平面剂量的方法的流程图100。该图说明了使用深度偏差模型校准测量平面测量数据的步骤。具体实施步骤包括:

开始于步骤101。

在步骤102,使用参考数据来校准测量平面的深度偏差模型的参数。

在步骤103,从放疗治疗计划系统(tps)接收三维患者外照射治疗计划以及测量平面深度位置。

在步骤104,根据每一个射野的治疗机头角度以及测量平面的深度偏差模型计算该射野的测量平面的深度偏差。

在步骤105,根据治疗计划和每一个射野的深度偏差计算深度位置偏移后测量平面上的剂量分布。

在步骤106,将各个射野在偏移后测量平面上的剂量分布叠加起来,生成校准后的探测器测量平面上的剂量。

结束于步骤107。

在一些实施例中,在步骤102校准测量平面的深度偏差模型的参数时,深度偏差模型中的深度偏差可以表示为公式1。

图2是本发明用于校准测量平面的深度偏差模型的参数的子流程图200,用于说明在图1计算放疗射线平面探测器平面剂量的方法的流程图100的步骤102中,校准深度偏差模型的参数的过程的必要步骤。必要步骤包括:

开始于步骤201。

在步骤202,将准直器设置为一个方形射野用于调制辐射束,为该射野绕等中心点选择若干个入射角度。

在步骤203,在每一个角度上照射固定机器条数的射线剂量。

在步骤204,当加速器以在步骤202中的射野和角度照射步骤203规定的射线剂量时,用需要校准的探测器在等中心平面测量每一个角度的平面剂量分布。

在步骤205,使用一种放疗计划系统的剂量计算功能,基于步骤202规定的射野和角度和步骤203规定的机器跳数,计算等中心平面的平面剂量分布。

在步骤206,计算每一个角度射野在等中心平面的计算剂量分布与测量剂量分布之间的平移偏差δx。

在步骤207,基于公式2,关于深度偏差模型优化拟合参数a和b;优化目标为最小化每一个角度射野在等中心平面的计算剂量分布与测量剂量分布之间的平移偏差δx与本步骤中计算公式所得平移偏差之间的差值的均方平均值。

结束于步骤208。

在一些实施例中,步骤202设置的射野可以取长方形射野,例如:4cm×10cm的射野。步骤202选择的角度可以是一组等间距的角度,例如:0°,±40°,±80°,±120°,±160°。步骤204中可以校准的平面探测器包括并不限于:电离室矩阵探测器和半导体矩阵探测器。

图3是本发明一个实施例的系统示意图。在该系统中,平面探测器剂量数据处理系统303将平面探测器301与放射治疗计划系统(tps)302生成的数据作为输入并保存到存储设备上,使用者通过用户界面305来操纵系统、提供输入和查看处理结果。三个设备通过局域网314来交换数据。平面探测器剂量数据处理系统303的各组成部件通过内部总线321相互连接。该系统在处理器304的控制下操纵存储设备306来读取或保存文件,在内存中建立处理引擎307,响应来自用户界面305的操作或将处理结果显示在用户界面305上。具体步骤包括:

使用者基于同一组用于校准的计划,使用平面探测器301获取一组测量平面上的剂量分布的测量数据315,使用放射治疗计划系统(tps)302获取一组同一测量平面上的剂量分布的计算数据316。平面探测器剂量数据处理系统303获取测量数据315和计算数据316组成校准数据集310并保存在存储设备306上。模型参数校准模块313从存储设备306上读取校准数据集310作为输入,优化并拟合深度偏差模型的参数,将优化后的参数作为输出并保存到模型设置文件309中。

在完成模型参数的校准后,使用者可以使用平面探测器剂量数据处理系统303来处理一组剂量分布数据317,用于计算一组测量平面剂量分布数据320并显示在用户界面305上。具体步骤包括:

平面探测器剂量数据处理系统303从放射治疗计划系统(tps)302获取一个放疗计划,该计划包含一个测量平面上的剂量分布数据317。这份数据作为剂量分布数据集308保存在存储设备306上。深度偏差计算模块312通过输入模型设置文件309加载一个经过校准的深度偏差模型。剂量分布数据集308将被输入剂量计算模块,并由深度偏差模型计算生成的偏差深度偏差319计算校正后的测量平面剂量分布320。测量平面剂量分布320被传递到用户界面305来作为与使用者指定的测量平面深度值318对应的剂量分布并显示。

由此,使用者可以使用平面探测器剂量数据处理系统303,来处理放疗计划包含的剂量分布数据317,输出可以与实际测量剂量相比较的计算剂量分布320。。

图4是本发明的一个实施例中在测量垂直入射的剂量分布时模体和平面探测器的设置示意图。其中,上层固体水402、平面探测器403和下层固体水404水平叠放。光源401到上层固体水402上表面的距离表示为ssd。光源401到平面探测器403上表面的距离表示为ssmd。光源401到测量平面406的距离表示为smead。上层固体水402的厚度表示为dwu,下层固体水404的厚度为dw1。探测器上表面405和测量平面406的距离表示为dmea。

图5是本发明的深度偏差模型描述的平面探测器关于辐射束入射角度依赖性的示意图。平面探测器由一组以二维点阵形式排列的探测器单元组成。每一个单元在结构上可以分成两个部分:吸收材料501,像素室506;吸收材料501的下表面与像素室506的上表面接触,接触面为测量平面503的一部分;默认的测量点502位于接触部分的几何中心。在实际使用中,射束的入射角度可以分为二种情况:从测量平面503的吸收材料501一侧入射的射束一507,从测量平面503的像素室506一侧入射的射束二508。由于平面探测器在测量辐射束剂量时关于射束存在角度依赖性,所以等效测量平面504为从测量平面503向像素室506一侧偏离一个深度值。对于射束一507,其透射部分进入像素室506。其中,经过测量点502的透射光线与等效测量平面504的交点看作是射束一507的等效测量点505。对于射束二508,其反射部分进入像素室506。其中,经过测量点502的反射光线与等效测量平面504的交点看作是射束二508的等效测量点505。随着入射角度的改变,等效测量点505组成的由半个椭圆组成的轨迹509。该椭圆的半长轴和半短轴分别为a和b。由此,测量平面的偏移δd和测量剂量的水平偏移δx可以分别由公式1和公式2表示。这些公式的推导由图7阐释。由此,本发明提出的方法可用于依据参考剂量分布数据来校准深度偏差模型的参数,并依据经过校准的深度偏差模型,使用平面探测器各探测器单元的等效测量点505偏离测量点502的偏差来调整剂量平面上的剂量分布。

图6是本发明的一个实施例中测量平面上未校正计算剂量分布与测量剂量分布之间的差异的示意图,包括:入射角为40°时测量值与计算值对比601,入射角为80°时测量值与计算值对比602,入射角为120°时测量值与计算值对比603,入射角为160°时测量值与计算值对比604。各个未校正计算剂量分布与测量剂量分布之间的平移偏差可以用来优化校准射野深度偏差模型的参数,即等效测量点505组成的由半个椭圆组成的轨迹509的半长轴和半短轴分别为a和b。

图7是本发明的一个实施例中对公式1、2、3、4的推导的示意图。图中标出了公式所用变量相互之间的关系。图中,横轴701和纵轴702垂直并相交于原点。一个椭圆710,长轴沿横轴,短轴沿纵轴放置,半长轴为a,半短轴为b,几何中心位于原点。以原点为圆心,椭圆的长轴和短轴为直径,分别绘制椭圆的外接圆711和内接圆709。点p703为椭圆上一点,坐标为(x,y)。该点在横轴上的投影705的横坐标为(x,0),在纵轴上的投影706的纵坐标为(0,y)。外接圆711上有一点q,经过q、p的直线垂直于横轴701。原点到点p的线段,长度为r,与横轴的夹角为φ,与纵轴的夹角为θ。原点到点q的线段,与横轴的夹角为据此,p点的坐标值可以表示为半长轴、半短轴的长度,原点到点p的线段的长度,以及两个线段与横轴701的夹角等变量的函数:

在该公式中消去则可以将原点到p点的距离r表示为半长轴a、半短轴b和夹角φ的函数:

由此,p点的坐标可以表示为:

由于θ+φ=π/2,将φ替换为θ可以得到:

对照图5,原点为测量平面503上的测量点502,射束一507的入射角度为从点p703指向原点,入射角为θ且为锐角。依据深度偏差模型,等效测量点505会沿着射束一507的入射方向,从原点发生深度方向上的偏移δd和水平偏移δx,得到等效测量点505中的一种。当入射角为θ且为钝角时,即射束二508,依据深度偏差模型,等效测量点505会逆着射束二508的入射方向,从原点发生深度方向上的偏移δd和水平偏移δx,得到等效测量点505中的另一种。则,依据公式8,结合图5和图7,对于射束一507和射束二508的情况下,等效测量点505相对于测量点502的深度方向上的偏移δd和水平偏移δx可以表示为:

虽然这里围绕具体的实施例对本发明的具体实施方案做了描述,但是本领域专业人员应当理解:在不违反和偏离本发明提出的创新概念和方法的情况下,可以通过在实施例中替换等效的组件或其他方法做修改而得到可用于相同情景下的不同的实施例,也可以依据具体的使用环境、要求、可用材料、处理对象的组成或者对工作流程的要求的不同,通过对实施例做修改来在这些情况下发挥相同的作用。在不违反和偏离本发明提出的创新概念和方法的情况下做出的这些修改,也属于本发明的权利声明的范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1