一种基于信道状态信息的室内静态被动人体检测方法与流程

文档序号:21715581发布日期:2020-08-05 01:02阅读:159来源:国知局
一种基于信道状态信息的室内静态被动人体检测方法与流程

本发明属于基于信道状态信息的人体检测技术领域,具体涉及一种基于信道状态信息的室内静态被动人体检测方法。



背景技术:

中国互联网飞速的发展的时代背景下,通过移动通信设备进行社交往来、购物消费、生活缴费等各项活动的生活方式逐渐被人们所接受。人体检测相关的技术研究一直是研究人员关注的焦点。因此,在过去的几十年间,经过不断的研究发展,该领域诞生了多种人体检测的方法。同时,将人体检测也进行了详细的分类,包括人体定位、人体检测、动作检测等。为了突破环境对检测结果的影响,研究人员对环境无关的人体检测也进行了研究。针对室内静态人体的检测通常是通过检测静止人体的呼吸对信道状态信息的影响实现对室内静止人体的检测。



技术实现要素:

本发明的目的在于提供有效的解决检测环境中存在静止人体时,检测漏报率较高的问题的一种基于信道状态信息的室内静态被动人体检测方法。

本发明的目的通过如下技术方案来实现:包括以下步骤:

步骤1:布置发射机和接收机,接收机获取一段时间内的信道状态信息;

步骤2:采用主成分分析法对获取的信道状态信息进行预处理,将多维度的信道状态信息转换为低维度的信道状态信息;

步骤2.1:针对一个天线对上连续n个数据,选取n个子载波上的数据信息构成矩阵c,表示为:

其中,原始的信道状态信息为ntx×nrx×n的形式,ntx为发射天线数,nrx为接收天线数,n为子载波的数量;矩阵元素c(i,j)表示第j个子载波上第i个位置上的信道状态信息;

步骤2.2:根据csi序列矩阵获取标准化矩阵z,矩阵元素z(i,j)为:

其中,为矩阵c中第j列的均值;为矩阵c中第j列的方差;

步骤2.3:获取标准化矩阵z的协方差矩阵r,即相关系数矩阵;

步骤2.4:对相关系数矩阵进行特征分解,计算出特征值;

步骤2.5:将特征值从大到小排列,根据特征值代表的样本信息量,获取前p个特征值,构成矩阵维数为n×p的特征矩阵;

步骤2.6:将n×p的特征矩阵与标准化矩阵z相乘,得到矩阵维数为n×p的主成分矩阵;

步骤3:采用离散小波变换对低维度的信道状态信息进一步去噪;

步骤4:提取去噪后的低维度的信道状态信息的特征值组成特征向量;

步骤5:将提取得到的特征向量划分为训练集和测试集;使用训练集训练随机森林模型,得到分类器;将测试集输入到分类器中得到分类结果。

本发明还可以包括:

所述的步骤2中选取的子载波数目为30;所述的步骤3中通过离散小波变换得到6层的近似系数与细节系数,每层中频率分布的范围对应着呼吸的速率区间,每层近似系数中包含了呼吸引起的波形变化的特征。

本发明的有益效果在于:

本发明应用于基于信道状态信息的人体检测领域,主要针对室内检测环境中存在静止人体时,对信道状态信息影响微小的情况。本发明对室内静止人体的检测主要是通过呼吸对csi的状态影响来判断的。考虑到在理想条件下,由于人的呼吸造成的信号波动具有规律性,而实际的数据采集中,存在一定程度的噪声和环境干扰,将对数据进行降噪的处理并提取信号特征。本发明有效的解决检测环境中存在静止人体时,检测漏报率较高的问题。

附图说明

图1是本发明的整体流程图。

图2是本发明的实验对比图。

图3是本发明的不同呼吸下结果对比图。

具体实施方式

下面结合附图对本发明做进一步描述。

本发明对于室内人体检测存在不足进行了分析,并提出了新的解决方法,提高室内静止人体的检测准确率。本发明应用于基于信道状态信息的人体检测领域,主要针对室内检测环境中存在静止人体时,对信道状态信息影响微小的情况。本发明有效的解决检测环境中存在静止人体时,检测漏报率较高的问题。

通过对基于信道状态信息的室内人体检测研究现状的分析发现,现有的方法对数据的处理存在很大的问题。采用mimo技术采集到的数据,对数据处理需要考虑环境噪声和计算复杂度的问题。对室内人体进行检测时,通常只会考虑运动的人体的检测。由于人体运动导致csi变化在一般情况下是能够很明显的表现出来的,而静态的人体对信号的影响比较小,加上获取的信号中有噪声,使得检测静止状态下的人体变得困难。由于呼吸产生身体轻微的起伏,由此对穿过身体的信号产生影响。故此本发明对室内静止人体的检测主要是通过呼吸对csi的状态影响来判断的。考虑到在理想条件下,由于人的呼吸造成的信号波动具有规律性,而实际的数据采集中,存在一定程度的噪声和环境干扰,将对数据进行降噪的处理并提取信号特征。

经过实验表明,本发明的室内静止人体检测达到了较好的检测效果,环境中的人体以不同的呼吸速率保持静止时,其检测准确率保持在较高的水平。

本发明的检测过程是首先根据最初设定好的窗口大小对数据进行预处理。通过对采集数据进行去噪以及去除冗余部分得到简洁有效的主成分。之后进行特征值的提取。该过程对数据进一步进行去噪和分解,并生成呼吸相关的特征向量。根据进机器学习的方法和形成的特征向量行判断环境中是否有静止人体存在,若有人则发出预警。若未检测到则判定无人,继续检测下一个时间窗口。

实施例1:

基于信道状态信息的室内静止人体检测可以分为前期训练阶段和后期检测阶段。前期的训练阶段包括:

1)实验数据的采集。人体在发射机和接收机之间保持静止,以一定的呼吸频率进行呼吸。通过接收端上安装的信道状态信息采集工具,获取人体呼吸状态的csi。

2)信道状态信息的预处理:收集无线网卡捕获到的信道状态信息,并进行预处理,将多维度的信道状态信息转换为低维度的信息。使用的方法是主成分分析法。原始的信道状态信息可以表示为ntx×nrx×30的形式。ntx为发射天线数,本实验中数值为2,nrx为接收天线数,实验中数值为3,子载波的数量为30。首先对每个天线对上的数据重构矩阵,本文中天线对值为6。针对一个天线对上连续n个数据,选取30个子载波上的数据信息构成n乘以30的矩阵,表示为:

c(i,j)是第j个子载波上第i个位置上的信道状态信息。根据csi序列矩阵获取标准化矩阵z,其中的元素zi,j,其中:

ci,j是矩阵c中的元素,分别为第j列的均值和方差。根据标准化z求解其协方差矩阵,协方差矩阵就是相关系数矩阵,协方差反映了两个随机变量之间的统计值,计算公式为:

其中n是样本数量,分别为x,y两个随机变量的均值,针对随机变量去构造协方差矩阵r。假设获取的随机变量集(x1,x2,....,xn)构造的协方差矩阵表示为:

根据子载波的数量,可知协方差矩阵的维数是30×30,然后对相关系数矩阵进行特征分解,计算出特征值,对特征值从大到小排列。根据特征值代表的样本信息量,获取前p个特征值。(特征值代表了样本中85%以上的信息量)对特征值的个数和子载波的个数一起构成30×p的矩阵,将该矩阵与csi序列矩阵相乘获取主成分矩阵。矩阵维数是n×p。这就是采用主成分分析法进行样本处理后获取的信息。

3)信道状态信息特征值提取和进一步去噪:离散小波变换具有多层分辨的特点,改变窗口内的时域和频域信息,适用于局部特征信号的提取。在区间[0,l]内的离散信号,x[n]的dwt可以表示为以下公式的形式:

x[n]——初始信号;

l——信号区间长度;

λ(j0,k)——近似系数(approximationcoefficient)也称尺度系数;

——尺度函数(scalingfunctions);

γ(j,k)——细节系数(detailcoefficient)也称小波系数;

ψj,k(n)——小波函数(waveletfunctions)。

因此根据小波变换分解过程示意图和表示公式,求得第m次dwt之后的尺度系数与小波系数可以表示为:

将经过pca去噪之后得到的6个主成分数据通过小波函数db4分解到6层,每层中频率分布的范围对应着呼吸的速率区间。分解得到的6层的近似系数与细节系数。在使用离散小波变换分解数据的过程中,我们保留了每层的近似系数将其转换为特征值并转换为特征向量。分解过程中产生的细节细化被舍弃。每层近似系数中包含了呼吸引起的波形变化的特征。根据实验将时间窗口设置为60,实验窗口内的数据经过分解之后每一层生成不同的近似系数。

特征可以表示为:

4)信道状态信息分类训练:将提取到的特征值作为分类标准进行前期的分类训练,为后期检测准备。

后期的检测阶段包括:

1)信道状态信息预处理:其中包括分解处理,去噪处理。

2)提取窗口内的特征值:进行特征值提取,这些特征值将作为人体检测的验证数据。

人体检测:将提取到的特征值输入之前训练的分类器进行检验。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1