一种站立及转移辅助机器人及使用方法

文档序号:25425276发布日期:2021-06-11 21:38阅读:219来源:国知局
一种站立及转移辅助机器人及使用方法

本发明涉及医疗辅助康复设备领域,具体地,涉及一种站立及转移辅助机器人及使用方法。



背景技术:

我国人口老龄化和残疾患者数量的增加给日常护理工作带来了巨大的负担。其中,对老年人和残疾人的转移和搬运是护理工作中尤为重要的一部分。由于年龄的增长或其他疾病导致的下肢肌力下降是老年人和残疾人出现站立和行走困难的主要原因。针对这类人群,通常需要两名或以上护理人员协作来完成搬运任务。长期从事这样大重量的搬运工作会造成护理人员腰部、肩部等位置的肌肉损伤。我国大部分护理人员都为女性,她们力量有限,在搬运过程中会出现重心不稳,左右晃动的情况,这极有可能对被搬运的患者造成二次伤害。使用机器代替人力来完成搬运工作是大势所趋。电动式移位机通过电机抬升和放下患者,能够有效,快速,安全,长距离的转移患者,这大大减轻了护理人员的工作负担,提高了护理效率,也提升了患者的生活质量。

公开号为cn109431719a的中国发明专利设计了一种电动移位机,通过吊兜将使用者兜住并通过垂直升降机构吊起和放下使用者。这种机构设计使用起来操作简单且适应性强。但由于在转移过程中,使用者始终被吊兜悬挂在空中,容易由于移位机的速度变化或地面不平等原因而产生晃动,让使用者产生紧张情绪。

公开号为cn108852764a的中国发明专利设计了一种用于转移老人和残疾人的帮扶机器人,

该发明采取站立式的转移方式转移使用者,通过电动推杆将使用者从坐姿转换到站姿,转移过程中使用者的脚始终踩在地面上,增强了使用者姿态的稳定性。

但该发明只是简单的将从人从臀部抬升起来,没有考虑抬升过程中人体的上身姿态,而人体自然站立过程是上下身协调完成的,使用者长期通过这种直上直下的方式辅助站立会导致他们忘记正常的站立方式,不利于使用者未来的康复训练。

liu等人[1](liuy,cheng,liuj,etal,biomimeticdesignofachestcarryingnursing-carero-botfortransfertask.in:internationalconferenceonroboticsandbiomimetics,pp.45-50,2018)设计了一种胸部支撑式的搬运机器人,该机器人的转运理念是通过模仿护理人员将病人从床上背起,病人将胸部倚靠在护理人员背上。liu等人通过vicon相机采集了一个正常人将另一个正常人背起的过程中人体关键点(胸部,臀部,膝盖等部位)的轨迹曲线,并通过机器人的胸部支撑垫的角度和位置变化复现这一过程的轨迹,达到使机器人模仿护理人员背起病人动作的目的。但该机器人在转移过程中需要使用者保持爬在胸部支撑垫上的姿势,这种姿势会对被转移者的胸部产生巨大的压迫感,降低机器人的舒适性。

park等人[2](parkcj,parkhs,developmentofapiggyback-typetransferassistsystemtoassistcaregiverswithpatientsbeingunabletomove)设计了一种背驮式的转运设备,并通过有限元分析软件对转运设备的结构进行优化,最小化机器人抬升使用者过程中机器人转动关节的力矩,增强机器人的稳定性。但这种分析只是针对机器人本身的,缺少针对使用者本身在使用此类辅助设备过程中的生物力学分析和相应的优化设计,忽略了机器人在转移使用者过程中使用者的感受。



技术实现要素:

针对现有技术中的缺陷,本发明的目的是提供一种站立及转移辅助机器人。

根据本发明提供的一种站立及转移辅助机器人,包括控制模块、抬升模块、移动模块、定位导航模块以及对接模块,其中:

所述定位导航模块采集环境信息,并将采集的环境信息发送至控制模块;

控制模块根据所述环境信息规划移动路径,并控制移动模块根据移动路径运动;

控制模块控制抬升模块按照设定的抬升轨迹进行抬升;

对接模块对接使用者或目标位置。

优选地,所述抬升模块包括:胸部支撑垫1、u型扶手2、上肢推杆3、上肢编码器4、连杆5、立座8、抬升编码器9、抬升推杆10以及腿部支撑板13,其中:

所述u型扶手2与胸部支撑垫1紧固连接;

所述胸部支撑垫1与连杆5通过旋转关节相连;

所述上肢编码器4安装在胸部支撑垫1与连杆5连接的关节上;

连杆5和胸部支撑垫1之间连接有上肢推杆3;

所述连杆5通过旋转关节连接在立座8上;

所述抬升编码器9安装于连杆5和立座8连接的关节上;

所述抬升推杆10连接在连杆5和立座8之间;

所述腿部支撑板13设置在立座8上;

所述上肢推杆3,上肢编码器4,抬升编码器9,抬升推杆10与控制模块连接。

优选地,所述定位导航模块包括导航传感器11,所述导航传感器11包括二维激光雷达、三维激光雷达、声纳测距传感器以红外测距传感器中的任一种或任多种组合。

优选地,所述控制模块包括工控机17、底层控制板18、控制按钮6以及控制摇杆7,其中:

所述工控机17和底层控制板18通讯连接;

工控机17的输入端连接定位导航模块和对接模块;

所述控制按钮6和控制摇杆7安装在抬升模块上,控制按钮6和控制摇杆7的输出端和底层控制板18的输入端连接;

所述底层控制板18的输出端和上肢推杆3、抬升推杆10的输入端相连;

所述底层控制板18的输入端和上肢编码器4、抬升编码器9的输出端相连。

优选地,所述移动模块包括底座14、电机驱动器15、驱动电机16、驱动轮20、脚踏板21、支腿22以及从动轮23,其中:

所述电机驱动器15的输出端与驱动电机16的输入端相连;

所述驱动电机16与驱动轮20传动相连;

所述驱动轮20安装于底座14下方;

所述支腿22的一端安装于底座14上,另一端安装有从动轮23;

所述脚踏板21安装于两个支腿22之间,脚踏板21上有一个形状尺寸与人体足部或鞋子相匹配的凹坑。

优选地,所述对接模块包括对接传感器12,对接传感器12包括深度图像传感器、单目图像传感器以及双目图像传感器的任一种或任多种组合。

优选地,所述抬升模块的结构尺寸参数通过基于生物力学仿真分析的机构优化设计得到。

优选地,所述抬升轨迹的生成方式包括如下任一种或者任多种:

示教生成方式:使用者控制抬升模块动作,将使用者从坐姿转换到站姿,在这一过程每隔若干时间记录一次机器人末端的位置,在抬升过程执行完毕后将记录下的位置点序列打包并保存在机器人末端抬升轨迹库中;

外部文件导入生成方式:使用者自行设计并获取一条期望的肩关节抬升轨迹,将该轨迹按时间离散化成若干个位置点,并将这若干个位置点按时间顺序组成序列保存成配置文件导入机器人末端抬升轨迹库中;

内部计算生成方式:使用者选择机器人末端抬升轨迹库中内置的轨迹生成器,并将自己的身高,体重输入轨迹生成器中;轨迹生成器根据使用者的身高,体重和人体自然站立过程生成抬升轨迹,并将轨迹保存在机器人末端抬升轨迹库中。

根据本发明提供的一种基于上述的站立及转移辅助机器人的使用方法,包括如下步骤:

抬升轨迹选择步骤:在使用机器人辅助站立或移动前,从机器人末端抬升轨迹库中选定一条抬升轨迹作为机器人末端的默认抬升轨迹;

模式选择步骤:选择功能模式,所述功能模式包括辅助站立模式、移位模式以及助行模式;若选择辅助站立模式,则进入辅助站立步骤;若选择移位模式,则进入移位步骤;若选择助行模式,则进入助行步骤;

辅助站立步骤:使用者先将脚踏板21卸下,然后使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚踩在机器人立座8后方的地面上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿;

移位步骤:使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚放在脚踏板21上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿,使用者站在放置于脚踏板21,双手握住u型扶手2,机器人通过控制部分向移动部分下发控制命令操控机器人转移使用者至设定的位置;

助行步骤:使用者需将脚踏板21卸下,调整连杆5和胸部支撑垫1的角度,使胸部支撑垫1垂直于地面,且u型扶手2位于使用者胸部正前方,使用者站在底座14后方位置,通过控制摇杆7和控制按钮6操作机器人以设定的速度移动,使用者在u型扶手2的辅助下行走。

优选地,所述移位步骤还包括如下子步骤:

移位方式选择子步骤:使用者通过控制摇杆7和控制按钮6选择移位方式;所述移位方式包括手动移位和自主移位;若使用者选择手动移位方式,则进入手动移位子步骤;若使用者选择自主移位方式,则进入自主移位子步骤;

手动移位子步骤:使用者通过控制摇杆7和控制按钮6选择预先设定好的目标点,控制部分接收到目标点信息后,通过携带的导航传感器11自主导航、识别需要移位的位置,将使用者导航移位至目标位置;到达目标位置后,通过上肢推杆3和抬升推杆10的调整将使用者安全平稳的落在目标位置上;

自主移位子步骤:使用者通过控制摇杆7和控制按钮6向控制部分实时地发出控制信号,控制部分接收控制信号并根据控制信号调整驱动电机16的工作状态,进而控制驱动轮20转动使设备按照使用者的操作指令移动。

与现有技术相比,本发明具有如下的有益效果:

1、本发明提供的站立及转移辅助机器人具有结构简单,体积小,动作灵活的优点。

2、本发明提供的站立及转移辅助机器人兼具辅助站立,辅助转移,辅助行走的功能,有效适应不同使用者的需求。

3、本发明提供的站立及转移辅助机器人能够根据使用者的不同需求生成不同的辅助站立轨迹来辅助使用者完成站立任务,这种方式有助于使用者的腿部康复训练。

4、本发明提供的站立及转移辅助机器人从生物力学的角度对机器人机构进行优化分析,有助于减小使用者在使用机器人辅助站立过程中的下肢肌肉力输出。

5、本发明提供的站立及转移辅助机器人使用方法简单,操作便捷,能够在完全不需要他人辅助的情况下完成辅助站立和转移任务,极大方便了患者的生活,也减轻了护理人员的护理压力。

6、本发明通过高精度自动对接的设计,末端执行机构能够准确贴合使用者的身体部位以控制使用者的身体姿态。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:

图1为本发明提供的站立及转移辅助机器人的结构示意图;

图2为本发明提供的站立及转移辅助机器人使用方法中使用者上半身靠在胸部支撑垫的示意图;

图3为本发明提供的站立及转移辅助机器人使用方法中移位步骤的示意图;

图4为本发明提供的站立及转移辅助机器人使用方法中助行步骤的示意图。

图中示出:

胸部支撑垫1

u型扶手2

上肢推杆3

上肢编码器4

连杆5

控制按钮6

控制摇杆7

立座8

抬升编码器9

抬升推杆10

导航传感器11

对接传感器12

腿部支撑板13

底座14

电机驱动器15

驱动电机16

工控机17

底层控制板18

电池19

驱动轮20

脚踏板21

支腿22

从动轮23

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。

如图1至图4所示,本发明的目的是提供一种站立及转移辅助机器人及其使用方法。

如图1所示,根据本发明提供的一种站立及转移辅助机器人,包括:智能抬升模块:工控机17中保存有机器人末端抬升轨迹库,使用者在使用者机器人前需在机器人末端抬升轨迹库中选定一条抬升轨迹。机器人根据选定的抬升轨迹向机器人的底层控制板18发送指令并控制上肢推杆3和抬升推杆10按选定轨迹将抬升使用者;定位导航模块:导航传感器11采集周围环境信息,并将信息发送至控制部分,控制部分处理周围环境信息得到机器人位置,并根据给定的目标点位置规划出一条从机器人到目标点的路径,控制部分根据给定的路径下发控制信号给移动部分,使机器人能够沿给定路径移动至目标点;高精度对接模块:在机器人到达目标点后,需要倒行与目标位置或使用者对接。机器人通过对接传感器12使用智能识别算法检测需要对接的使用者或床和桌椅等家具的位置,通过点镇定控制器控制机器人以一条平滑的轨迹向后倒行与目标位置或使用者完成精准的对接。

进一步的,所述机器人末端抬升轨迹库中的抬升轨迹生成方式可包括:示教生成:使用者通过控制按钮6控制上肢推杆3和抬升推杆10动作,将使用者从坐姿转换到站姿,在这一过程每隔若干时间记录一次机器人末端的位置,在抬升过程执行完毕后将记录下的位置点序列打包并保存在机器人末端抬升轨迹库中;外部文件导入生成:使用者可自行设计并获取一条期望的肩关节抬升轨迹,将该轨迹按时间离散化成若干个位置点,并将这若干个位置点按时间顺序组成序列保存成配置文件导入机器人末端抬升轨迹库中;内部计算生成:使用者选择机器人末端抬升轨迹库中内置的轨迹生成器,并将自己的身高、体重输入轨迹生成器中。轨迹生成器根据使用者的身高,体重和人体自然站立过程生成抬升轨迹。轨迹可分为两段,第一段是模仿正常人体站立时上半身前倾过程中肩关节的轨迹;第二段是依据最小跳跃准则生成的站立过程中的肩关节轨迹,机器人根据与使用者对接时使用者的坐姿得到使用者肩关节的高度,并结合使用者设定的自身高度计算出使用者处于完全站立状态下肩关节的高度,根据这两种状态下使用者肩关节的高度生成一条符合最小跳跃准则的肩关节轨迹,并将轨迹保存在机器人末端抬升轨迹库中。

本发明的抬升部分包括:胸部支撑垫1,u型扶手2,上肢推杆3,上肢编码器4,连杆5,抬升编码器9,立座8,抬升推杆10,腿部支撑板13;所述u型扶手2设置于胸部支撑垫1下方,在抬升和助行的过程中,使用者可以将手握在u型扶手2上;所述胸部支撑垫1与连杆5通过旋转关节相连,在使用过程中,为使用者的上半身提供支撑;所述上肢编码器4安装于胸部支撑垫1与连杆5连接的关节上;所述上肢推杆3连接于连杆5和胸部支撑垫1之间;所述连杆5通过旋转关节连接在立座8上;所述抬升编码器9安装于连杆5和与立座8连接的关节上;所述抬升推杆10连接于连杆5和立座8之间;所述腿部支撑板13设置于立座8后方;所述上肢推杆3,抬升推杆10,上肢编码器4,抬升编码器9与控制部分相连。

更为详细地,所述导航传感器11包括:二维激光雷达、三维激光雷达、声纳测距传感器以红外测距传感器中的任一种或任多种组合;

控制部分包括:工控机17,底层控制板18,控制摇杆7以及控制按钮6;所述工控机17和底层控制板18通过通讯连接;所述导航传感器11和对接传感器12的输出端和工控机17的输入端相连;所述控制摇杆7和控制按钮6安装于连杆5中部位置,控制摇杆7和控制按钮6的输出端和底层控制板18的输入端相连;所述底层控制板18的输出端和电机驱动板,上肢推杆3,抬升推杆10的输入端相连;所述底层控制板18的输入端和上肢编码器4,抬升编码器9的输出端相连。

移动部分包括:底座14,电机驱动器15,驱动电机16,驱动轮20,从动轮23,脚踏板21,支腿22;所述电机驱动器15的输出端与驱动电机16的输入端相连所述驱动电机16与驱动轮20传动相连;所述驱动轮20安装于底座14下方;所述支腿22的一端安装于底座14上,另一端安装有从动轮23;所述脚踏板21安装于两个支腿22之间,脚踏板21上有一个形状尺寸与人体足部或鞋子相匹配的凹坑。脚踏板21可以拆卸,且脚踏板21的位置可以根据使用者的足部位置调整到支腿22的不同位置。

对接传感器12包括:深度图像传感器,单目图像传感器以及双目图像传感器的任一种或任多种组合;所述智能识别算法可以是传统的基于特征描述子的物体和人体识别算法或是基于深度学习的智能识别算法。

优选地,所述抬升机构的结构尺寸参数是通过基于生物力学仿真分析的机构优化设计得到的。生物力学仿真分析为在仿真环境中模拟使用者在机器人的辅助下站起这一过程,计算这一过程中使用者下肢的肌肉力输出,改变机构的尺寸参数和人体模型的身高和体重等人体测量学参数不断重复这一模拟过程,统计不同机构尺寸参数和人体模型尺寸下使用者下肢的肌肉力输出,找到能够最小化使用者下肢的肌肉力输出的一组机构尺寸参数,参照这组参数设计的机构能够在抬升使用者的过程中最小化使用者的下肢肌力输出,减少使用者的肌肉能力消耗。

更为详细地,所述基于生物力学仿真分析的机构优化设计的步骤如下:

步骤1:在仿真环境中搭建人机耦合模型;

步骤2:选取评价指标和确定目标函数;

步骤3:确定设计变量及设计变量约束范围;

步骤4:在设计变量约束范围内通过网格化搜索的方法得到使目标函数取值最小的最优结构尺寸参数;

步骤5:调整人体模型尺寸,得到其他人体尺寸下的最优结构尺寸参数,综合评估,得到最优机构参数尺寸。

所述步骤1还包含如下步骤:

步骤3.1:在仿真环境中建立人体全身模型,根据《中国成年人人体尺寸》国家标准调整人体模型的尺寸为中国成年人人体尺寸中百分位为95cm的人体尺寸,身高为177.5cm,人体各体段的长度也做相应的调整。

步骤3.2:将移乘搬运机器人机构模型文件导入生物力学仿真环境中。

步骤3.3:设置机器人与人体模型的连接,考虑机器人与人体的接触位置,调整人体模型的姿势,通过软件中的点接触约束使人体模型手部与扶手2,胸部和腋下与胸部支撑垫1,脚部与脚踏板21保持接触。

所述评价指标包括股外侧肌vl,股直肌rf,股内侧肌vm,胫前肌ta在机器人抬升人体过程中肌肉活动度的积分和,分别表示为avl,arf,avm,ata,所述目标函数为通过主成分分析法计算得到的目标函数,在仿真环境中尝试不同的机构尺寸参数和人体模型尺寸将人体从坐姿转换到站姿,记录下avl,arf,avm,ata数据,通过主成分分析法提取记录下的四块肌肉活动度的积分和的主成分,并将主成分加权平均得到目标函数atotal=0.2573arf+0.3129avl+0.2714avm+0.1585ata。

所述设计变量为立座的高度l1,连杆的长度l2,胸部支撑垫的长度l3,图2标注了设计变量的位置,所述设计变量约束范围为满足人体从坐姿转移到站姿且不违反人体运动学约束的设计变量的范围,在仿真环境中改变机构的尺寸确定设计变量的约束范围为0.4m≤l1≤0.8m,0.5m≤l2≤1.0m,0.05m≤l3≤0.35m,

所述步骤4包括如下步骤:

步骤4.1改变人体模型的尺寸;

步骤4.2改变机器人结构尺寸参数;

步骤4.3仿真环境中模拟机器人辅助人体站立;

步骤4.4记录目标函数值;

步骤4.5重复步骤4.2-4.4,记录下当前人体模型尺寸下,使目标函数值最小的一组机器人机构参数,返回步骤4.1,记录多组不同人体模型尺寸对应的最优机器人机构参数,综合比较分析机器人机构参数在不同人体模型尺寸下的目标函数值,得到最终的机器人机构参数;

在设计变量的约束范围内l1,l2,l3分别以5cm作为步长进行网格化搜索,得到使目标函数取值最小的最优结构尺寸参数,再使l1,l2,l3分别以1cm作为步长在之前获得的最优结构尺寸参数附近5cm的范围内再次进行网格化搜索,得到最优结构尺寸参数为l1=0.59m,l2=0.8m,l3=0.21m,目标函数atotal=0.2098。

按照中国成年人人体尺寸中百分位为5和50的人体尺寸改变人体模型的尺寸,分别将人体尺寸的身高改变为168cm和158cm并相应修改人体各体段的尺寸。重复步骤3-4得到人体尺寸为168cm时的最优结构尺寸参数为l1=0.52m,l2=0.75m,l3=0.17m,目标函数atotal=0.1979,人体尺寸为158cm时的最优结构尺寸参数为l1=0.48m,l2=0.72m,l3=0.15m,atotal=0.1860。

为增强机器人机构参数对不同人体模型的适应性,测试三种最优结构尺寸参数在不同人体模型下目标函数的平均值,得到当l1=0.59m,l2=0.8m,l3=0.21m时,目标函数的平均值atotal_ave=0.2107,当l1=0.52m,l2=0.75m,l3=0.17m时,目标函数的平均值atotal_ave=0.2063,当l1=0.48m,l2=0.72m,l3=0.15m时,目标函数的平均值atotal_ave=0.2067,故选择l1=0.52m,l2=0.75m,l3=0.17m作机器人机构的设计参数。

本发明还提供了一种站立及转移辅助机器人使用方法,利用上述的站立及转移辅助机器人,包括如下步骤:抬升轨迹选择步骤:使用者在使用机器人辅助站立或移动前,需按照自己的需求从机器人末端抬升轨迹库中选定一条抬升轨迹作为机器人末端的默认抬升轨迹,在默认抬升轨迹选定后,若没有更换使用者或使用者的需求没有发生更改,则机器人将在后续的所有抬升步骤中使用默认抬升轨迹;模式选择步骤:使用者可以通过控制按钮6选择功能模式,所述功能模式包括辅助站立模式、移位模式以及助行模式;若使用者选择辅助站立模式,则进入辅助站立步骤;若使用者选择移位模式,则进入移位步骤;若使用者选择助行模式,则进入助行步骤;辅助站立步骤:使用者需先将脚踏板21卸下,然后使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚踩在机器人立座8后方的地面上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿;移位步骤:使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚放在脚踏板21上,如图2所示,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿,如图3所示,接下来使用者站在放置于脚踏板21,双手握住u型扶手2,机器人通过控制部分向移动部分下发控制命令操控机器人转移使用者至设定的位置;助行步骤:使用者需将脚踏板21卸下,调整连杆5和胸部支撑垫1的角度,使胸部支撑垫1垂直于地面,且u型扶手2位于使用者胸部正前方,使用者站在底座14后方位置,通过控制摇杆7和控制按钮6操作机器人以设定的速度移动,使用者在u型扶手2的辅助下行走,如图4所示。

进一步地,所述移位步骤还包括如下子步骤:移位方式选择子步骤:使用者通过控制摇杆7和控制按钮6选择移位方式;所述移位方式包括手动移位和自主移位;若使用者选择手动移位方式,则进入手动移位子步骤;若使用者选择自主移位方式,则进入自主移位子步骤;手动移位子步骤:使用者通过控制摇杆7和控制按钮6选择预先设定好的目标点,控制部分接收到目标点信息后,通过携带的导航传感器11自主导航、识别需要移位的位置,将使用者导航移位至目标位置;到达目标位置后,通过上肢推杆3和抬升推杆10的调整将使用者安全平稳的落在目标位置上;

自主移位子步骤:使用者通过控制摇杆7和控制按钮6向控制部分实时地发出控制信号,控制部分接收控制信号并根据控制信号调整驱动电机16的工作状态,进而控制驱动轮20转动使设备按照使用者的操作指令移动。

更为详细的描述:本发明的优选例提供了一种站立及转移辅助机器人,包括抬升部分,控制部分,移动部分,所述抬升部分包括胸部支撑垫1,u型扶手2,上肢推杆3,上肢编码器4,连杆5,抬升编码器9,立座8,抬升推杆10,腿部支撑板13;所述u型扶手2设置于胸部支撑垫1下方,在抬升和助行的过程中,使用者可以将手握在u型扶手2上;所述胸部支撑垫1与连杆5通过旋转关节相连,在使用过程中,为使用者的上半身提供支撑;所述上肢编码器4安装于胸部支撑垫1与连杆5连接的关节上;所述上肢推杆3连接于连杆5和胸部支撑垫1之间;所述连杆5通过旋转关节连接在立座8上;所述抬升编码器9安装于连杆5和立座8连接的关节上;所述抬升推杆10连接于连杆5和立座8之间;所述腿部支撑板13设置与立座8后方;所述上肢推杆3,抬升推杆10,上肢编码器4,抬升编码器9与控制部分相连。

具体地,所述控制部分包括:工控机17,底层控制板18,控制摇杆7以及控制按钮6;所述工控机17和底层控制板18通过通讯连接;所述导航传感器11和对接传感器12的输出端和工控机17的输入端相连;所述控制摇杆7和控制按钮6安装于连杆5中部位置,控制摇杆7和控制按钮6的输出端和底层控制板18的输入端相连;所述底层控制板18的输出端和电机驱动板,上肢推杆3,抬升推杆10的输入端相连;所述底层控制板18的输入端和上肢编码器4,抬升编码器9的输出端相连。

具体地,所述移动部分包括:底座14,电机驱动器15,驱动电机16,驱动轮20,从动轮23,脚踏板21,支腿22;所述电机驱动器15的输出端与驱动电机16的输入端相连所述驱动电机16与驱动轮20传动相连;所述驱动轮20安装于底座14下方;所述支腿22的一端安装于底座14上,另一端安装有从动轮23;所述脚踏板21安装于两个支腿22之间,脚踏板21上有一个形状尺寸与人体足部或鞋子相匹配的凹坑。

更具体地,所述脚踏板21可以拆卸,且脚踏板21的位置可以根据使用者的足部位置调整到支腿22的不同位置。

具体地,对接传感器12包括:深度图像传感器,单目图像传感器以及双目图像传感器的任一种或任多种组合;所述智能识别算法可以是传统的基于特征描述子的物体和人体识别算法或是基于深度学习的智能识别算法。

具体地,导航传感器11包括:二维激光雷达、三维激光雷达、声纳测距传感器以红外测距传感器中的任一种或任多种组合;

具体地,所述抬升机构的结构尺寸参数是通过基于生物力学仿真分析的机构优化设计得到的

优选地,所述生物力学仿真分析为在仿真环境中模拟使用者在机器人的辅助下站起这一过程,计算这一过程中使用者下肢的肌肉力输出,改变机构的尺寸参数和人体模型的身高和体重等人体测量学参数不断重复这一模拟过程,统计不同机构尺寸参数和人体模型尺寸下使用者下肢的肌肉力输出,找到能够最小化使用者下肢的肌肉力输出的一组机构尺寸参数,参照这组参数设计的机构能够在抬升使用者的过程中最小化使用者的下肢肌力输出,减少使用者的肌肉能力消耗。

具体地,所述基于生物力学仿真分析的机构优化设计的步骤如下:

步骤1:在仿真环境中搭建人机耦合模型。

步骤2:选取评价指标和确定目标函数。

步骤3:确定设计变量及设计变量约束范围。

步骤4:在设计变量约束范围内通过网格化搜索的方法得到使目标函数取值最小的最优结构尺寸参数。

步骤5:调整人体模型尺寸,得到其他人体尺寸下的最优结构尺寸参数,综合评估,得到最优机构参数尺寸。

具体地,所述步骤1还包含如下步骤:

步骤3.1:在仿真环境中建立人体全身模型,根据《中国成年人人体尺寸》国家标准调整人体模型的尺寸为中国成年人人体尺寸中百分位为95cm的人体尺寸,身高为177.5cm,人体各体段的长度也做相应的调整。

步骤3.2:将移乘搬运机器人机构模型文件导入生物力学仿真环境中。

步骤3.3:设置机器人与人体模型的连接,考虑机器人与人体的接触位置,调整人体模型的姿势,通过软件中的点接触约束使人体模型手部与扶手2,胸部和腋下与胸部支撑垫1,脚部与脚踏板21保持接触。

所述评价指标包括股外侧肌vl,股直肌rf,股内侧肌vm,胫前肌ta在机器人抬升人体过程中肌肉活动度的积分和,分别表示为avl,arf,avm,ata,所述目标函数为通过主成分分析法计算得到的目标函数,在仿真环境中尝试不同的机构尺寸参数和人体模型尺寸将人体从坐姿转换到站姿,记录下avl,arf,avm,ata数据,通过主成分分析法提取记录下的四块肌肉活动度的积分和的主成分,并将主成分加权平均得到目标函数atotal=0.2573arf+0.3129avl+0.2714avm+0.1585ata。

所述设计变量为立座的高度l1,连杆的长度l2,胸部支撑垫的长度l3,图2标注了设计变量的位置,所述设计变量约束范围为满足人体从坐姿转移到站姿且不违反人体运动学约束的设计变量的范围,在仿真环境中改变机构的尺寸确定设计变量的约束范围为0.4m≤l1≤0.8m,0.5m≤l2≤1.0m,0.05m≤l3≤0.35m,

所述步骤4包括如下步骤:

步骤4.1改变人体模型的尺寸;

步骤4.2改变机器人结构尺寸参数;

步骤4.3仿真环境中模拟机器人辅助人体站立;

步骤4.4记录目标函数值;

步骤4.5重复步骤4.2-4.4,记录下当前人体模型尺寸下,使目标函数值最小的一组机器人机构参数,返回步骤4.1,记录多组不同人体模型尺寸对应的最优机器人机构参数,综合比较分析机器人机构参数在不同人体模型尺寸下的目标函数值,得到最终的机器人机构参数;

在设计变量的约束范围内l1,l2,l3分别以5cm作为步长进行网格化搜索,得到使目标函数取值最小的最优结构尺寸参数,再使l1,l2,l3分别以1cm作为步长在之前获得的最优结构尺寸参数附近5cm的范围内再次进行网格化搜索,得到最优结构尺寸参数为l1=0.59m,l2=0.8m,l3=0.21m,目标函数atotal=0.2098。

按照中国成年人人体尺寸中百分位为5和50的人体尺寸改变人体模型的尺寸,分别将人体尺寸的身高改变为168cm和158cm并相应修改人体各体段的尺寸。重复步骤3-4得到人体尺寸为168cm时的最优结构尺寸参数为l1=0.52m,l2=0.75m,l3=0.17m,目标函数atotal=0.1979,人体尺寸为158cm时的最优结构尺寸参数为l1=0.48m,l2=0.72m,l3=0.15m,atotal=0.1860。

为增强机器人机构参数对不同人体模型的适应性,测试三种最优结构尺寸参数在不同人体模型下目标函数的平均值,得到当l1=0.59m,l2=0.8m,l3=0.21m时,目标函数的平均值atotal_ave=0.2107,当l1=0.52m,l2=0.75m,l3=0.17m时,目标函数的平均值atotal_ave=0.2063,当l1=0.48m,l2=0.72m,l3=0.15m时,目标函数的平均值atotal_ave=0.2067,故选择l1=0.52m,l2=0.75m,l3=0.17m作机器人机构的设计参数。

具体地,在一个实施例中,一种站立及转移辅助机器人使用方法,利用上述的站立及转移辅助机器人,包括如下步骤:

抬升轨迹选择步骤:使用者在使用机器人辅助站立或移动前,需按照自己的需求从机器人末端抬升轨迹库中选定一条抬升轨迹作为机器人末端的默认抬升轨迹。在默认抬升轨迹选定后,若没有更换使用者或使用者的需求没有发生更改,则机器人将在后续的所有抬升步骤中使用默认抬升轨迹;模式选择步骤:使用者可以通过控制按钮6选择功能模式,所述功能模式包括辅助站立模式、移位模式以及助行模式;若使用者选择辅助站立模式,则进入辅助站立步骤;若使用者选择移位模式,则进入移位步骤;若使用者选择助行模式,则进入助行步骤;辅助站立步骤:使用者需先将脚踏板21卸下,然后使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚踩在机器人立座8后方的地面上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿;移位步骤:使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚放在脚踏板21上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿,接下来使用者站在放置于脚踏板21,双手握住u型扶手2,机器人通过控制部分向移动部分下发控制命令操控机器人转移使用者至设定的位置;助行步骤:使用者需将脚踏板21卸下,调整连杆5和胸部支撑垫1的角度,使胸部支撑垫1垂直于地面,且u型扶手2位于使用者胸部正前方,使用者站在底座14后方位置,通过控制摇杆7和控制按钮6操作机器人以设定的速度移动,使用者在u型扶手2的辅助下行走。

更具体地,所述移位步骤还包括如下子步骤:移位方式选择子步骤:使用者通过控制摇杆7和控制按钮6选择移位方式;所述移位方式包括手动移位和自主移位;若使用者选择手动移位方式,则进入手动移位子步骤;若使用者选择自主移位方式,则进入自主移位子步骤;手动移位子步骤:使用者通过控制摇杆7和控制按钮6选择预先设定好的目标点,控制部分接收到目标点信息后,通过携带的导航传感器11自主导航、识别需要移位的位置,将使用者导航移位至目标位置;到达目标位置后,通过上肢推杆3和抬升推杆10的调整将使用者安全平稳的落在目标位置上;

自主移位子步骤:使用者通过控制摇杆7和控制按钮6向控制部分实时地发出控制信号,控制部分接收控制信号并根据控制信号调整驱动电机16的工作状态,进而控制驱动轮20转动使设备按照使用者的操作指令移动。

本发明优选例的具备自主移动能力,可用于移位、站立及助行的辅助设备的具体使用步骤如下:

步骤1:使用者在使用机器人辅助站立或移动前,需按照自己的需求从机器人末端抬升轨迹库中选定一条抬升轨迹作为机器人末端的默认抬升轨迹。在默认抬升轨迹选定后,若没有更换使用者或使用者的需求没有发生更改,则机器人将在后续的所有抬升步骤中使用默认抬升轨迹,使用者可跳过此步骤直接执行步骤2;

步骤2:使用者远程向辅助设备发出指令信号,辅助设备接受信号并获取使用者位置。工控机17接收导航传感器11的信号并控制移动部分动作到达使用者位置附近。辅助设备使用对接传感器12识别使用者的人体位置,确定使用者的精确位置后,采用倒行的方式到达使用者人体面前,正对使用者位置。此时使用者可以从站立辅助模式,移位模式、助行模式中选择一种模式使用辅助设备。如果是站立辅助模式,则执行步骤3,如果是移位模式,则执行步骤4,如果是助行模式,则执行步骤5。

步骤3:站立辅助模式的使用过程如下:使用者需先将脚踏板21卸下,然后使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚踩在机器人立座8后方的地面上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿;

步骤4:移位模式的使用过程如下:使用者将上半身靠在胸部支撑垫1上,调整连杆5的角度使胸部支撑垫1能够紧密贴合使用者的上半身,使用者将脚放在脚踏板21上,按下控制按钮6,通过上肢推杆3和抬升推杆10将使用者从坐姿转换为站姿,接下来使用者站在放置于脚踏板21,双手握住u型扶手2,使用者通过控制摇杆7和控制按钮6选择移位方式;所述移位方式包括手动移位和自主移位;若使用者选择手动移位方式,则进入手动移位子步骤;若使用者选择自主移位方式,则进入自主移位子步骤;手动移位子步骤:使用者通过控制摇杆7和控制按钮6选择预先设定好的目标点,控制部分接收到目标点信息后,通过携带的导航传感器11自主导航、识别需要移位的位置,将使用者导航移位至目标位置;到达目标位置后,通过上肢推杆3和抬升推杆10的调整将使用者安全平稳的落在目标位置上;

步骤5:助行模式的使用过程如下:使用者需将脚踏板21卸下,调整连杆5和胸部支撑垫1的角度,使胸部支撑垫1垂直于地面,且u型扶手2位于使用者胸部正前方,使用者站在底座14后方位置,通过控制摇杆7和控制按钮6操作机器人以设定的速度移动,使用者在u型扶手2的辅助下行走。

本发明的优选例适用于辅助下肢患有残疾或行动不便的人的日常站立及转移。通过一种模仿正常人站立的方式辅助使用者站立,让使用者能够在早期就建立正确的站立过程中的肌肉记忆,有助于患者后续的康复训练。同时,机器人拥有三种不同的使用模式,满足不同情况下的使用需求,使用起来方便快捷,安全稳定。不仅解决了残障患者的移位需求,并且可以在不需要他人协助的情况下由患者操作完成整个移位过程,大大减少看护人员的工作量,且操作简便,移动稳定性强,不会对病人造成二次伤害。

本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。

在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1