一种表面接枝EGCG的羟基磷灰石纳米棒及其制备方法和应用

文档序号:26666307发布日期:2021-09-17 20:15阅读:342来源:国知局
一种表面接枝EGCG的羟基磷灰石纳米棒及其制备方法和应用
一种表面接枝egcg的羟基磷灰石纳米棒及其制备方法和应用
技术领域
1.本发明属于纳米材料技术领域,具体涉及了一种羟基磷灰石表面接枝egcg的制备方法及应用。


背景技术:

2.骨肉瘤难以清除,切除后骨癌复发的可能性很大。开发一种既能修复因肿瘤切除导致的骨缺损,同时又能较好抑制手术切除部位骨肉瘤细胞增殖的骨修复材料,可加快骨缺损部位愈合进程,降低癌症复发风险,因而有重要意义。
3.羟基磷灰石(ha)是骨无机成分,关于将ha作为骨修复材料的研究一直是医用材料研究领域的前沿热点。表没食子儿茶素没食子酸酯(epigallocatechin gallate,egcg)是儿茶素中含量最丰富且药用活性最强的成分,具有很好的抗癌、抗炎和抗氧化的等作用。近年来有研究发现egcg还有抗骨肉瘤及促进成骨细胞增殖的作用,因此,egcg在骨科领域的应用值得期待。尽管egcg具有巨大的抗癌潜力,但其生物利用度较差,限制了其临床应用。由于egcg的不稳定性,egcg到达病灶前可能已发生降解,不会通过血液循环系统到达骨缺损区域。


技术实现要素:

4.针对以上现有技术存在的缺点和不足之处,本发明的目的在于克服现有技术的不足,提供一种表面接枝egcg的羟基磷灰石纳米棒及其制备方法和应用。
5.本发明目的通过以下技术方案实现:
6.一种表面接枝egcg的羟基磷灰石纳米棒的制备方法,包括:1)利用油酸和十八胺作为模板合成尺寸可控的单分散羟基磷灰石;2)对其表面进行氨基改性得到相对分散的氨基功能化的羟基磷灰石;3)利用羟基磷灰石表面的氨基通过酰胺键接枝egcg,得到氨基功能化的羟基磷灰石表面接枝egcg。其中第三步是本发明的核心点。
7.具体地,包括以下步骤:
8.(1)利用油酸和十八胺作为合成模板,加入乙醇、ca(no3)2·
4h2o溶液和na3po4·
12h2o溶液,进行水热反应,然后离心,洗涤,干燥,得到疏水性单分散羟基磷灰石oa

om

ha;
9.(2)将oa

om

ha分散于有机溶剂中,在冰水浴中搅拌条件下加入磷酸乙醇胺溶液,进行表面改性反应,离心、洗涤、干燥,得到亲水性氨基功能化羟基磷灰石ha

nh2;
10.(3)将ha

nh2与egcg、1,1'

羰基二咪唑在dmso溶剂中,在黑暗条件和氮气气氛下反应,离心、洗涤、干燥,得到表面接枝egcg的羟基磷灰石纳米棒ha

nh2‑
egcg。
11.优选地,步骤(1)所述水热反应的温度为150
±
30℃,时间为10
±
5h。
12.优选地,步骤(1)所述十八胺与油酸的摩尔比为0.1~1.2;所述十八胺与ca(no3)2·
4h2o的摩尔比为0.6~7.2;所述十八胺与na3po4·
12h2o的摩尔比为1~12。
13.优选地,步骤(2)所述的有机溶剂为丙酮和环己烷中的一种或两种。
14.优选地,步骤(2)所述oa

om

ha与有机溶剂的质量体积比为1:(0.1~1)g/ml;所述
oa

om

ha与磷酸乙醇胺的质量比为1:(0.5~2);磷酸乙醇胺溶液的浓度为1~5g/ml。
15.优选地,步骤(3)所述ha

nh2与egcg、1,1'

羰基二咪唑的摩尔比为(0.5~2):(0.25~2):(0.5~1)。
16.优选地,步骤(1)所述洗涤是指用环己烷、乙醇和水洗涤,所述干燥是指在50

60℃烘干12

24h。
17.优选地,步骤(2)中所述洗涤是指水洗,所述干燥是指在50

60℃烘干12

24h。
18.优选地,步骤(3)中所述洗涤是指用dmso和无水乙醇洗涤,所述干燥是指真空干燥24h。
19.优选地,步骤(2)中所述反应时间为12
±
2h;所述搅拌条件为转速800

1000r/min。
20.上述方法制得的表面接枝egcg的羟基磷灰石纳米棒,可作为骨修复材料应用。
21.与现有技术相比,本发明具有以下优点和有益效果:
22.(1)本方法原料均绿色无毒,廉价易得,制备工艺简单,在水热法的基础上,通过控制物料比即可尺寸可控,单分散的羟基磷灰石纳米棒。
23.(2)本方法利用磷酸乙醇胺对油酸和十八胺表面修饰的羟基磷灰石纳米棒进行表面配体交换,达到表面改性的目的,经表面改性后,不仅可以进行亲疏水性的转换,并可以引入氨基等功能性官能团,赋予其新的性能,增加其的应用范围。
24.(3)本方法经表面改性后,纳米棒的形貌、相和组成没有明显变化,并可以很好地分散在水中,没有发生明显的团聚现象。羟基磷灰石表面引入氨基后,可以通过共价键连接egcg,能很好的提高egcg的稳定性,使得其既有诱导骨肉瘤细胞凋亡,同时又能支持骨生长。
附图说明
25.图1为实施例2不同疏水性羟基磷灰石纳米棒(oa

om

ha)的透射电镜图,a~f分别为样品oa

om

ha

1、oa

om

ha

2、oa

om

ha

3、oa

om

ha

4、oa

om

ha

6、oa

om

ha

12。
26.图2为实施例2不同疏水性羟基磷灰石纳米棒(oa

om

ha)的粒径分布图,a~f分别为样品oa

om

ha

1、oa

om

ha

2、oa

om

ha

3、oa

om

ha

4、oa

om

ha

6、oa

om

ha

12。
27.图3为实施例2疏水性羟基磷灰石(oa

om

ha4)的x射线衍射图。
28.图4为实施例2氨基表面改性前(a)、改性后(b)羟基磷灰石纳米棒分散性的对照图。
29.图5为实施例2改性后氨基功能化羟基磷灰石(ha

nh2)的透射电镜图。
30.图6为表面改性前后以及改性后结合egcg的羟基磷灰石红外光谱对照图。
31.图7为实施例2制得的ha

nh2‑
egcg与egcg的红外光谱对照图。
32.图8为不同材料共培养24h和48h的cck8实验结果图,a图(mbmscs,24h)、b图(mbmscs,48h)、c图(143b,24h)、d图(143b,48h)。
33.图9为不同材料与143b培养48h后的流式细胞图,a~e分别为对照组,ha组、ha

nh2组、ha

nh2‑
egcg组和egcg组。
具体实施方式
34.下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
35.实施例1:
36.本实施例的一种羟基磷灰石表面接枝egcg的制备方法,具体制备步骤如下:
37.(1)将十八胺(1.0g、2.0g、3g、4g、6g、12g)溶于油酸(12ml)中,加热温度为100℃。加入48ml乙醇搅拌混合,然后依次加入25ml ca(no3)2.4h2o(0.25mol/l)溶液,搅拌10min后,加入25ml na3po4·
12h2o(0.15mol/l)水溶液,搅拌10min左右。然后转移到150ml聚四氟乙烯水热反应釜中,密封反应釜,在150℃反应10h,高压釜冷却至室温。离心,用环己烷、乙醇和水洗涤数次,干燥后分别得到样品oa

om

ha

1、oa

om

ha

2、oa

om

ha

3、oa

om

ha

4、oa

om

ha

6、oa

om

ha

12,选用合适尺寸oa

om

ha

4用于后续实验。
38.(2)将50mg oa

om

ha

4纳米棒分散在20ml的环己烷中,并在冰浴中1000r/min剧烈搅拌下加入磷酸乙醇胺溶液(50mg在20ml去离子水中),反应12h。随后,由于配体从油酸到磷酸乙醇胺的交换,疏水性oa

om

ha纳米棒被彻底转移到水溶液中,使用分液漏斗收集下部水溶液。离心,用去离子水洗涤三次,干燥后得到样品ha

nh2。
39.(3)将egcg(0.05mm)溶解在3ml干燥的dmso中并加至单口烧瓶中,加入1,1'

羰基二咪唑(0.05mm)并将反应在室温、n2气氛以及在黑暗条件中搅拌24h。然后,将步骤2所得样品ha

nh2(20mg)加入上述溶液中,使反应在室温下在黑暗中进行24h。离心,用dmso和无水乙醇对产物进行多次清洗,真空干燥24h,得到样品ha

nh2‑
egcg。
40.本实施例步骤(2)改性所得产品产率为30%

40%。
41.实施例2:
42.本实施例的一种羟基磷灰石表面接枝egcg的制备方法,具体制备步骤如下:
43.(1)oa

om

ha的制备同实施例2。
44.(2)将50mg oa

om

ha

4纳米棒分散在20ml的丙酮中,并在冰浴中1000r/min剧烈搅拌下加入磷酸乙醇胺溶液(50mg在20ml去离子水中),反应12h。离心,用去离子水洗涤三次,干燥后得到样品ha

nh2。
45.(3)将egcg(0.05mm)溶解在3ml干燥的dmso中并加至单口烧瓶中。接下来,加入1,1'

羰基二咪唑(0.05mm)并将反应在室温、n2气氛以及在黑暗条件中搅拌24h。然后,将ha

nh2(20mg)加入上述溶液中,使反应在室温下在黑暗中进行24h。离心,用dmso和无水乙醇对产物进行多次清洗,真空干燥24h,得到样品ha

nh2‑
egcg。
46.本实施例步骤(1)得到的疏水性羟基磷灰石纳米棒的tem图及粒径分布图分别如图1和图2所示,可以看出制备的纳米颗粒为棒状,呈现单分散状态,并且粒径随着十八胺的量的增加而减小,平均粒径在50

130nm之间。图3为疏水性羟基磷灰石的x射线衍射图,从图中可知所得到的反应产物为羟基磷灰石。图4为表面改性前后羟基磷灰石纳米棒分散性的对照图。从图中可清楚地看到改性后羟基磷灰石在水中很好地分散。图5为改性后羟基磷灰石的透射电镜图,从图中可知改性后没有发生明显的团聚现象。本实施例步骤(2)改性后所得产品产率为60%

70%。图6为表面改性前后以及改性后结合egcg的羟基磷灰石红外光谱对照图。从图中2930cm
‑1和2855cm
‑1处由亚甲基(

ch2)的不对称和对称拉伸振动引起的特征峰的相对减弱,以及1640cm
‑1处出现的新峰,得知表面改性成功。图6中还可看出ha

nh2‑
egcg在1300

1600cm
‑1附近出现了新峰,可能归因于加载的egcg。图7为ha

nh2‑
egcg与egcg的红外光谱对照图,发现在1300

1600cm
‑1附近出现的新峰基本上与egcg相对应。
47.综上所述,这些结果表明,羟基磷灰石表面成功接枝egcg。
48.本实施例中生物活性评价使用cck

8来检测材料的细胞毒性及对骨肉瘤细胞增殖的影响。在骨髓间充质干细胞(mbmscs)和骨肉瘤细胞(143b)细胞贴壁24h后,添加浓度分别为100、200、400、800和1000μg/ml的纳米材料(ha、ha

nh2、ha

nh2‑
egcg)与相应接枝浓度的egcg,共培养24h和48h后,使用cck

8分析细胞活性分析。从图8中看出羟基磷灰石表面接枝egcg对骨髓间充质干细胞(mbmscs)没有明显毒性,且具有明显的抑制骨肉瘤细胞(143b)增殖的作用。
49.图9为骨肉瘤细胞(143b)细胞贴壁24h后,添加浓度分别为800μg/ml的纳米材料(ha、ha

nh2、ha

nh2‑
egcg)与相应接枝浓度的egcg,共培养48h后,通过流式细胞仪检测骨肉瘤细胞的凋亡情况。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1