电路壳体集成型分析物检测器件的制作方法

文档序号:32565014发布日期:2022-12-16 18:07阅读:50来源:国知局
电路壳体集成型分析物检测器件的制作方法
电路壳体集成型分析物检测器件
1.相关申请的交叉引用
2.本技术要求以下专利申请的权益并要求其优先权:2021年5月31日提交的pct专利申请,申请号为pct/cn2021/097188,以及2021年12月8日提交的pct专利申请,申请号为pct/cn2021/136533。
技术领域
3.本发明主要涉及医疗器械领域,特别涉及一种电路壳体集成型分析物检测器件。


背景技术:

4.正常人身体中的胰腺可自动监测人体血液中的葡萄糖含量,并自动分泌所需的胰岛素/胰高血糖素。而糖尿病患者胰腺的功能出现异常状况,无法正常分泌人体所需胰岛素。因此糖尿病是人体胰腺功能出现异常而导致的代谢类疾病,糖尿病为终身疾病。目前医疗技术尚无法根治糖尿病,只能通过稳定血糖来控制糖尿病及其并发症的发生和发展。
5.糖尿病患者在向体内注射胰岛素之前需要检测血糖。目前多数的检测手段可以对血糖连续检测,并将血糖数据实时发送至远程设备,便于用户查看,这种检测方法称为连续葡萄糖检测(continuous glucose monitoring,cgm)。该方法需要检测装置贴在皮肤表面,将其携带的探头刺入皮下的组织液完成检测。
6.现有技术的分析物检测器件中设置至少一块独立的电路板,以承载包括发射器天线、电触点、电源电极等电子元件和引线,电路板还包括基板,会占用器件内部大量的空间,增加分析物检测器件进一步小型化设计的难度。
7.因此,现有技术亟需一种电路占用体积更小的电路壳体集成型分析物检测器件。


技术实现要素:

8.本发明实施例公开了一种电路壳体集成型分析物检测器件,在发射器模块的壳体上设置电子电路,电子电路包括至少一个电子元件,电子元件包括发射器天线、电源电极和电触点等,以形成电子电路与发射器模块的壳体嵌合的高集成型分析物检测器件,电子电路所占用的空间更少,满足分析物检测器件小型化设计需求。
9.本发明公开了一种电路壳体集成型分析物检测器件,包括:底壳,底壳用于安装在人体皮肤表面;传感器,传感器装配于底壳上,用于检测用户体内分析物参数信息;发射器模块,发射器模块包括壳体和设置在壳体上的电子电路,电子电路包括至少一个电子元件;电子元件至少包括发射器天线,发射器天线用于与外界设备通信,以将分析物参数信息发送至外界设备;和位于发射器模块内的电池,电池用于为发射器模块提供电能。
10.根据本发明的一个方面,电子电路还包括内嵌在发射器模块的壳体内侧的基板,电子元件固定在基板上。
11.根据本发明的一个方面,电子电路与发射器模块的壳体一体成型,电子元件固定在发射器模块的壳体内侧。
12.根据本发明的一个方面,电池包括腔壳、电芯和电解液,腔壳包括上盖体和下壳体,电芯包括隔膜、正极极片、负极极片和导电片。
13.根据本发明的一个方面,上盖体和/或下壳体与发射器模块的壳体一体成型。
14.根据本发明的一个方面,腔壳内部设置有电解液隔绝层。
15.根据本发明的一个方面,电解液隔绝层为tpe或pet材质。
16.根据本发明的一个方面,解液隔绝层为涂覆在所述腔壳内壁的薄膜。
17.根据本发明的一个方面,电解液隔绝层薄膜厚度为300-500um。
18.根据本发明的一个方面,电解液隔绝层为独立于所述腔壳的封闭壳体。
19.根据本发明的一个方面,在上盖体和下壳体的连接处涂覆有密封胶。
20.根据本发明的一个方面,密封胶为热熔胶或硅胶中的一种。
21.根据本发明的一个方面,电子电路还包括电源电极,正极极片和负极极片通过导电片与电源电极电连接。
22.根据本发明的一个方面,导电片通过焊锡或者锡膏与电源电极固定连接。
23.根据本发明的一个方面,电子电路还包括电触点,电触点与传感器电连接,以获取分析物参数信息。
24.与现有技术相比,本发明的技术方案具备以下优点:
25.本发明公开的电路壳体集成型分析物检测器件中,在发射器模块的壳体上设置电子电路,电子电路包括至少一个电子元件,电子元件至少包括发射器天线、电触点和电源电极,以形成电子电路与外壳嵌合的高集成型分析物检测器件,电子电路所占用的空间更少,满足分析物检测器件小型化设计需求。
26.进一步的,电子电路还包括内嵌在发射器模块壳体内侧的基板,用于固定电子元件和导线,内嵌的基板可以节省基板占用的空间,便于分析物检测器件小型化设计。
27.进一步的,电子电路与发射器模块的壳体一体成型,电子元件和导线直接固定在发射器模块的壳体内侧,不再需要电子电路基板,减少了电子电路占用的空间,便于分析物检测器件小型化设计
28.进一步的,电池、壳体一体化的结构设计,不再需要纽扣电池的金属外壳,能充分利用检测器件的有用空间,在分析物检测器件整体体积变小的前提下,电池腔内能够填充更多的活性物质,从而使得电池腔的电量相比于纽扣电池有所增加,增加了分析物检测器件续航时间。
29.进一步的,电池腔的上盖体和/或下壳体与发射器模块的壳体一体成型,腔内形成良好的密封环境,可以防止电解液泄漏,以及外界空气、水分进入到腔壳内。
30.进一步的,电解液隔绝层为tpe或pet材质,可以有效防止电解液对腔壳造成腐蚀。
附图说明
31.图1为根据本发明第一实施例分析物检测器件的结构示意图;
32.图2为根据本发明第一实施例传感器立体结构示意图;
33.图3为根据本发明第一实施例发射器模块的内部结构图;
34.图4为根据本发明第一实施例电池腔的x-x’剖面结构示意图;
35.图5为根据本发明第一实施例正极极片的电化学阻抗谱对比图;
36.图6a为根据本发明第一实施例安装密封环前图2所示传感器的c-c’剖面图;
37.图6b为根据本发明第一实施例安装密封环后图2所示传感器的c-c’剖面图;
38.图6c为根据本发明第一实施例安装密封环和发射器模块后图2所示传感器的c-c’剖面图;
39.图7a为根据本发明第二实施例分析物检测器件的结构示意图;
40.图7b为根据本发明第二实施例打开发射器模块壳体后的分析物检测器件结构示意图;
41.图7c为根据本发明第二实施例发射器模块v-v’剖面图;
42.图8为根据本发明第二实施例底壳的俯视图;
43.图9a为根据本发明第二实施例安装密封环前图8所示底壳的y-y’剖面图;
44.图9b为根据本发明第二实施例安装密封环后图8所示底壳的y-y’剖面图;
45.图9c为根据本发明第二实施例安装密封环和发射器模块后图8所示底壳的y-y’剖面图;
46.图10为根据本发明第三实施例分析物检测器件的第一种结构示意图;
47.图11为根据本发明第三实施例的第一种结构发射器模块的内部结构图;
48.图12为根据本发明第三实施例的第一种结构电池的z-z’剖面结构示意图;
49.图13为根据本发明第三实施例分析物检测器件的第二种结构示意图;
50.图14为根据本发明第三实施例分析物检测器件的第二种结构电子电路的u-u’剖面图。
具体实施方式
51.如前所述,现有技术分析物检测器件的形状和尺寸受制于纽扣电池壳体的形状和尺寸,增加了器件进一步小型化设计的难度。
52.为了解决该问题,本发明提供了一种电路壳体集成型分析物检测器件,在发射器模块的壳体上设置电子电路,电子电路包括至少一个电子元件,电子元件至少包括发射器天线、电触点和电源电极,以形成电子电路与发射器模块壳体嵌合的高集成型分析物检测器件,电子电路所占用的空间更少,满足分析物检测器件小型化设计需求。
53.现在将参照附图来详细描述本发明的各种示例性实施例。应理解,除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不应被理解为对本发明范围的限制。
54.此外,应当理解,为了便于描述,附图中所示出的各个部件的尺寸并不必然按照实际的比例关系绘制,例如某些单元的厚度、宽度、长度或距离可以相对于其他结构有所放大。
55.以下对示例性实施例的描述仅仅是说明性的,在任何意义上都不作为对本发明及其应用或使用的任何限制。这里对于相关领域普通技术人员已知的技术、方法和装置可能不作详细讨论,但在适用这些技术、方法和装置情况下,这些技术、方法和装置应当被视为本说明书的一部分。
56.应注意,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义或说明,则在随后的附图说明中将不需要对其进行进一步讨论。
57.第一实施例
58.图1为本发明第一实施例分析物检测器件的结构示意图。
59.检测器件包括底壳10、传感器11、连接件114、发射器模块12和电池腔123。
60.底壳10用于装配发射器模块12和传感器11,并通过底部粘结胶布(图中未示出)将检测器件粘贴在皮肤表面。底壳10包括固定部与施力部。底壳10上设置有至少一个第二卡合部101。第二卡合部101用于卡合发射器模块12。具体的,在本发明实施例中,第二卡合部101的数量为两个。两个第二卡合部101对应设置于底壳10的侧壁。
61.在这里,固定部与施力部是相对的概念。根据底壳10与发射器模块12的结构设计,固定部与施力部的位置可以有不同的选择,下文将详细叙述。
62.发射器模块12上设置有至少一个第一卡合部121。第一卡合部121与第二卡合部101相对应。通过第二卡合部101和第一卡合部121互相卡合,发射器模块12装配于底壳10上。明显的,在本发明实施例中,发射器模块12上设置有两个第一卡合部121,即,两对互相卡合的第一卡合部121与第二卡合部101。
63.在这里,第一卡合部121与第二卡合部101相对应是指两者的数量相等、位置对应。
64.当在分离底壳10与发射器模块12时,固定部被手指或者其他设备固定,利用另一个手指或者其他辅助设备在一个方向上对施力部施加力的作用,底壳10将失效,第二卡合部101和第一卡合部121互相分离,进而使发射器模块12与底壳10分离。即,用户在分离底壳10与发射器模块12时,仅用一根手指在一个方向对施力部施加作用力,就可将两者分离,便于用户操作。分离之后,发射器模块12能够重复使用,降低了用户的成本。
65.在这里需要说明的是,失效为工程材料领域的常规概念。失效后,材料失去原有的功能作用,失效部位不能再次复原。由于第二卡合部101为底壳10的一部分,底壳10失效包括底壳10的底板、侧壁或者第二卡合部101失效。因此,底壳10的失效方式包括底壳10的底板或侧壁断裂、底壳10折损、第二卡合部101断裂、底壳10塑性形变中的一种或者多种。明显的,底壳10失效后,底壳10失去卡合发射器模块12的功能和作用。
66.固定固定部的方式包括夹持,支撑等方式,在这里并不作具体限制,只要能够满足将固定部固定的条件即可。
67.结合图2所示传感器立体结构示意图,传感器11安装在底壳10上,至少包括探头113和连接件114,探头113用于刺入人体皮肤,检测体液分析物参数信息,并转换为电信号,电信号通过连接件114传递到发射器模块12的电触点122,发射器模块12再向用户传输体液分析物参数信息。
68.在本发明实施例中,连接件114包括至少两个导电区和绝缘区。导电区和绝缘区分别起到电导通和电绝缘的作用。导电区与绝缘区彼此不能够被分离,即导电区与绝缘区分别属于连接件114整体的一部分。连接件114只能通过导电区纵向导电,绝缘区使导电区之间彼此绝缘,因此不能横向导电。一个连接件114同时起到电导通和电绝缘的作用,检测器件内部结构的复杂程度降低,内部结构更紧凑,提高了检测器件的集成度。
69.图3为根据本发明一个实施例发射器模块的内部结构图;图4为电池腔的x-x’剖面结构示意图。
70.结合参照图3和图4,在本发明实施例中,电池腔123位于发射器模块12内,电池腔腔壳1231的下壳体12312即为发射器模块12的壳体124,以形成良好的密封,防止电解液泄
漏,以及外界空气、水滴等杂物进入到电池腔123内。在本发明实施例中,电池腔123通过导线126为内部电路125的电源电极1251电连接,为内部电路125供电。
71.电池腔123包括腔壳1231、隔膜1232、电解液1233、正极极片1234、负极极片1235和两个极耳1236。各部件实际尺寸及比例并不必然等于图4中各部件尺寸及比例。
72.在本发明实施例中,腔壳1231材料为pe、pp、hdpe、pvc、abs、pmma、pc、pps或pu中的一种,相比于采用金属外壳的纽扣电池,采用塑料材质腔壳1231的电池腔123重量可以大为减小,从而使得分析物检测器件的整体重量减小,提高了用户体验。在本发明优选实施例中,腔壳1231分为上盖体12311和下壳体12312,下壳体12312的材料与发射器模块的壳体124的材料一致,便于加工时一体注塑成型,提高生产效率。
73.在本发明实施例中,上盖体12311盖合在下壳体12312上,内部形成密闭的腔室空间,在上盖体12311与下壳体12312的连接处涂覆有密封胶。
74.在本发明实施例中,由于塑料材质的腔壳1231,例如pe(聚乙烯)、pp(聚丙烯)、pc(聚碳酸酯),容易被电解液腐蚀,因此还需要在腔壳1231的内部设置一层电解液隔绝层1237。
75.在本发明实施例中,腔壳1231的剖面形状不局限于图示所示长方形,也可以是圆形、椭圆形、三角形或其他不规则形状,其立体结构能充分利用发射器模块12和底壳10间的可用空间,以适应分析物检测器件的小型化设计。
76.在本发明实施例中,电解液隔绝层1237可以是tpe(丁基橡胶)或pet(聚对苯二甲酸乙二醇酯),tpe是热塑性弹性体材料,加工性强,pet本身作为电解液的盛放容器,能有效隔绝电解液对腔壳和电路器件的腐蚀。
77.在本发明实施例中,电解液隔绝层1237可以是通过沉积法或溶液法涂覆在腔壳1231内部的薄膜,也可以是一层单独的壳体。
78.在本发明优选实施例中,电解液隔绝层1237为300-500um厚度的薄膜。电解液隔绝层1237的厚度过小膜材会被电解液浸润和软化,长时间后会导致膜材老化,厚度过大会占用腔室内部空间。在本发明更优选实施例中,电解液隔绝层1237的厚度为400um。
79.在本发明实施例中,电解液1233的溶质为锂盐,如高氯酸锂(liclo4)、六氟磷酸锂(lipf6)、四氟硼酸锂(libf4)中的一种。溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、五氟化磷、氢氟酸、乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯中的一种。在本发明优选实施例中,溶剂选用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯中的一种。
80.在本发明实施例中,正极极片1234的主要材料为二氧化锰,并由以下制作工艺制得:
81.①
对电解二氧化锰、导电剂、粘结剂进行筛分,可以通过筛网或者气流分级机完成,选取粒度小于200um的电解二氧化锰颗粒,置于石英舟中,并在烧结炉中进行热处理,温度加热至200℃,持续4h。这一步骤的目的是为了使电解二氧化锰失去部分结合水,x射线衍射峰发生位移,晶面间距减小,mn-o键合力增强,从而使得电解二氧化锰放电容量增强。
82.②
将步骤

中的电解二氧化锰降温至60℃以下后,用电子天平分别称取9g电解二氧化锰、0.5g粒度小于200um的导电剂和0.5g粒度小于200um的粘结剂,置于研磨皿中,充分搅拌混合后,进行手工或者电动研磨,得到10g研磨混合物,并使得研磨混合物可以通过300
目(粒度48um)的筛网。这一步骤的目的是保证混料的均匀性,避免出现导电剂、添加剂分散不均匀的现象。
83.在本发明其他实施例中,电解二氧化锰、导电剂和粘结剂按质量配比不仅限于上述份额,其质量份额可分别按80%-96%、2%-10%和2%-10%进行配比。
84.在本发明优选实施例中,导电剂可以为导电炭黑、石墨、super p或碳纳米管中的一种或多种。
85.在本发明优选实施例中,粘结剂可以为pvdf(聚偏氟乙烯)、聚四氟乙烯、聚丙烯酸钠中的一种或多种。
86.③
将研磨混合物置于真空烘箱中,加热到65℃,持续5h,烘干混合物中可能存在的水分,保证样品干燥,得到正极混合物。
87.④
在干燥的玻璃瓶中滴加10g的nmp(n-甲基吡咯烷酮)溶剂,然后将正极混合物缓慢添加到玻璃瓶中,并用磁力搅拌器搅拌,持续3h,保证混料均匀,得到固含量为50%的正极浆料。这一步骤的目的是保证正极浆料中各组分分散均匀,并且固含量与正极浆料的粘度有一定关系,50%固含量的正极浆料粘度较好,涂覆在基底上后的成膜效果较好,可以减少掉粉或者破裂的现象。
88.⑤
使用平板涂覆机将正极浆料涂覆在基底表面,得到导电层,然后将导电层和基底置于真空烘箱中烘烤,加热至110℃,持续12h,保证水分完全烘干。
89.在本发明优选实施例中,基底材料为铝箔或泡沫镍网中的一种,厚度为12-18um。
90.在本发明更优选实施例中,基底材料为铝箔,厚度为15um。
91.⑥
使用电动立式辊压机对导电层和基底进行辊压,可以使导电层和基底的整体厚度下降到180-220um,得到正极极片成品。通过调整涂覆机和辊压机的工作参数,能控制正极极片的厚度,保证极片在较高的压实密度前提下,还可以同时具备比较完善的导电网络,从而可以适应大电流脉冲放电的工作需求。
92.图5为正极极片的电化学阻抗谱对比图,实线为根据本发明实施例工艺步骤(干湿混料结合的涂膜法)加工得到的正极极片α的电化学阻抗曲线,虚线为现有技术工艺步骤(压片涂膏法)加工得到的正极极片β的电化学阻抗曲线。从图中可以看出,在r
sei
阶段,实线曲率小于虚线曲率,表明正极极片α的极化程度小于正极极片β,因此在大电流脉冲放电时,正极极片α的电阻小于正极极片β的电阻,提高了电池放电能力。其次,在r
ct
阶段,实线曲率依旧小于虚线曲率,表明正极极片α的电阻小于正极极片β的电阻,这是由于在电池中的同等环境下,正极极片α的孔隙率大于正极极片β的孔隙率,正极极片α能容纳更多、更高浓度的电解液,进一步提高了电池在大电流脉冲时的放电能力。
93.在本发明实施例中,负极极片1235主要为锂基材料。
94.在本发明实施例中,隔膜1232的材料为pe(聚乙烯)或pp(聚丙烯),可以是单层pe或pp,也可以是3层pe或pp。
95.在本发明实施例中,极耳1236的一端端部a与正极极片1234或负极极片1235固定连接,在本发明优选实施例中,端部a通过锡焊或锡膏与正极极片1234或负极极片1235固定连接。
96.在本发明实施例中,与正极极片相连的极耳1236材料为铝,与负极极片相连的极耳1236材料为镍或者铜镀镍。
97.在本发明实施例中,在腔壳1231的侧壁上还设置有通孔,极耳1236的另一端端部b从腔壳内部穿过通孔到腔壳外部,并在腔壳外侧的端部b与通孔连接处涂覆有绝缘胶,以实现极耳1236与腔壳1231的固定连接,同时极耳1236的另一端端部b还与导线126的端部c固定连接。
98.在本发明实施例中,导线126的另一端端部d与内部电路125电连接。
99.在本发明优选实施例中,极耳1236的端部b与导线126通过焊锡固定连接。在本发明更优选实施例中,在极耳1236的端部b与导线126的端部c的连接处及极耳1236的端部b与通孔连接处涂覆有密封材料,如热熔胶或者硅胶,一方面可以防止电解液泄漏到电池腔123外,造成污染;另一方面防止极耳1236的端部b裸露在腔壳1231上,避免不必要的电池放电。
100.具体的,在本发明实施例中,电池腔123的加工工艺流程如下:
101.①
在上盖体12311和下壳体12312的内部涂覆pet或者tpe材料,厚度为300-500um,放在恒温烘箱内静置,设置温度60-85℃,直至涂覆材料完全干燥;
102.②
将电芯(包括负极极片1235、负极极耳1236、隔膜1232、正极极片1234、正极极耳1236)放置在下壳体12312内,正负极极耳1236的一端通过锡膏固定在腔壳1231侧壁的通孔上,同时正负极极耳1236的另一端分别通过锡焊或者锡膏与正负极极片固定连接;
103.③
下壳体12312静置放置,利用移液枪向下壳体12312内注射电解液1233,并将整体移至过度舱真空静置,保证电解液的完全浸润,以提高电池腔的电化学性能;
104.④
下壳体12312静置结束后将上盖体12311盖合,在盖合连接处涂覆密封胶,保持密封性,得到完整的电池腔。
105.继续参照图1,电触点122与连接件114形成电连接,在传感器底壳111上、连接件114四周设有凹槽131,用于放置密封环130,密封环轮廓与凹槽轮廓保持一致,凹槽131及密封环130组成防水结构,为发射器模块12与传感器11的电连接提供防水保护。
106.在本发明其他实施例中,密封环轮廓与凹槽轮廓也可以不一致,例如凹槽为方形、圆形、弧形或其组合形状,相应的密封环为圆形、弧形、方形或其组合形状。
107.为更清楚的理解凹槽131及密封环130组成的防水结构的防水原理,参照图6a、图6b、图6c。
108.图6a为安装密封环130前,图2所示传感器11的c-c’剖面图,凹槽131设置在传感器底壳111上,环绕在探头113和连接件114四周。探头113分为体内部分113b和体外部分113a,体外部分113a向传感器底壳111上端弯折或者弯曲,并平铺在传感器底壳111上。图6b为安装密封环130后,图2所示传感器11的c-c’剖面图,密封环130轮廓与凹槽131轮廓一致,密封环130紧密贴合凹槽131、探头13和连接件114,并且密封环130的上端面略高于连接件114的上端面。这里“略高”指密封环130上端面高于连接件114上端面0~5mm,优选为1mm。图6c为安装密封环130和发射器模块12后,图2所示传感器11的c-c’剖面图,电触点122与连接件114接触,发射器模块的壳体与密封环130上表面接触,可以预见的是发射器模块的壳体124、密封环130和凹槽131可以形成密封的容室132,探头体外部分113a、连接件114和电触点122位于该容室132内。当检测器件进入水下时,水滴被发射器壳体12、密封环130和凹槽131阻挡,无法进入到容室132内,由此对电触点122和连接件114的电连接区形成防水保护。
109.在本发明的其他实施例中,密封环尺寸略大于凹槽尺寸,这样可以使得密封环130更加紧密安装在凹槽131中,不易脱落,并且密封环130边缘可与凹槽131形成更密闭的接
触,达到更理想的防水保护。
110.在本发明的其他实施例中,也可在探头体外部分113a下方、传感器底壳111上方增设一层密封环(图中未示出),与探头体外部分113a上方的密封环、凹槽共同组成防水结构,能更好的阻止水滴进入到电连接区,起到更好的防水效果。
111.在本发明的其他实施例中,密封环材料优选为绝缘橡胶,由于橡胶为柔性材料,且具备一定的抗压弹性,发射器模块12安装到底壳10上时对密封环130有一定的挤压力,能更好的保持密封环130与发射器模块的壳体124的紧密接触,阻止水滴进入电连接区,避免引起短路和电流强度扰动。
112.第二实施例
113.图7a为本发明第二实施例分析物检测器件的结构示意图。
114.检测器件包括底壳20、传感器11、连接件114、发射器模块22和电池腔203。
115.结合图2所示传感器立体结构示意图,传感器11安装在底壳20上,至少包括探头113和连接件114,探头113用于刺入人体皮肤,检测体液分析物参数信息,并转换为电信号,电信号通过连接件114传递到发射器模块22的电触点222,发射器模块22再向外界设备传输体液分析物参数信息。
116.在本发明实施例中,连接件114包括至少两个导电区和绝缘区。导电区和绝缘区分别起到电导通和电绝缘的作用。导电区与绝缘区彼此不能够被分离,即导电区与绝缘区分别属于连接件114整体的一部分。连接件114只能通过导电区纵向导电,绝缘区使导电区之间彼此绝缘,因此不能横向导电。一个连接件114同时起到电导通和电绝缘的作用,检测器件内部结构的复杂程度降低,内部结构更紧凑,提高了检测器件的集成度。
117.图7b为本发明第二实施例打开发射器模块壳体后的分析物检测器件结构示意图;图7c为根据本发明第二实施例发射器模块v-v’剖面图。
118.结合参考图7b和图7c。在本发明实施例中,发射器模块22包括壳体220和设置在壳体220上的电子电路224,电子电路224包括至少一个电子元件(简化为图中块状物体)和引线(图中未示出)。电子元件至少包括发射器天线225、电源电极223和电触点222等。
119.在本发明实施例中,电子电路224还包括基板(图中未示出),电子元件及导线固定在基板上。基板内嵌在发射器模块的壳体220内侧,即基板的表面相对于发射器模块的壳体220内侧表面平齐,或者基板内陷于发射器模块的壳体220内侧表面,以减少基板占用的体积。
120.在本发明实施例中,基板可以预先定制,将电子元件及引线预敷设在基板上,然后将基板内嵌到发射器模块的壳体220内侧,可以减少壳体的加工工艺难度和加工时间。
121.在本发明其他实施例中,电子元件及引线固定在发射器模块的壳体220上,即电子电路224与发射器模块的壳体220一体成型,如图7c所示。
122.在本发明实施例中,电子电路224不再需要基板作为电子元件及引线的载体,进一步节省了电子电路占用的空间,满足分析物检测器件小型化设计需求。
123.在本发明实施例中,与电子电路224一体成型的发射器模块的壳体220可以通过加成法、减去法、积层法、panel法、pattern法等工艺制作。
124.继续参考图7a。在本发明其他实施例中,两个第二卡合部202的连线l1将底壳20分为a侧与b侧。a侧设置有施力部,b侧设置有固定部。
125.在本发明实施例中,固定部与施力部是相对的概念。根据底壳20与发射器模块22的结构设计,固定部与施力部的位置可以有不同的选择。
126.因此,在本发明实施例中,分离底壳20和发射器模块22的过程如下:用手指固定b侧的固定部,用另一个手指沿一个方向对施力部施加作用力f,使第二卡合部202失效,进而分离第二卡合部202与第一卡合部221,使发射器模块22与底壳20分离。
127.需要说明的是,本发明实施例并不限制第二卡合部202的位置,如两个第二卡合部202可以设置于底壳20的底板上,在这里并不做具体限制。
128.本发明的实施例对检测器件俯视图的形状并不作具体限制,其形状还可以为圆角矩形、矩形、圆形、椭圆形或者其它形状。
129.电池腔203用于向发射器模块22供电,并设置于底壳20上。这样在每次更换底壳20时可以同时更换电池腔203,发射器模块22因不再设置电池而可以一直重复使用,减小了用户更换发射器模块22的成本,同时底壳20一直使用高性能的新电池腔,可以保证发射器模块22的持续高性能工作状态。
130.优选的,在本发明实施例中,电池腔203的顶部与发射器模块22的顶部平齐,这样能够减小检测器件的厚度尺寸。
131.电池腔203可直接作为施力部,因此,电池设置于l1的a侧。由于电池腔203面积相对较大,作为施力部,用户更容易将作用力施加在电池腔203上,优化用户的操作步骤。
132.图8为根据本发明一个实施例中底壳20的俯视图。
133.由于电池腔203需要向发射器模块22供电,因此,在本发明实施例中,底壳20还设置有至少两个弹性导电体204。发射器模块22的电源电极223通过弹性导电体204分别与电池的正负极电连接,形成电连接区。电池腔203通过弹性导电体204及电源电极223向发射器模块22供电,一旦电连接区进入水滴,导致短路,造成电池腔203供电不稳定,发射器模块22接收到的电流强度出现波动,可能导致发射器模块22接收到探头113的体液分析物参数信息以及发射的参数信息出现跳动,影响分析物检测器件的可靠性,因此需要对该电连接区进行防水保护。该电连接区防水结构包括凹槽207和密封环205。
134.为更清楚的理解凹槽207及密封环205组成的防水结构的防水原理,以及电池腔的结构,参照图9a、图9b、图9c。
135.图9a为安装密封环205前,图8所示底壳20的y-y’剖面图,电池腔203由腔壳2031、电解液隔绝层2032、隔膜2033、电解液2034、正极极片2035、负极极片2035’和极耳2036组成。各部件实际尺寸及比例并不必然等于图8中各部件尺寸及比例。
136.在本发明实施例中,腔壳2031材料为pe、pp、hdpe、pvc、abs、pmma、pc、pps或pu中的一种,相比于采用金属外壳的纽扣电池,采用塑料材质腔壳2031的电池腔203的重量可以大为减小,从而使得分析物检测器件的整体重量减小,提高了用户体验。
137.在本发明实施例中,腔壳2031分为上盖体20311和下壳体20312,上盖体20311盖合在下壳体20312上,内部形成密闭的腔室空间,在上盖体20311与下壳体20312的连接处涂覆有密封胶。
138.在本发明一个实施例中,上盖体20311与底壳20一体成型,下壳体20312为独立的壳体。
139.在本发明又一个实施例中,下壳体20312与底壳20一体成型,上盖体20311为独立
的盖体。
140.在本发明优选实施例中,腔壳2031的材料与底壳20的材料一致,便于加工时一体注塑成型,提高生产效率。
141.在本发明实施例中,腔壳2031的剖面形状不局限于图示所示长方形,也可以是圆形、椭圆形、三角形或其他不规则形状,其立体结构能充分利用发射器模块22和底壳20间的可用空间,以适应分析物检测器件的小型化设计。
142.在本发明实施例中,由于塑料材质的腔壳2031,例如pe(聚乙烯)、pp(聚丙烯)、pc(聚碳酸酯),容易被电解液腐蚀,因此还需要在腔壳2031的内部涂覆一层电解液隔绝层2032。在本发明实施例中,电解液隔绝层2032可以是tpe(丁基橡胶)或pet(聚对苯二甲酸乙二醇酯),tpe是热塑性弹性体材料,加工性强,pet本身作为电解液的盛放容器,能有效隔绝电解液对腔壳和电路器件的腐蚀。
143.在本发明实施例中,电解液隔绝层2032可以是通过沉积法或溶液法涂覆在腔壳2031内部的薄膜,也可以是一层单独的壳体。
144.在本发明优选实施例中,电解液隔绝层2032为300-500um厚度的薄膜,电解液隔绝层2032的厚度过小膜材会被电解液浸润和软化,长时间后会导致膜材老化,厚度过大会占用腔室内部空间。在本发明更优选实施例中,电解液隔绝层2032的厚度为400um。
145.在本发明实施例中,电解液2034的溶质为锂盐,如高氯酸锂(liclo4)、六氟磷酸锂(lipf6)、四氟硼酸锂(libf4)中的一种,溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、五氟化磷、氢氟酸、乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯中的一种。在本发明优选实施例中,溶剂选用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯中的一种。
146.在本发明实施例中,正极极片2035的主要材料为二氧化锰,并由以下制作工艺制得:
147.①
对电解二氧化锰、导电剂、粘结剂进行筛分,可以通过筛网或者气流分级机完成,选取粒度小于200um的电解二氧化锰颗粒,置于石英舟中,并在烧结炉中进行热处理,温度加热至200℃,持续4h。这一步骤的目的是为了使电解二氧化锰失去部分结合水,x射线衍射峰发生位移,晶面间距减小,mn-o键合力增强,从而使得电解二氧化锰放电容量增强。
148.②
将步骤

中的电解二氧化锰降温至60℃以下后,用电子天平分别称取9g电解二氧化锰、0.5g粒度小于200um的导电剂和0.5g粒度小于200um的粘结剂,置于研磨皿中,充分搅拌混合后,进行手工或者电动研磨,得到10g研磨混合物,并使得研磨混合物可以通过300目(粒度48um)的筛网。这一步骤的目的是保证混料的均匀性,避免出现导电剂、添加剂分散不均匀的现象。
149.在本发明其他实施例中,电解二氧化锰、导电剂和粘结剂按质量配比不仅限于上述份额,其质量份额可分别按80%-96%、2%-10%和2%-10%进行配比。
150.在本发明优选实施例中,导电剂可以为导电炭黑、石墨、super p或碳纳米管中的一种或多种。
151.在本发明优选实施例中,粘结剂可以为pvdf(聚偏氟乙烯)、聚四氟乙烯、聚丙烯酸钠中的一种或多种。
152.③
将研磨混合物置于真空烘箱中,加热到65℃,持续5h,烘干混合物中可能存在的
水分,保证样品干燥,得到正极混合物。
153.④
在干燥的玻璃瓶中滴加10g的nmp(n-甲基吡咯烷酮)溶剂,然后将正极混合物缓慢添加到玻璃瓶中,并用磁力搅拌器搅拌,持续3h,保证混料均匀,得到固含量为50%的正极浆料。这一步骤的目的是保证正极浆料中各组分分散均匀,并且固含量与正极浆料的粘度有一定关系,50%固含量的正极浆料粘度较好,涂覆在基底上后的成膜效果较好,可以减少掉粉或者破裂的现象。
154.⑤
使用平板涂覆机将正极浆料涂覆在基底表面,得到导电层,然后将导电层和基底置于真空烘箱中烘烤,加热至110℃,持续12h,保证水分完全烘干。
155.在本发明优选实施例中,基底材料为铝箔或泡沫镍网中的一种,厚度为12-18um。
156.在本发明更优选实施例中,基底材料为铝箔,厚度为15um。
157.⑥
使用电动立式辊压机对导电层和基底进行辊压,可以使导电层和基底的整体厚度下降到180-220um,得到正极极片成品。通过调整涂覆机和辊压机的工作参数,能控制正极极片的厚度,保证极片在较高的压实密度前提下,还可以同时具备比较完善的导电网络,从而可以适应大电流脉冲放电的工作需求。
158.通过上述步骤得到的正极极片2035性能与图5所示一致,在此不再赘述。
159.在本发明实施例中,负极极片2035’主要为锂基材料。
160.在本发明实施例中,隔膜2033的材料为pe(聚乙烯)或pp(聚丙烯),可以是单层pe或pp,也可以是3层pe或pp。
161.在本发明实施例中,电池极耳2036的正极材料为铝,负极材料为镍或者铜镀镍。
162.在本发明实施例中,极耳2036包括导电触点20361和导电片20362,导电触点20361的一端端部a与正极极片2035或负极极片2035’固定连接。在本发明优选实施例中,端部a通过锡焊或锡膏与正极极片2035或负极极片2035’固定连接。
163.在本发明实施例中,在腔壳2031的侧壁上还设置有通孔,导电触点20361的另一端端部b从腔壳内部穿过通孔到腔壳外部,并在腔壳外侧的端部b与通孔连接处涂覆有密封胶,以实现极耳2036与腔壳2031的固定连接。在本发明优选实施例中,导电触点20361的端部b与腔壳2031通过焊锡固定连接。
164.在本发明实施例中,导电片20362的一端端部c与导电触点20361的端部b固定连接。
165.在本发明实施例中,在导电片20362的端部c与导电触点20361的端部b固定连接处、电触点20361的端部b与通孔的连接处还涂覆有绝缘密封材料,例如热熔胶或硅胶,一方面防止电解液2034通过通孔泄漏到腔壳2031外面,造成污染;另一方面防止极耳2036的端部b裸露在腔壳2031上,避免不必要的电池放电。
166.具体的,在本发明实施例中,电池腔203的加工工艺流程如下:
167.①
在上盖体20311和下壳体20312的内部涂覆pet或者tpe材料,厚度为300-500um,放在恒温烘箱内静置,设置温度60-85℃,直至涂覆材料完全干燥;
168.②
将电芯(包括负极极片2035’、负极极耳2036、隔膜2033、正极极片2035、正极极耳2036依次固定在下壳体20312内,正负极极耳2036的一端通过锡膏固定在腔壳2031侧壁的通孔上,同时正负极极耳2036的另一端分别通过锡焊或者锡膏与正负极极片固定连接;
169.③
下壳体20312静置放置,利用移液枪向下壳体20312内注射电解液2034,并将整
体移至过度舱真空静置,保证电解液的完全浸润,以提高电池腔的电化学性能;
170.④
下壳体20312静置结束后将上盖体20311盖合,在盖合连接处涂覆密封胶,保持密封性,得到完整的电池腔。
171.在本发明实施例中,导电片20362的另一端端部d向电池腔203外延伸至凹槽207并覆盖凹槽207底端面,弹性导电体204位于凹槽207中间,一端固定于导电片20362的端部d上。连接正极极片2035的导电片20362为正极,连接负极极片2035’的导电片20362为负极。
172.在本发明优选实施例中,弹性导电体204为导电弹簧。
173.图9b为安装密封环205后,图8所示底壳20的y-y’剖面图,密封环205位于凹槽207上端面,其轮廓与凹槽轮廓一致,并能包络住弹性导电体204,密封环205上端面略高于凹槽207上端面,这里“略高”指密封环205上端面高于凹槽207上端面0~5mm,优选为1mm。图9c为安装密封环205和发射器模块22后,图8所示底壳20的y-y’剖面图,电源电极223与弹性导电体204接触,以获取电池腔203电能,发射器模块22的壳体与密封环205上表面接触,可以预见的是发射器模块22壳体、密封环205、凹槽207和导电片20362形成密封的容室210,电源电极223、弹性导电体204位于该密封容室210内。当检测器件进入水下时,水滴被发射器模块22壳体、密封环205和凹槽207阻挡,无法进入到容室210内,由此对发射器电源电极223、弹性导电体204、导电片20362的电连接区形成防水保护。
174.在本发明的其他实施例中,密封环尺寸略大于凹槽尺寸,这样可以使得密封环205更加紧密安装在凹槽207中,不易脱落,并且密封环205边缘可与凹槽207形成更密闭的接触,达到更理想的防水保护。
175.在本发明的其他实施例中,弹性导电体204为能够与电源电极223电连接的弹性导电材料,例如可以是导电弹簧或者导电弹片,发射器模块22安装在底壳20上时,电源电极223挤压弹性导电体204,使弹性导电体204持续压缩并保持弹力,这样弹性导电体204可与电源电极223保持持续的紧密接触,保证电池腔203为发射器模块22输送稳定的电能。
176.在本发明的其他实施例中,密封环材料优选为绝缘橡胶。由于橡胶为柔性材料,且具备一定的抗压弹性,发射器模块22安装到底壳20上时对密封环205有一定的挤压力,能更好的保持密封环205与发射器模块22壳体的紧密接触,阻止水滴进入电连接区,避免引起短路和电流强度扰动。
177.在本发明实施例中,传感器11与发射器模块22的电触点222的防水结构与第一实施例相同,在此不再赘述。
178.第三实施例
179.图10为本发明第三实施例分析物检测器件的第一种结构示意图。
180.检测器件包括底壳30、传感器11、连接件114、发射器模块32和电池323。
181.底壳30用于装配发射器模块32和传感器11,并通过底部粘结胶布(图中未示出)将检测器件粘贴在皮肤表面。底壳30包括固定部与施力部。底壳30上设置有至少一个第二卡合部301。第二卡合部301用于卡合发射器模块32。具体的,在本发明实施例中,第二卡合部301的数量为两个。两个第二卡合部301对应设置于底壳30的侧壁。
182.在这里,固定部与施力部是相对的概念。根据底壳30与发射器模块32的结构设计,固定部与施力部的位置可以有不同的选择,下文将详细叙述。
183.发射器模块32上设置有至少一个第一卡合部321。第一卡合部321与第二卡合部
301相对应。通过第二卡合部301和第一卡合部321互相卡合,发射器模块32装配于底壳30上。明显的,在本发明实施例中,发射器模块32上设置有两个第一卡合部321,即,两对互相卡合的第一卡合部321与第二卡合部301。
184.在这里,第一卡合部321与第二卡合部301相对应是指两者的数量相等、位置对应。
185.当在分离底壳30与发射器模块32时,固定部被手指或者其他设备固定,利用另一个手指或者其他辅助设备在一个方向上对施力部施加力的作用,底壳30将失效,第二卡合部301和第一卡合部321互相分离,进而使发射器模块32与底壳30分离。即,用户在分离底壳30与发射器模块32时,仅用一根手指在一个方向对施力部施加作用力,就可将两者分离,便于用户操作。分离之后,发射器模块32能够重复使用,降低了用户的成本。
186.在这里需要说明的是,失效为工程材料领域的常规概念。失效后,材料失去原有的功能作用,失效部位不能再次复原。由于第二卡合部301为底壳30的一部分,底壳30失效包括底壳30的底板、侧壁或者第二卡合部301失效。因此,底壳30的失效方式包括底壳30的底板或侧壁断裂、底壳30折损、第二卡合部301断裂、底壳30塑性形变中的一种或者多种。明显的,底壳30失效后,底壳30失去卡合发射器模块32的功能和作用。
187.固定固定部的方式包括夹持,支撑等方式,在这里并不作具体限制,只要能够满足将固定部固定的条件即可。
188.结合图2所示传感器立体结构示意图,传感器11安装在底壳30上,至少包括探头113和连接件114,探头113用于刺入人体皮肤,检测体液分析物参数信息,并转换为电信号,电信号通过连接件114传递到发射器模块32的电触点322,发射器模块32再向用户传输体液分析物参数信息。
189.在本发明实施例中,连接件114包括至少两个导电区和绝缘区。导电区和绝缘区分别起到电导通和电绝缘的作用。导电区与绝缘区彼此不能够被分离,即导电区与绝缘区分别属于连接件114整体的一部分。连接件114只能通过导电区纵向导电,绝缘区使导电区之间彼此绝缘,因此不能横向导电。一个连接件114同时起到电导通和电绝缘的作用,检测器件内部结构的复杂程度降低,内部结构更紧凑,提高了检测器件的集成度。
190.图11为本发明第三实施例的第一种结构发射器模块的内部结构图;图12为本发明第三实施例第一种结构电池腔的z-z’剖面结构示意图。
191.结合参照图11和图12,在本发明实施例中,电池323位于发射器模块32内,电池腔腔壳3231的上盖体32311即为电子电路325的一部分,下壳体32312即为发射器模块的壳体324,以形成良好的密封,防止电解液泄漏,以及阻止外界空气、水滴等杂物进入到电池323内。
192.在本发明实施例中,电池323包括腔壳3231、隔膜3232、电解液3233、正极极片3234、负极极片3235和导电片3237。各部件实际尺寸及比例并不必然等于图12中各部件尺寸及比例。
193.在本发明实施例中,电池323通过导电片3237与电子电路325的电源电极3251电连接,为电子电路325供电。
194.在本发明实施例中,腔壳3231材料为pe、pp、hdpe、pvc、abs、pmma、pc、pps或pu中的一种,相比于采用金属外壳的纽扣电池,采用塑料材质腔壳3231的电池323重量可以大为减小,从而使得分析物检测器件的整体重量减小,提高了用户体验。
195.在本发明实施例中,腔壳3231分为上盖体32311和下壳体32312,上盖体32311为电子电路325的一部分,正极极片3234、负极极片3235通过导电片3237与电子电路325的电源电极3251电连接,实现电池323的闭合回路,电池323可为电子电路325提供电能。
196.在本发明一个实施例中,上盖体32311与发射器模块的壳体324一体成型,下壳体32312为一个独立于发射器模块的壳体324的壳体。
197.在本发明又一个实施例中,下壳体32312与发射器模块的壳体324一体成型,上盖体32311为一个独立于发射器模块的壳体324的盖体。
198.在本发明实施例中,下壳体32312的材料与发射器模块的壳体324的材料一致,便于加工时一体注塑成型,提高生产效率。
199.在本发明实施例中,上盖体32311盖合在下壳体32312上,内部形成密闭的腔室空间,在上盖体32311与下壳体32312的连接处涂覆有密封胶。
200.在本发明实施例中,密封胶为热熔胶或硅胶中的一种。
201.在本发明实施例中,由于塑料材质的腔壳3231,例如pe(聚乙烯)、pp(聚丙烯)、pc(聚碳酸酯),容易被电解液腐蚀,因此还需要在腔壳3231的内部设置一层电解液隔绝层3236。
202.在本发明实施例中,腔壳3231的剖面形状不局限于图示所示长方形,也可以是圆形、椭圆形、三角形或其他不规则形状,其立体结构能充分利用发射器模块32和底壳30间的可用空间,以适应分析物检测器件的小型化设计。
203.在本发明实施例中,电解液隔绝层3236可以是tpe(丁基橡胶)或pet(聚对苯二甲酸乙二醇酯),tpe是热塑性弹性体材料,加工性强,pet本身作为电解液的盛放容器,能有效隔绝电解液对腔壳和电路器件的腐蚀。
204.在本发明实施例中,电解液隔绝层3236可以是通过沉积法或溶液法涂覆在腔壳3231内部的薄膜,也可以是一层独立于腔壳的封闭壳体。
205.在本发明优选实施例中,电解液隔绝层3236为300-500um厚度的薄膜。电解液隔绝层3236的厚度过小膜材会被电解液浸润和软化,长时间后会导致膜材老化,厚度过大会占用腔室内部空间。在本发明更优选实施例中,电解液隔绝层3236的厚度为400um。
206.在本发明实施例中,电解液3233的溶质为锂盐,如高氯酸锂(liclo4)、六氟磷酸锂(lipf6)、四氟硼酸锂(libf4)中的一种,其溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、五氟化磷、氢氟酸、乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯中的一种。在本发明优选实施例中,溶剂选用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯中的一种。
207.在本发明实施例中,正极极片3234的主要材料为二氧化锰,并由以下制作工艺制得:
208.①
对电解二氧化锰、导电剂、粘结剂进行筛分,可以通过筛网或者气流分级机完成,选取粒度小于200um的电解二氧化锰颗粒,置于石英舟中,并在烧结炉中进行热处理,温度加热至200℃,持续4h。这一步骤的目的是为了使电解二氧化锰失去部分结合水,x射线衍射峰发生位移,晶面间距减小,mn-o键合力增强,从而使得电解二氧化锰放电容量增强。
209.②
将步骤

中的电解二氧化锰降温至60℃以下后,用电子天平分别称取9g电解二氧化锰、0.5g粒度小于200um的导电剂和0.5g粒度小于200um的粘结剂,置于研磨皿中,充分
搅拌混合后,进行手工或者电动研磨,得到10g研磨混合物,并使得研磨混合物可以通过300目(粒度48um)的筛网。这一步骤的目的是保证混料的均匀性,避免出现导电剂、添加剂分散不均匀的现象。
210.在本发明其他实施例中,电解二氧化锰、导电剂和粘结剂按质量配比不仅限于上述份额,其质量份额可分别按80%-96%、2%-10%和2%-10%进行配比。
211.在本发明优选实施例中,导电剂可以为导电炭黑、石墨、super p或碳纳米管中的一种或多种。
212.在本发明优选实施例中,粘结剂可以为pvdf(聚偏氟乙烯)、聚四氟乙烯、聚丙烯酸钠中的一种或多种。
213.③
将研磨混合物置于真空烘箱中,加热到65℃,持续5h,烘干混合物中可能存在的水分,保证样品干燥,得到正极混合物。
214.④
在干燥的玻璃瓶中滴加10g的nmp(n-甲基吡咯烷酮)溶剂,然后将正极混合物缓慢添加到玻璃瓶中,并用磁力搅拌器搅拌,持续3h,保证混料均匀,得到固含量为50%的正极浆料。这一步骤的目的是保证正极浆料中各组分分散均匀,并且固含量与正极浆料的粘度有一定关系,50%固含量的正极浆料粘度较好,涂覆在基底上后的成膜效果较好,可以减少掉粉或者破裂的现象。
215.⑤
使用平板涂覆机将正极浆料涂覆在基底表面,得到导电层,然后将导电层和基底置于真空烘箱中烘烤,加热至110℃,持续12h,保证水分完全烘干。
216.在本发明优选实施例中,基底材料为铝箔或泡沫镍网中的一种,厚度为12-18um。
217.在本发明更优选实施例中,基底材料为铝箔,厚度为15um。
218.⑥
使用电动立式辊压机对导电层和基底进行辊压,可以使导电层和基底的整体厚度下降到180-220um,得到正极极片成品。通过调整涂覆机和辊压机的工作参数,能控制正极极片的厚度,保证极片在较高的压实密度前提下,还可以同时具备比较完善的导电网络,从而可以适应大电流脉冲放电的工作需求。
219.通过上述步骤得到的正极极片3035性能与图5所示一致,在此不再赘述。
220.在本发明实施例中,负极极片3235主要为锂基材料。
221.在本发明实施例中,隔膜3232的材料为pe(聚乙烯)或pp(聚丙烯),可以是单层pe或pp,也可以是3层pe或pp。
222.具体的,在本发明实施例中,电池323的加工工艺流程如下:
223.①
在上盖体32311和下壳体32312的内部涂覆pet或者tpe材料,厚度为300-500um,放在恒温烘箱内静置,设置温度60-85℃,直至涂覆材料完全干燥;
224.②
将电芯(包括负极极片3235、隔膜3232、正极极片3234、导电片3237)放置在下壳体32312内,导电片3237的一端通过锡膏或者焊锡固定在正极极片3234或负极极片3235上;
225.③
下壳体32312静置放置,利用移液枪向下壳体32312内注射电解液3233,并将整体移至过度舱真空静置,保证电解液的完全浸润,以提高电池腔的电化学性能;
226.④
下壳体32312静置结束后将上盖体32311(电子电路325)盖合,导电片3237的另一端通过锡膏或者焊锡固定在电子电路325的电源电极3151处,在盖合连接处涂覆密封胶,保持密封性,得到完整的电池腔。密封胶为热熔胶或硅胶中的一种。
227.图13为本发明第三实施例分析物检测器件的第二种结构示意图;图14为本发明第
三实施例第二种结构电子电路的u-u’剖面图。
228.结合参考图13和图14。在本发明实施例中,电子电路325包括至少一个电子元件(简化为图中块状物体)和导线(图中未示出)。电子元件至少包括发射器天线3252、电源电极3251和电触点322等。在本发明实施例中,电子电路325还包括基板(图中未示出),电子元件及导线固定在基板上。基板内嵌在发射器模块的壳体324内侧,即基板的表面相对于发射器模块的壳体324内侧表面平齐,或者基板内陷于发射器模块的壳体324内侧表面,以减少基板占用的体积。
229.在本发明实施例中,基板可以预先定制,将电子元件及导线预敷设在基板上,然后将基板内嵌到发射器模块的壳体324内侧,可以减少壳体的加工工艺难度和加工时间。
230.在本发明其他实施例中,电子元件及引线固定在发射器模块的壳体324上,即电子电路325与发射器模块的壳体324一体成型,如图14所示。
231.在本发明实施例中,电子电路不再需要基板作为电子元件及导线的载体,进一步节省了电子电路占用的空间,满足分析物检测器件小型化设计需求。
232.在本发明实施例中,与电子电路一体成型的发射器模块的壳体324可以通过加成法、减去法、积层法、panel法、pattern法等工艺制作。
233.综上所述,本发明提供了一种电路壳体集成型分析物检测器件,在发射器模块的壳体上设置电子电路,电子电路包括至少一个电子元件,电子元件包括发射器天线等,以形成电子电路与发射器模块的壳体嵌合的高集成型分析物检测器件,电子电路所占用的空间更少,满足分析物检测器件小型化设计需求。
234.虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1