用于饱和机器人运动的系统和方法与流程

文档序号:33452554发布日期:2023-03-15 01:19阅读:37来源:国知局
用于饱和机器人运动的系统和方法与流程
用于饱和机器人运动的系统和方法
1.相关申请的交叉引用
2.本技术要求于2020年6月30日提交的名称为“systems and methods for saturated robotic movement”的美国临时申请号63/046,562的权益,该美国临时申请据此全文以引用方式并入。
技术领域
3.本文所公开的系统和方法涉及用于机器人医疗系统的系统和方法,并且更具体地涉及控制经受某些约束的机器人操纵器的运动。


背景技术:

4.机器人使能的医疗系统可能能够执行多种医疗规程,包括微创规程诸如腹腔镜检查,以及非侵入规程诸如内窥镜检查两者。在内窥镜检查规程中,系统可能能够执行支气管镜检查、输尿管镜检查、胃镜检查等。
5.这类机器人医疗系统可包括被构造成在给定医疗规程期间控制医疗工具的运动的机器人臂。为了实现医疗工具的期望姿势,可将机器人臂放置成可致使机器人臂与环境中的另一对象接触的姿势。虽然一些系统可通过阻止或停止将导致碰撞的进一步运动来防止这类碰撞或接触,但是这类方法可能会使对机器人臂的运动控制受到损害。


技术实现要素:

6.本公开的系统、方法和装置各自具有若干创新方面,这些创新方面中没有一个独自负责本文所公开的期望属性。
7.在一个方面,提供了一种机器人系统,该机器人系统包括:机器人臂,该机器人臂被构造成控制医疗器械的运动;至少一个处理器;和至少一个计算机可读存储器,该至少一个计算机可读存储器与至少一个处理器通信并且在其上存储有计算机可执行指令,以致使至少一个处理器:接收来自用户的用于利用机器人臂使医疗器械运动的第一用户输入;确定根据第一用户输入使机器人臂运动将致使机器人臂的接触点接触或越过对象周围的碰撞边界,该碰撞边界将机器人臂的无碰撞工作空间与对象分离;以及响应于确定根据第一用户输入使机器人臂运动将致使接触点接触或越过碰撞边界,引导机器人臂的运动,使得机器人臂的接触点部分地基于第一用户输入而沿着碰撞边界连续地运动。
8.在某些具体实施中,该计算机可执行指令还致使至少一个处理器:识别第一用户输入的矢量分量,该矢量分量具有将致使机器人臂的接触点越过碰撞边界的方向;以及根据所识别的矢量分量减少或防止接触点的运动,使得接触点不越过碰撞边界。
9.在某些具体实施中,该计算机可执行指令还致使至少一个处理器:接收来自用户的用于利用机器人臂使医疗器械运动的第二用户输入;确定根据第二用户输入使机器人臂运动将致使机器人臂的接触点远离碰撞边界运动;以及响应于确定根据第二用户输入使机器人臂运动将致使机器人臂的接触点远离碰撞边界运动,根据第二用户输入控制机器人臂
远离碰撞边界的运动。
10.在某些具体实施中,碰撞边界被构造成提供(i)接触点与对象之间的第一阈值距离和/或(ii)接触点与对象之间的第一角度阈值。
11.在某些具体实施中,该计算机可执行指令还致使至少一个处理器:确定接触点位于距对象的第二阈值距离和/或角度内,该第二阈值距离和/或角度大于第一阈值距离和/或角度,其中确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界是响应于确定接触点位于距对象的第二阈值距离和/或角度内而执行的。
12.在某些具体实施中,该计算机可执行指令还致使至少一个处理器:确定接触点位于距对象的第一阈值距离和/或角度内;识别用户输入的矢量分量,该矢量分量具有将致使机器人臂的接触点远离对象运动的方向;以及根据所识别的矢量分量引导机器人臂的运动,使得接触点远离对象运动。
13.在某些具体实施中,该机器人系统还包括:主控制器,该主控制器被配置为接收来自用户的输入,其中该计算机可执行指令还致使至少一个处理器:响应于确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界,控制主控制器向用户提供触觉反馈。
14.在某些具体实施中,触觉反馈包括触知反馈,该触知反馈包括振动。
15.在某些具体实施中,医疗器械被配置为经由进入点插入到患者体内;并且沿着碰撞边界引导机器人臂的运动还包括满足与进入点相关联的约束。
16.在某些具体实施中,约束包括远程运动中心(rcm),医疗器械的平移运动被约束在该远程运动中心处。
17.在某些具体实施中,沿着碰撞边界引导机器人臂的运动还包括满足约束。
18.在某些具体实施中,该约束包括以下各项中的至少一项:接头最大速度、器械驱动器最大速度、机器人肘部最大速度、医疗器械端部执行器最大速度、医疗器械腕部运动范围极限、医疗器械插入极限、机器人工作空间约束、避奇异约束或线性逼近约束。
19.在某些具体实施中,该计算机可执行指令还致使至少一个处理器:确定根据第一用户输入使机器人臂运动将以超过接头最大速度的第一速度使机器人臂的接头运动;以及响应于确定使机器人臂运动以遵循第一用户输入将以第一速度使机器人臂的接头运动,以小于接头最大速度的第二速度引导机器人臂的运动。
20.在某些具体实施中,沿着碰撞边界引导机器人臂的运动是根据主要饱和约束的;并且该计算机可执行指令还致使至少一个处理器:根据辅助饱和约束控制机器人臂的运动;确定与主要饱和约束相关联的第一严重性度量;确定与辅助饱和约束相关联的第二严重性度量;将第一严重性度量与第二严重性度量进行比较;以及基于第一严重性度量与第二严重性度量的比较来确定是根据主要饱和约束还是根据辅助饱和约束引导机器人臂的运动。
21.在某些具体实施中,接触点属于机器人臂上的一组点,并且其中接触点比该组中的所有其他点更靠近碰撞边界。
22.在某些具体实施中,确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界是基于检测到接触点与碰撞边界之间的碰撞。
23.在另一方面,提供了一种用于引导机器人臂相对于对象周围的碰撞边界的运动的
方法,该方法包括:接收来自用户的用于利用机器人臂使医疗器械运动的用户输入;确定根据用户输入使机器人臂运动将致使机器人臂的接触点与碰撞边界接触或越过碰撞边界,碰撞边界将机器人臂的无碰撞工作空间与对象分离;以及响应于确定根据用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界,引导机器人臂的运动,使得机器人臂的接触点部分地基于用户输入而沿着碰撞边界连续地运动。
24.在某些具体实施中,该方法还包括:识别第一用户输入的矢量分量,该矢量分量具有将致使机器人臂的接触点越过碰撞边界的方向;以及根据所识别的矢量分量减少或防止接触点的运动,使得接触点不越过碰撞边界。
25.在某些具体实施中,该方法还包括:接收来自用户的用于利用机器人臂使医疗器械运动的第二用户输入;确定根据第二用户输入使机器人臂运动将致使机器人臂的接触点远离碰撞边界运动;以及响应于确定根据第二用户输入使机器人臂运动将致使机器人臂的接触点远离碰撞边界运动,根据第二用户输入控制机器人臂远离碰撞边界的运动。
26.在某些具体实施中,碰撞边界被构造成提供(i)接触点与对象之间的第一阈值距离和/或(ii)接触点与对象之间的第一角度阈值。
27.在某些具体实施中,该方法还包括:确定接触点位于距对象的第二阈值距离和/或角度内,该第二阈值距离和/或角度大于第一阈值距离和/或角度,其中确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界是响应于确定接触点位于距对象的第二阈值距离和/或角度内而执行的。
28.在某些具体实施中,该方法还包括:确定接触点位于距对象的第一阈值距离和/或角度内;识别用户输入的矢量分量,该矢量分量具有将致使机器人臂的接触点远离对象运动的方向;以及根据所识别的矢量分量引导机器人臂的运动,使得接触点远离对象运动。
29.在某些具体实施中,该方法还包括:响应于确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界,控制主控制器以向用户提供触觉反馈,该主控制器被配置为接收来自用户的输入。
30.在某些具体实施中,触觉反馈包括触知反馈,该触知反馈包括振动。
31.在某些具体实施中,医疗器械被配置为经由进入点插入到患者体内;并且沿着碰撞边界引导机器人臂的运动还包括满足与进入点相关联的约束。
32.在某些具体实施中,约束包括远程运动中心(rcm),医疗器械的平移运动被约束在该远程运动中心处。
33.在某些具体实施中,沿着碰撞边界引导机器人臂的运动还包括满足约束。
34.在某些具体实施中,该约束包括以下各项中的至少一项:接头最大速度、器械驱动器最大速度、机器人肘部最大速度、医疗器械端部执行器最大速度、医疗器械腕部运动范围极限、医疗器械插入极限、机器人工作空间约束、避奇异约束或线性逼近约束。
35.在某些具体实施中,该方法还包括:确定根据第一用户输入使机器人臂运动将以超过接头最大速度的第一速度使机器人臂的接头运动;以及响应于确定使机器人臂运动以遵循第一用户输入将以第一速度使机器人臂的接头运动,以小于接头最大速度的第二速度引导机器人臂的运动。
36.在某些具体实施中,沿着碰撞边界引导机器人臂的运动是根据主要饱和约束的,并且该方法还包括:根据辅助饱和约束控制机器人臂的运动;确定与主要饱和约束相关联
的第一严重性度量;确定与辅助饱和约束相关联的第二严重性度量;将第一严重性度量与第二严重性度量进行比较;以及基于第一严重性度量与第二严重性度量的比较来确定是根据主要饱和约束还是根据辅助饱和约束引导机器人臂的运动。
37.在某些具体实施中,接触点属于机器人臂上的一组点,并且其中接触点比该组中的所有其他点更靠近碰撞边界。
38.在某些具体实施中,确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界是基于检测到接触点与碰撞边界之间的碰撞。
39.在又一方面,提供了一种机器人系统,该机器人系统包括:机器人臂,该机器人臂被构造成控制医疗器械;至少一个处理器;和至少一个计算机可读存储器,该至少一个计算机可读存储器与一组一个或多个处理器通信并且在其上存储有计算机可执行指令,以致使至少一个处理器:接收来自用户的用于使机器人臂运动以控制医疗器械的输入;以及根据输入和一个或多个辅助约束沿着对象周围的碰撞边界引导机器人臂的运动。
40.在某些具体实施中,该计算机可执行指令还致使至少一个处理器:确定根据用户输入使机器人臂运动将致使机器人臂的接触点在对象周围的碰撞边界的阈值距离内运动,其中沿着碰撞边界引导机器人臂的运动是响应于确定根据用户输入使机器人臂运动将致使机器人臂的接触点在阈值距离内运动而执行的。
41.在某些具体实施中,一个或多个辅助约束包括以下各项中的至少一项:接头最大速度、器械驱动器最大速度、机器人肘部最大速度、医疗器械端部执行器最大速度、医疗器械腕部运动范围极限、医疗器械插入极限、机器人工作空间约束、避奇异约束或线性逼近约束。
42.在某些具体实施中,医疗器械被配置为经由进入点插入到患者体内;并且沿着碰撞边界引导机器人臂的运动还包括满足与进入点相关联的约束。
43.在某些具体实施中,该机器人系统还包括:主控制器,该主控制器被配置为接收来自用户的输入,其中该计算机可执行指令还致使至少一个处理器:响应于确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界,控制主控制器向用户提供触觉反馈。
44.在某些具体实施中,触觉反馈包括触知反馈,该触知反馈包括振动。
45.在某些具体实施中,该一个或多个辅助约束包括第一约束和第二约束,并且该计算机可执行指令还致使至少一个处理器:确定与第一约束相关联的第一严重性度量;确定与第二约束相关联的第二严重性度量;将第一严重性度量与第二严重性度量进行比较;以及基于第一严重性度量与第二严重性度量的比较来确定是根据第一约束还是根据第二约束引导机器人臂的运动。
46.在又一方面,提供了一种用于引导机器人臂相对于碰撞边界的运动的方法,该方法包括:接收来自用户的用于利用机器人臂使医疗器械运动的输入;以及根据输入和一个或多个辅助约束沿着碰撞边界引导机器人臂的运动。
47.在某些具体实施中,该方法还包括:确定根据用户输入使机器人臂运动将致使机器人臂的接触点在对象周围的碰撞边界的阈值距离内运动,其中沿着碰撞边界引导机器人臂的运动是响应于确定根据用户输入使机器人臂运动将致使机器人臂的接触点在阈值距离内运动而执行的。
48.在某些具体实施中,一个或多个辅助约束包括以下各项中的至少一项:接头最大速度、器械驱动器最大速度、机器人肘部最大速度、医疗器械端部执行器最大速度、医疗器械腕部运动范围极限、医疗器械插入极限、机器人工作空间约束、避奇异约束或线性逼近约束。
49.在某些具体实施中,医疗器械被配置为经由进入点插入到患者体内;并且沿着碰撞边界引导机器人臂的运动还包括满足与进入点相关联的约束。
50.在某些具体实施中,该方法还包括:响应于确定根据第一用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界,控制主控制器以向用户提供触觉反馈,该主控制器被配置为接收来自用户的输入。
51.在某些具体实施中,触觉反馈包括触知反馈,该触知反馈包括振动。
52.在某些具体实施中,该一个或多个辅助约束包括第一约束和第二约束,并且该计算机可执行指令还致使至少一个处理器:确定与第一约束相关联的第一严重性度量;确定与第二约束相关联的第二严重性度量;将第一严重性度量与第二严重性度量进行比较;以及基于第一严重性度量与第二严重性度量的比较来确定是根据第一约束还是根据第二约束引导机器人臂的运动。
53.在再一方面,提供了一种机器人系统,该机器人系统包括:机器人臂,该机器人臂被构造成控制医疗器械;至少一个处理器;和至少一个计算机可读存储器,该至少一个计算机可读存储器与一组一个或多个处理器通信并且在其上存储有计算机可执行指令,以致使至少一个处理器:经由根据多个饱和约束引导机器人臂的运动来控制医疗器械,该饱和约束包括接头最大速度、机器人端部执行器最大速度和工具末端速度。
54.在某些具体实施中,医疗器械被配置为经由进入点插入到患者体内,并且控制机器人臂还包括满足与进入点相关联的约束。
55.在某些具体实施中,该多个饱和约束包括第一饱和约束和第二饱和约束,并且该计算机可执行指令还致使至少一个处理器:确定与第一饱和约束相关联的第一严重性度量;确定与第二饱和约束相关联的第二严重性度量;将第一严重性度量与第二严重性度量进行比较;以及基于第一严重性度量与第二严重性度量的比较来确定是根据第一饱和约束还是根据第二饱和约束引导机器人臂的运动。
56.在另一方面,提供了一种机器人系统,该机器人系统包括:机器人臂,该机器人臂被构造成控制医疗器械的运动;至少一个处理器;和至少一个计算机可读存储器,该至少一个计算机可读存储器与至少一个处理器通信并且在其上存储有计算机可执行指令,以致使至少一个处理器:接收来自用户的用于利用机器人臂使医疗器械运动的第一用户输入;确定根据第一用户输入使机器人臂运动将以超过速度约束的第一速度使机器人臂的至少一部分运动;以及响应于确定使机器人臂运动以遵循第一用户输入将以超过速度约束的第一速度使机器人臂的至少一部分运动,以小于速度约束的第二速度引导机器人臂的运动。
57.在某些具体实施中,该速度约束包括以下各项的至少一项:接头最大速度、器械驱动器最大速度、机器人肘部最大速度或医疗器械端部执行器最大速度。
58.在某些具体实施中,医疗器械被配置为经由进入点插入到患者体内,并且引导机器人臂的运动还包括满足与进入点相关联的约束。
59.在某些具体实施中,该机器人系统还包括:主控制器,该主控制器被配置为接收来
自用户的输入,其中该计算机可执行指令还致使至少一个处理器:响应于确定使机器人臂运动以遵循第一用户输入将以超过速度约束的第一速度使机器人臂的至少一部分运动,控制主控制器向用户提供触觉反馈。
60.在某些具体实施中,触觉反馈包括触知反馈,该触知反馈包括振动。
附图说明
61.下文将结合附图描述所公开的方面,该附图被提供以说明而非限制所公开的方面,其中类似的标号表示类似的元件。
62.图1示出了被布置用于诊断性和/或治疗性支气管镜检查的基于推车的机器人系统的实施方案。
63.图2描绘了图1的机器人系统的另外方面。
64.图3示出了被布置用于输尿管镜检查的图1的机器人系统的实施方案。
65.图4示出了被布置用于血管规程的图1的机器人系统的实施方案。
66.图5示出了被布置用于支气管镜检查规程的基于台的机器人系统的实施方案。
67.图6提供了图5的机器人系统的另选视图。
68.图7示出了被构造成收起机器人臂的示例性系统。
69.图8示出了被配置用于输尿管镜检查规程的基于台的机器人系统的实施方案。
70.图9示出了被配置用于腹腔镜检查规程的基于台的机器人系统的实施方案。
71.图10示出了图5至图9的具有俯仰和倾斜调节的基于台的机器人系统的实施方案。
72.图11提供了图5至图10的台与基于台的机器人系统的柱之间的接口的详细图示。
73.图12示出了基于台的机器人系统的另选实施方案。
74.图13示出了图12的基于台的机器人系统的端视图。
75.图14示出了其上附接有机器人臂的基于台的机器人系统的端视图。
76.图15示出了示例性器械驱动器。
77.图16示出了具有成对器械驱动器的示例性医疗器械。
78.图17示出了器械驱动器和器械的另选设计,其中驱动单元的轴线平行于器械的细长轴的轴线。
79.图18示出了具有基于器械的插入架构的器械。
80.图19示出了示例性控制器。
81.图20描绘了根据示例性实施方案的框图,该框图示出了估计图1至图10的机器人系统的一个或多个元件的位置(诸如图16至图18的器械的位置)的定位系统。
82.图21a和图21b示出了根据本公开的各方面的主控制器的运动和相对于碰撞空间的从/机器人臂运动。
83.图22示出了根据本公开的各方面的可由机器人系统实施的示例性运动学架构。
84.图23是示出了根据本公开的一个或多个方面的可由外科机器人系统或其部件针对碰撞饱和运动操作的示例性方法的流程图。
85.图24示出了根据本公开的各方面的在可能处于与对象碰撞的风险下的方位处的机器人臂的示例。
86.图25a和图25b示出了根据本公开的各方面的可采用碰撞饱和的两个示例。
87.图26是示出了根据本公开的一个或多个方面的可由外科机器人系统或其部件在遵守辅助约束的同时针对碰撞饱和运动操作的示例性方法的流程图。
88.图27示出了根据本公开的各方面的笛卡尔饱和模块308如何起作用的示例性图示。
具体实施方式
89.1.概述。
90.本公开的各方面可集成到机器人使能的医疗系统中,该机器人使能的医疗系统能够执行多种医疗规程,包括微创规程诸如腹腔镜检查,以及非侵入规程诸如内窥镜检查两者。在内窥镜检查规程中,系统可能能够执行支气管镜检查、输尿管镜检查、胃镜检查等。
91.除了执行广泛的规程之外,系统可以提供附加的益处,诸如增强的成像和指导以帮助医师。另外,该系统可以为医师提供从人体工程学方位执行规程的能力,而不需要笨拙的臂运动和方位。另外,该系统可以为医师提供以改进的易用性执行规程的能力,使得系统的器械中的一个或多个器械可由单个用户控制。
92.出于说明的目的,下文将结合附图描述各种实施方案。应当理解,所公开的概念的许多其他具体实施是可能的,并且利用所公开的具体实施可实现各种优点。标题包括在本文中以供参考并且有助于定位各个节段。这些标题并非旨在限制相对于其所述的概念的范围。此类概念可在整个说明书中具有适用性。
93.a.机器人系统

推车。
94.机器人使能的医疗系统可以按多种方式配置,这取决于特定规程。图1示出了被布置用于诊断性和/或治疗性支气管镜检查的基于推车的机器人使能的系统10的实施方案。在支气管镜检查期间,系统10可包括推车11,该推车具有一个或多个机器人臂12,以将医疗器械诸如可操纵内窥镜13(其可以是用于支气管镜检查的规程特定的支气管镜)递送至自然孔口进入点(即,在本示例中定位在台上的患者的口),以递送诊断和/或治疗工具。如图所示,推车11可被定位在患者的上躯干附近,以便提供到进入点的通路。类似地,可致动机器人臂12以相对于进入点定位支气管镜。当利用胃镜(用于胃肠道(gi)规程的专用内窥镜)执行gi规程时,也可利用图1中的布置。图2更详细地描绘了推车的示例性实施方案。
95.继续参考图1,一旦推车11被正确定位,机器人臂12就可以机器人地、手动地或以其组合将可操纵内窥镜13插入患者体内。如图所示,可操纵内窥镜13可包括至少两个伸缩部分,诸如内引导件部分和外护套部分,每个部分联接到来自一组器械驱动器28的单独的器械驱动器,每个器械驱动器联接到单独的机器人臂的远侧端部。有利于将引导件部分与护套部分同轴对准的器械驱动器28的这种线性布置产生“虚拟轨道”29,该“虚拟轨道”可以通过将一个或多个机器人臂12操纵到不同角度和/或方位而在空间中被重新定位。本文所述的虚拟轨道在附图中使用虚线描绘,并且因此虚线未描绘系统的任何物理结构。器械驱动器28沿着虚拟轨道29的平移使内引导件部分相对于外护套部分伸缩,或者使内窥镜13从患者推进或回缩。虚拟轨道29的角度可基于临床应用或医师偏好来调节、平移和枢转。例如,在支气管镜检查中,如图所示的虚拟轨道29的角度和方位代表了在向医师提供到内窥镜13的通路同时使由内窥镜13弯曲到患者的口腔中引起的摩擦最小化之间的折衷。
96.在插入之后,内窥镜13可以使用来自机器人系统的精确命令向下导向患者的气管
和肺,直到到达目标目的地或手术部位。为了增强通过患者的肺网络的导航和/或达成期望的目标,内窥镜13可被操纵以从外部护套部分伸缩地延伸内引导件部分,以获得增强的关节运动和更大的弯曲半径。使用单独的器械驱动器28还允许引导件部分和护套部分彼此独立地被驱动。
97.例如,内窥镜13可被引导以将活检针递送到目标,诸如例如患者肺内的病变或结节。针可沿工作通道向下部署,该工作通道延伸内窥镜的长度以获得待由病理学家分析的组织样本。根据病理结果,可沿内窥镜的工作通道向下部署附加工具以用于附加活检。在识别出结节是恶性的之后,内窥镜13可以通过内窥镜递送工具以切除潜在的癌组织。在一些情况下,诊断和治疗处理可在单独的规程中递送。在这些情况下,内窥镜13也可用于递送基准以“标记”目标结节的位置。在其他情况下,诊断和治疗处理可在相同的规程期间递送。
98.系统10还可包括可运动塔30,该可运动塔可经由支撑缆线连接到推车11以向推车11提供控制、电子、流体、光学、传感器和/或电力的支持。将这样的功能放置在塔30中允许可由操作医师和他/她的工作人员更容易地调节和/或重新定位的更小形状因子的推车11。另外,在推车/台与支撑塔30之间划分功能减少了手术室混乱并且有利于改善临床工作流程。虽然推车11可被定位成靠近患者,但是塔30可以在远程位置中被收起以在规程过程期间不挡道。
99.为了支持上述机器人系统,塔30可包括基于计算机的控制系统的部件,该基于计算机的控制系统将计算机程序指令存储在例如非暂态计算机可读存储介质诸如永磁存储驱动器、固态驱动器等内。无论执行是发生在塔30中还是发生在推车11中,这些指令的执行都可控制整个系统或其子系统。例如,当由计算机系统的处理器执行时,指令可致使机器人系统的部件致动相关托架和臂安装件,致动机器人臂,并且控制医疗器械。例如,响应于接收到控制信号,机器人臂的接头中的马达可将臂定位成特定姿势。
100.塔30还可包括泵、流量计、阀控制器和/或流体通路,以便向可通过内窥镜13部署的系统提供受控的冲洗和抽吸能力。这些部件也可使用塔30的计算机系统来控制。在一些实施方案中,冲洗和抽吸能力可通过单独的缆线直接递送到内窥镜13。
101.塔30可包括电压和浪涌保护器,该电压和浪涌保护器被设计成向推车11提供经过滤和保护的电力,从而避免在推车11中放置电力变压器和其他辅助电力部件,从而得到更小,更可运动的推车11。
102.塔30还可包括用于在整个机器人系统10中部署的传感器的支撑设备。例如,塔30可包括用于在整个机器人系统10中检测、接收和处理从光学传感器或相机接收的数据的光电设备。结合控制系统,此类光电设备可用于生成实时图像,以用于在整个系统中部署的任何数量的控制台中显示(包括在塔30中显示)。类似地,塔30还可包括用于接收和处理从部署的电磁(em)传感器接收到的信号的电子子系统。塔30还可用于容纳和定位em场发生器,以便由医疗器械中或医疗器械上的em传感器进行检测。
103.除了系统的其余部分中可用的其他控制台(例如,安装在推车顶部上的控制台)之外,塔30还可包括控制台31。控制台31可包括用于医师操作者的用户界面和显示屏,诸如触摸屏。系统10中的控制台通常设计成提供机器人控制以及规程的术前信息和实时信息两者,诸如内窥镜13的导航和定位信息。当控制台31不是医师可用的唯一控制台时,其可由第二操作者(诸如护士)使用以监测患者的健康状况或生命体征和系统10的操作,以及提供规
程特定的数据,诸如导航和定位信息。在其他实施方案中,控制台30被容纳在与塔30分开的主体中。
104.塔30可通过一个或多个缆线或连接件(未示出)联接到推车11和内窥镜13。在一些实施方案中,可通过单根缆线向推车11提供来自塔30的支撑功能,从而简化手术室并消除手术室的混乱。在其他实施方案中,特定功能可联接在单独的布线和连接中。例如,虽然可以通过单个缆线向推车11提供电力,但也可以通过单独的缆线提供对控件、光学器件、流体和/或导航的支持。
105.图2提供了来自图1所示的基于推车的机器人使能的系统的推车11的实施方案的详细图示。推车11通常包括细长支撑结构14(通常称为“柱”)、推车基部15以及在柱14的顶部处的控制台16。柱14可包括一个或多个托架,诸如用于支持一个或多个机器人臂12(图2中示出三个)的部署的托架17(另选地为“臂支撑件”)。托架17可包括可单独配置的臂安装件,该臂安装件沿垂直轴线旋转以调节机器人臂12的基部,以相对于患者更好地定位。托架17还包括托架接口19,该托架接口允许托架17沿着柱14竖直地平移。
106.托架接口19通过狭槽诸如狭槽20连接到柱14,该狭槽被定位在柱14的相对侧上以引导托架17的竖直平移。狭槽20包括竖直平移接口以将托架17相对于推车基部15定位并且保持在各种竖直高度处。托架17的竖直平移允许推车11调节机器人臂12的到达范围以满足多种台高度、患者尺寸和医师偏好。类似地,托架17上的可单独配置的臂安装件允许机器人臂12的机器人臂基部21以多种配置成角度。
107.在一些实施方案中,狭槽20可补充有狭槽盖,该狭槽盖与狭槽表面齐平且平行,以防止灰尘和流体在托架17竖直平移时进入柱14的内部腔以及竖直平移接口。狭槽盖可通过被定位在狭槽20的竖直顶部和底部附近的成对弹簧卷轴部署。盖在卷轴内盘绕,直到在托架17竖直地上下平移时被部署成从盖的盘绕状态延伸和回缩。当托架17朝向卷轴平移时,卷轴的弹簧加载提供了将盖回缩到卷轴中的力,同时在托架17平移远离卷轴时也保持紧密密封。可使用例如托架接口19中的支架将盖连接到托架17,以有利于盖随着托架17平移而适当延伸和回缩。
108.柱14可在内部包括机构诸如齿轮和马达,其被设计成使用竖直对准的导螺杆以响应于响应用户输入(例如,来自控制台16的输入)生成的控制信号来以机械化方式平移托架17。
109.机器人臂12通常可包括由一系列连杆23分开的机器人臂基部21和端部执行器22,该一系列连杆由一系列接头24连接,每个接头包括独立的致动器,每个致动器包括可独立控制的马达。每个可独立控制的接头表示机器人臂12可用的独立自由度。机器人臂12中的每个机器人臂可具有七个接头,并且因此提供七个自由度。多个接头导致多个自由度,从而允许“冗余”的自由度。具有冗余自由度允许机器人臂12使用不同连杆方位和接头角度将其相应的端部执行器22定位在空间中的特定方位、取向和轨迹处。这允许系统从空间中的期望点定位和导向医疗器械,同时允许医师使臂接头运动到远离患者的临床有利方位,以产生更大的接近,同时避免臂碰撞。
110.推车基部15在地板上平衡柱14、托架17和机器人臂12的重量。因此,推车基部15容纳较重的部件,诸如电子器件、马达、电源以及使得推车11能够运动和/或固定的部件。例如,推车基部15包括允许推车11在规程之前容易地围绕房间运动的可滚动的轮形脚轮25。
在到达适当方位之后,脚轮25可以使用轮锁固定,以在规程期间将推车11保持在适当方位。
111.定位在柱14的竖直端部处的控制台16允许用于接收用户输入的用户界面和显示屏(或两用装置,诸如例如触摸屏26)两者向医师用户提供术前和术中数据两者。触摸屏26上的潜在术前数据可以包括从术前计算机化断层摄影(ct)扫描导出的术前计划、导航和标测数据和/或来自术前患者面谈的记录。显示器上的术中数据可以包括从工具、传感器提供的光学信息和来自传感器的坐标信息以及重要的患者统计,诸如呼吸、心率和/或脉搏。控制台16可以被定位和倾斜成允许医师从柱14的与托架17相对的侧面进入控制台16。从该方位,医师可以在从推车11后面操作控制台16的同时观察控制台16、机器人臂12和患者。如图所示,控制台16还包括用以帮助操纵和稳定推车11的柄部27。
112.图3示出了被布置用于输尿管镜检查的机器人使能的系统10的实施方案。在输尿管镜规程中,推车11可被定位成将输尿管镜32(被设计成横穿患者的尿道和输尿管的规程特定的内窥镜)递送到患者的下腹部区域。在输尿管镜检查中,可以期望输尿管镜32直接与患者的尿道对准以减少该区域中的敏感解剖结构上的摩擦和力。如图所示,推车11可在台的脚部处对准,以允许机器人臂12定位输尿管镜32,以用于直接线性进入患者的尿道。机器人臂12可从台的脚部沿着虚拟轨道33将输尿管镜32通过尿道直接插入患者的下腹部中。
113.在插入尿道中之后,使用与支气管镜检查中类似的控制技术,输尿管镜32可被导航到膀胱、输尿管和/或肾中以用于诊断和/或治疗应用。例如,可以将输尿管镜32引导到输尿管和肾中以使用沿输尿管镜32的工作通道向下部署的激光或超声碎石装置来打碎积聚的肾结石。在碎石完成之后,可以使用沿输尿管镜32向下部署的篮移除所得的结石碎片。
114.图4示出了类似地布置用于血管规程的机器人使能的系统10的实施方案。在血管规程中,系统10可被构造成使得推车11可将医疗器械34(诸如可操纵导管)递送到患者的腿部的股动脉中的进入点。股动脉呈现用于导航的较大直径以及到患者的心脏的相对较少的迂回且曲折的路径两者,这简化了导航。如在输尿管镜规程中,推车11可被定位成朝向患者的腿部和下腹部,以允许机器人臂12提供直接线性进入患者的大腿/髋部区域中的股动脉进入点的虚拟轨道35。在插入到动脉中之后,可通过平移器械驱动器28来导向和插入医疗器械34。另选地,推车可以被定位在患者的上腹部周围,以到达另选的血管进入点,诸如肩部和腕部附近的颈动脉和臂动脉。
115.b.机器人系统

台。
116.机器人使能的医疗系统的实施方案还可结合患者的台。结合台通过移除推车减少了手术室内的资本设备的量,这允许更多地接近患者。图5示出了被布置用于支气管镜检查规程的这样的机器人使能的系统的实施方案。系统36包括用于将平台38(示出为“台”或“床”)支撑在地板上的支撑结构或柱37。与基于推车的系统非常相似,系统36的机器人臂39的端部执行器包括器械驱动器42,其被设计成通过或沿着由器械驱动器42的线性对准形成的虚拟轨道41来操纵细长医疗器械,诸如图5中的支气管镜40。在实践中,用于提供荧光镜成像的c形臂可通过将发射器和检测器放置在台38周围而定位在患者的上腹部区域上方。
117.图6提供了用于讨论目的的没有患者和医疗器械的系统36的另选视图。如图所示,柱37可包括在系统36中示出为环形的一个或多个托架43,该一个或多个机器人臂39可基于该托架。托架43可以沿着沿柱37的长度延伸的竖直柱接口44平移,以提供不同的有利点,机器人臂39可以从这些有利点被定位以到达患者。托架43可使用被定位在柱37内的机械马达
围绕柱37旋转,以允许机器人臂39进入台38的多个侧面,诸如患者的两侧。在具有多个托架的实施方案中,托架可单独地定位在柱上,并且可独立于其他托架平移和/或旋转。虽然托架43不需要环绕柱37或甚至是圆形的,但如图所示的环形形状有利于托架43围绕柱37旋转,同时保持结构平衡。托架43的旋转和平移允许系统36将医疗器械诸如内窥镜和腹腔镜对准到患者上的不同进入点中。在其他实施方案(未示出)中,系统36可包括具有可调式臂支撑件的病人检查台或病床,该可调式臂支撑件呈在病人检查台或病床旁边延伸的杆或轨道的形式。一个或多个机器人臂39(例如,经由具有肘接头的肩部)可附接到可调式臂支撑件,该可调式臂支撑件可被竖直调节。通过提供竖直调节,机器人臂39有利地能够紧凑地存放在病人检查台或病床下方,并且随后在规程期间升高。
118.机器人臂39可通过包括一系列接头的一组臂安装件45安装在托架43上,该接头可单独地旋转和/或伸缩地延伸以向机器人臂39提供附加的可配置性。另外,臂安装件45可定位在托架43上,使得当托架43适当地旋转时,臂安装件45可定位在台38的同一侧上(如图6所示)、台38的相对侧上(如图9所示)或台38的相邻侧上(未示出)。
119.柱37在结构上为台38提供支撑,并且为托架43的竖直平移提供路径。在内部,柱37可配备有用于引导托架的竖直平移的导螺杆,以及用以机械化基于导螺杆的托架43的平移的马达。柱37还可将功率和控制信号传送到托架43和安装在其上的机器人臂39。
120.台基部46具有与图2所示的推车11中的推车基部15类似的功能,容纳较重的部件以平衡台/床38、柱37、托架43和机器人臂39。台基部46还可结合刚性脚轮以在规程期间提供稳定性。从台基部46的底部部署的脚轮可在基部46的两侧沿相反方向延伸,并且当系统36需要运动时回缩。
121.继续图6,系统36还可以包括塔(未示出),该塔使系统36的功能在台与塔之间进行划分以减小台的形状因子和体积。如在先前所公开的实施方案中,塔可以向台提供多种支持功能,诸如处理、计算和控制能力、电力、流体和/或光学以及传感器处理。塔还可以是可运动的,以远离患者定位,从而改善医师的接近并且消除手术室的混乱。另外,将部件放置在塔中允许在台基部46中有更多的储存空间,以用于机器人臂39的潜在收起。塔还可以包括主控制器或控制台,其提供用于用户输入的用户界面(诸如键盘和/或挂件)以及用于术前和术中信息(诸如实时成像、导航和跟踪信息)的显示屏(或触摸屏)两者。在一些实施方案中,塔还可包括用于待用于注气的气罐的夹持器。
122.在一些实施方案中,台基部可以在不使用时收起和储存机器人臂。图7示出了在基于台的系统的实施方案中收起机器人臂的系统47。在系统47中,托架48可以竖直平移到基部49中以使机器人臂50、臂安装件51和托架48收起在基部49内。基部盖52可以平移和回缩打开以围绕柱53部署托架48、臂安装件51和机器人臂50,并且闭合以收起该托架、臂安装件和机器人臂,以便在不使用时保护它们。基部盖52可利用膜54沿着其开口的边缘密封,以防止在闭合时灰尘和流体进入。
123.图8示出了被配置用于输尿管镜检查规程的机器人使能的基于台的系统的实施方案。在输尿管镜检查中,台38可以包括用于将患者定位成与柱37和台基部46成偏角的旋转部分55。旋转部分55可围绕枢转点(例如,位于患者的头部下方)旋转或枢转,以便将旋转部分55的底部部分定位成远离柱37。例如,旋转部分55的枢转允许c形臂(未示出)定位在患者的下腹部上方,而不与台38下方的柱(未示出)竞争空间。通过围绕柱37旋转托架35(未示
出),机器人臂39可以沿着虚拟轨道57将输尿管镜56直接插入患者的腹股沟区域中以到达尿道。在输尿管镜检查中,镫58也可以固定至台38的旋转部分55,以在规程期间支撑患者的腿部的方位,并且允许完全通向患者的腹股沟区域。
124.在腹腔镜检查规程中,通过患者的腹壁中的一个或多个小切口,可将微创器械插入患者的解剖结构中。在一些实施方案中,微创器械包括用于进入患者内的解剖结构的细长刚性构件,诸如轴。在患者腹腔充气之后,可以引导器械执行外科或医疗任务,诸如抓握、切割、消融、缝合等。在一些实施方案中,器械可以包括镜,诸如腹腔镜。图9示出了被配置用于腹腔镜检查规程的机器人使能的基于台的系统的实施方案。如图9所示,系统36的托架43可以被旋转并且竖直调节,以将成对的机器人臂39定位在台38的相对侧上,使得可以使用臂安装件45将器械59定位成穿过患者两侧上的最小切口以到达他/她的腹腔。
125.为了适应腹腔镜检查规程,机器人使能的台系统还可将平台倾斜到期望的角度。图10示出了具有俯仰或倾斜调节的机器人使能的医疗系统的实施方案。如图10所示,系统36可以适应台38的倾斜,以将台的一部分定位在比另一部分距底板更远的距离处。另外,臂安装件45可以旋转以匹配倾斜,使得机器人臂39与台38保持相同的平面关系。为了适应更陡的角度,柱37还可以包括伸缩部分60,该伸缩部分允许柱37的竖直延伸以防止台38接触地板或与台基部46碰撞。
126.图11提供了台38与柱37之间的接口的详细图示。俯仰旋转机构61可被构造成以多个自由度改变台38相对于柱37的俯仰角。俯仰旋转机构61可以通过将正交轴线1、2定位在柱台接口处来实现,每条轴线由单独的马达3、4响应于电俯仰角命令而致动。沿着一个螺钉5的旋转将使得能够在一条轴线1中进行倾斜调节,而沿着另一个螺钉6的旋转将使得能够沿着另一个轴线2进行倾斜调节。在一些实施方案中,可使用球形接头来在多个自由度上改变台38相对于柱37的俯仰角。
127.例如,当试图将台定位在头低脚高位(即,将患者的下腹部定位在比患者的上腹部距地板更高的方位)以用于下腹部手术时,俯仰调节特别有用。头低脚高位致使患者的内部器官通过重力滑向他/她的上腹部,从而清理出腹腔以使微创工具进入并且执行下腹部外科或医疗规程,诸如腹腔镜前列腺切除术。
128.图12和图13示出了基于台的外科机器人系统100的另选实施方案的等轴视图和端视图。外科机器人系统100包括可被构造成相对于台101支撑一个或多个机器人臂(参见例如图14)的一个或多个可调式臂支撑件105。在例示的实施方案中,示出了单个可调式臂支撑件105,但是附加的臂支撑件可设置在台101的相对侧上。可调式臂支撑件105可被构造成使得其可相对于台101运动,以调节和/或改变可调式臂支撑件105和/或安装到该可调式臂支撑件的任何机器人臂相对于台101的方位。例如,可调式臂支撑件105可相对于台101被调节一个或多个自由度。可调式臂支撑件105为系统100提供高灵活性,包括容易地将该一个或多个可调式臂支撑件105和附接到其的任何机器人臂收起在台101下方的能力。可调式臂支撑件105可从收起方位升高到台101的上表面下方的方位。在其他实施方案中,可调式臂支撑件105可从收起方位升高到台101的上表面上方的方位。
129.可调式臂支撑件105可提供若干自由度,包括提升、侧向平移、倾斜等。在图12和图13的例示实施方案中,臂支撑件105被构造成具有四个自由度,这些自由度在图12中用箭头示出。第一自由度允许在z方向上(“z提升”)调节可调式臂支撑件105。例如,可调式臂支撑
件105可包括托架109,该托架被构造成沿着或相对于支撑台101的柱102向上或向下运动。第二自由度可允许可调式臂支撑件105倾斜。例如,可调式臂支撑件105可包括旋转接头,该旋转接头可允许可调式臂支撑件105在头低脚高位与床对准。第三自由度可允许可调式臂支撑件105“向上枢转”,这可用于调节台101的一侧与可调式臂支撑件105之间的距离。第四自由度可允许可调式臂支撑件105沿着台的纵向长度平移。
130.图12和图13中的外科机器人系统100可包括由安装到基部103的柱102支撑的台。基部103和柱102相对于支撑表面支撑台101。地板轴线131和支撑轴线133在图13中示出。
131.可调式臂支撑件105可安装到柱102。在其他实施方案中,臂支撑件105可安装到台101或基部103。可调式臂支撑件105可包括托架109、杆或轨道连接件111以及杆或轨道107。在一些实施方案中,安装到轨道107的一个或多个机器人臂可相对于彼此平移和运动。
132.托架109可通过第一接头113附接到柱102,该第一接头允许托架109相对于柱102运动(例如,诸如沿第一轴线或竖直轴线123上下运动)。第一接头113可向可调式臂支撑件105提供第一自由度(“z提升”)。可调式臂支撑件105可包括第二接头115,该第二接头为可调式臂支撑件105提供第二自由度(倾斜)。可调式臂支撑件105可包括第三接头117,该第三接头可为可调式臂支撑件105提供第三自由度(“向上枢转”)。可提供附加接头119(在图13中示出),该附加接头机械地约束第三接头117以在轨道连接件111围绕第三轴线127旋转时保持轨道107的取向。可调式臂支撑件105可包括第四接头121,该第四接头可沿着第四轴线129为可调式臂支撑件105提供第四自由度(平移)。
133.图14示出了根据一个实施方案的具有安装在台101的相对侧上的两个可调式臂支撑件105a、105b的外科机器人系统140a的端视图。第一机器人臂142a附接到第一可调式臂支撑件105b的杆或轨道107a。第一机器人臂142a包括附接到轨道107a的基部144a。第一机器人臂142a的远侧端部包括可附接到一个或多个机器人医疗器械或工具的器械驱动机构146a。类似地,第二机器人臂142b包括附接到轨道107b的基部144b。第二机器人臂142b的远侧端部包括器械驱动机构146b。器械驱动机构146b可被构造成附接到一个或多个机器人医疗器械或工具。
134.在一些实施方案中,机器人臂142a、142b中的一者或多者包括具有七个或更多个自由度的臂。在一些实施方案中,机器人臂142a、142b中的一者或多者可包括八个自由度,包括插入轴线(包括插入的1个自由度)、腕部(包括腕部俯仰、偏航和滚动的3个自由度)、肘部(包括肘部俯仰的1个自由度)、肩部(包括肩部俯仰和偏航的2个自由度)以及基部144a、144b(包括平移的1个自由度)。在一些实施方案中,插入自由度可由机器人臂142a、142b提供,而在其他实施方案中,器械本身经由基于器械的插入架构提供插入。
135.c.器械驱动器和接口。
136.系统的机器人臂的端部执行器可包括:(i)器械驱动器(另选地称为“器械驱动机构”或“器械装置操纵器”),该器械驱动器结合了用于致动医疗器械的机电装置;以及(ii)可移除或可拆卸的医疗器械,该医疗器械可以没有任何机电部件,诸如马达。该二分法可能是由以下所驱动的:对医疗规程中使用的医疗器械进行灭菌的需要;以及由于昂贵的资本设备的复杂机械组件和敏感电子器件而不能对昂贵的资本设备进行充分灭菌。因此,医疗器械可以被设计成从器械驱动器(以及因此从系统)拆卸、移除和互换,以便由医师或医师的工作人员单独灭菌或处置。相比之下,器械驱动器不需要被改变或灭菌,并且可以被覆盖
以便保护。
137.图15示出了示例器械驱动器。定位在机器人臂的远侧端部处的器械驱动器62包括一个或多个驱动单元63,该一个或多个驱动单元以平行轴线布置以经由驱动轴64向医疗器械提供受控扭矩。每个驱动单元63包括用于与器械相互作用的单独的驱动轴64,用于将马达轴旋转转换成期望扭矩的齿轮头65,用于生成驱动扭矩的马达66,用以测量马达轴的速度并且向控制电路提供反馈的编码器67,以及用于接收控制信号并且致动驱动单元的控制电路68。每个驱动单元63被独立地控制和机动化,器械驱动器62可向医疗器械提供多个(例如,如图15所示为四个)独立的驱动输出部。在操作中,控制电路68将接收控制信号,将马达信号传输至马达66,将由编码器67测量的所得马达速度与期望速度进行比较,并且调制马达信号以生成期望扭矩。
138.对于需要无菌环境的规程,机器人系统可以结合驱动接口,诸如连接至无菌覆盖件的无菌适配器,其位于器械驱动器与医疗器械之间。无菌适配器的主要目的是将角运动从器械驱动器的驱动轴传递到器械的驱动输入部,同时保持驱动轴与驱动输入部之间的物理分离并且因此保持无菌。因此,示例性无菌适配器可以包括旨在与器械驱动器的驱动轴和器械上的驱动输入部配合的一系列旋转输入部和旋转输出部。连接到无菌适配器的由薄的柔性材料(诸如透明或半透明塑料)组成的无菌覆盖件被设计成覆盖资本设备,诸如器械驱动器、机器人臂和推车(在基于推车的系统中)或台(在基于台的系统中)。覆盖件的使用将允许资本设备被定位在患者附近,同时仍然位于不需要灭菌的区域(即,非无菌区)。在无菌覆盖件的另一侧上,医疗器械可以在需要灭菌的区域(即,无菌区)与患者对接。
139.d.医疗器械。
140.图16示出了具有成对器械驱动器的示例医疗器械。与被设计成与机器人系统一起使用的其他器械类似,医疗器械70包括细长轴71(或细长主体)和器械基部72。由于其用于由医师进行的手动交互的预期设计而也被称为“器械柄部”的器械基部72通常可以包括可旋转驱动输入部73(例如,插孔、滑轮或卷轴),该驱动输入部被设计成与延伸通过机器人臂76的远侧端部处的器械驱动器75上的驱动接口的驱动输出部74配合。当物理连接、闩锁和/或联接时,器械基部72的配合的驱动输入部73可与器械驱动器75中的驱动输出部74共享旋转轴线,以允许扭矩从驱动输出部74传递到驱动输入部73。在一些实施方案中,驱动输出部74可包括花键,其被设计成与驱动输入部73上的插孔配合。
141.细长轴71被设计成通过解剖开口或腔(例如,如在内窥镜检查中)或通过微创切口(例如,如在腹腔镜检查中)递送。细长轴71可以是柔性的(例如,具有类似于内窥镜的特性)或刚性的(例如,具有类似于腹腔镜的特性),或包括柔性部分和刚性部分两者的定制组合。当被设计用于腹腔镜检查时,刚性细长轴的远侧端部可以连接到端部执行器,该端部执行器从由具有至少一个自由度的连接叉形成的接头腕和外科工具或医疗器械(诸如例如,抓握器或剪刀)延伸,当驱动输入部响应于从器械驱动器75的驱动输出部74接收到的扭矩而旋转时,该外科工具可以基于来自腱的力来致动。当设计用于内窥镜检查时,柔性细长轴的远侧端部可包括可操纵或可控制的弯曲节段,该弯曲节段以基于从器械驱动器75的驱动输出部74接收到的扭矩而进行关节运动和弯曲。
142.使用沿着细长轴71的腱沿着细长轴71传递来自器械驱动器75的扭矩。这些单独的腱(例如,牵拉线)可单独地锚定至器械柄部72内的单独的驱动输入部73。从柄部72,沿着细
长轴71的一个或多个牵拉腔向下导向腱并且将其锚定在细长轴71的远侧部分处,或锚定在细长轴的远侧部分处的腕部中。在外科规程诸如腹腔镜、内窥镜或混合规程期间,这些腱可以联接到远侧安装的端部执行器,诸如腕部、抓握器或剪刀。在这样的布置下,施加在驱动输入部73上的扭矩将张力传递到腱,从而引起端部执行器以某种方式致动。在一些实施方案中,在外科规程期间,腱可以致使接头围绕轴线旋转,从而致使端部执行器沿一个方向或另一个方向运动。另选地,腱可以连接到细长轴71的远侧端部处的抓握器的一个或多个钳口,其中来自腱的张力致使抓握器闭合。
143.在内窥镜检查中,腱可经由粘合剂、控制环或其他机械固定件联接到沿着细长轴71定位(例如,在远侧端部处)的弯曲或关节运动节段。当固定地附接到弯曲节段的远侧端部时,施加在驱动输入部73上的扭矩将沿腱向下传递,从而引起较软的弯曲节段(有时称为可关节运动节段或区域)弯曲或进行关节运动。沿着不弯曲节段,可以有利的是,使单独的牵拉腔螺旋或盘旋,该牵拉腔沿着内窥镜轴的壁(或在内部)导向单独的腱,以平衡由牵拉线中的张力引起的径向力。为了特定目的,可以改变或设计螺旋的角度和/或它们之间的间隔,其中更紧的螺旋在负载力下表现出较小的轴压缩,而较低的螺旋量在负载力下引起更大的轴压缩,但限制弯曲。在另一种情况下,可平行于细长轴71的纵向轴线来导向牵拉腔以允许在期望的弯曲或可关节运动节段中进行受控关节运动。
144.在内窥镜检查中,细长轴71容纳多个部件以辅助机器人规程。轴71可以在轴71的远侧端部处包括用于部署外科工具(或医疗器械)、对手术区域进行冲洗和/或抽吸的工作通道。轴71还可以适应线和/或光纤以向远侧末端处的光学组件/从远侧末端处的光学组件传递信号,该光学组件可以包括光学相机。轴71也可以适应光纤,以将来自位于近侧的光源(诸如,发光二极管)的光载送到轴71的远侧端部。
145.在器械70的远侧端部处,远侧末端还可包括用于将用于诊断和/或治疗、冲洗和抽吸的工具递送到手术部位的工作通道的开口。远侧末端还可以包括用于相机(诸如纤维镜或数码相机)的端口,以捕获内部解剖空间的图像。相关地,远侧末端还可以包括用于光源的端口,该光源用于在使用相机时照亮解剖空间。
146.在图16的示例中,驱动轴轴线以及因此驱动输入部轴线与细长轴71的轴线正交。然而,该布置使细长轴71的滚转能力复杂化。沿着细长轴71的轴线滚转该细长轴同时保持驱动输入部73静止会引起当腱从驱动输入部73延伸出去并且进入细长轴71内的牵拉腔时,腱的不期望的缠结。所得到的这样的腱的缠结可能破坏旨在在内窥镜规程期间预测柔性细长轴71的运动的任何控制算法。
147.图17示出了器械驱动器和器械的另选设计,其中驱动单元的轴线平行于器械的细长轴的轴线。如图所示,圆形器械驱动器80包括四个驱动单元,其驱动输出部81在机器人臂82的端部处平行对准。驱动单元和它们相应的驱动输出部81容纳在由组件83内的驱动单元中的一个驱动单元驱动的器械驱动器80的旋转组件83中。响应于由旋转驱动单元提供的扭矩,旋转组件83沿着圆形轴承旋转,该圆形轴承将旋转组件83连接到器械驱动器80的非旋转部分84。可以通过电接触将电力和控制信号从器械驱动器80的非旋转部分84传送至旋转组件83,该电接触可以通过电刷滑环连接(未示出)的旋转来保持。在其他实施方案中,旋转组件83可以响应于集成到不可旋转部分84中的单独的驱动单元,并且因此不平行于其他驱动单元。旋转机构83允许器械驱动器80允许驱动单元及其相应的驱动输出部81作为单个单
元围绕器械驱动器轴线85旋转。
148.与先前所公开的实施方案类似,器械86可以包括细长轴部分88和器械基部87(出于讨论的目的,示出为具有透明的外部表层),该器械基部包括被构造成接收器械驱动器80中的驱动输出部81的多个驱动输入部89(诸如插孔、滑轮和卷轴)。与先前公开的实施方案不同,器械轴88从器械基部87的中心延伸,该器械基部的轴线基本上平行于驱动输入部89的轴线,而不是如图16的设计中那样正交。
149.当联接到器械驱动器80的旋转组件83时,包括器械基部87和器械轴88的医疗器械86与旋转组件83组合地围绕器械驱动器轴线85旋转。由于器械轴88被定位在器械基部87的中心处,因此当附接时器械轴88与器械驱动器轴线85同轴。因此,旋转组件83的旋转致使器械轴88围绕其自身的纵向轴线旋转。此外,当器械基部87与器械轴88一起旋转时,连接到器械基部87中的驱动输入部89的任何腱在旋转期间都不缠结。因此,驱动输出部81、驱动输入部89和器械轴88的轴线的平行允许轴在不会使任何控制腱缠结的情况下旋转。
150.图18示出了根据一些实施方案的具有基于器械的插入架构的器械。器械150可联接到上文所述的器械驱动器中的任一个器械驱动器。器械150包括细长轴152、连接到轴152的端部执行器162和联接到轴152的柄部170。细长轴152包括管状构件,该管状构件具有近侧部分154和远侧部分156。细长轴152沿着其外表面包括一个或多个通道或凹槽158。凹槽158被构造成接纳通过该凹槽的一根或多根线材或缆线180。因此,一根或多根缆线180沿着细长轴152的外表面延伸。在其他实施方案中,缆线180也可穿过细长轴152。所述一根或多根缆线180的操纵(例如,经由器械驱动器)使得端部执行器162的致动。
151.器械柄部170(也可称为器械基部)通常可包括附接接口172,该附接接口具有一个或多个机械输入件174,例如插孔、滑轮或卷轴,所述一个或多个机械输入件被设计成与器械驱动器的附接表面上的一个或多个扭矩联接器往复地配合。
152.在一些实施方案中,器械150包括使得细长轴152能够相对于柄部170平移的一系列滑轮或缆线。换句话讲,器械150本身包括基于器械的插入架构,该架构适应器械的插入,从而使对机器人臂的依赖最小化以提供器械150的插入。在其他实施方案中,机器人臂可以很大程度上负责器械插入。
153.e.控制器。
154.本文所述的机器人系统中的任一个机器人系统可包括用于操纵附接到机器人臂的器械的输入装置或控制器。在一些实施方案中,控制器可与器械(例如,通信地、电子地、电气、无线地和/或机械地)耦合,使得控制器的操纵例如经由主从控制而致使器械对应操纵。
155.图19是控制器182的实施方案的透视图。在本实施方案中,控制器182包括可具有阻抗和导纳控制两者的混合控制器。在其他实施方案中,控制器182可仅利用阻抗或被动控制。在其他实施方案中,控制器182可仅利用导纳控制。通过作为混合控制器,控制器182有利地在使用时可具有较低的感知惯性。
156.在例示的实施方案中,控制器182被构造成允许操纵两个医疗器械,并且包括两个柄部184。柄部184中的每个柄部连接到万向支架186。每个万向支架186连接到定位平台188。
157.如图19所示,每个定位平台188包括通过棱柱接头196联接到柱194的scara臂(选
择顺应性装配机器人臂)198。棱柱接头196被构造成沿着柱194(例如,沿着轨道197)平移,以允许柄部184中的每个柄部在z方向上平移,从而提供第一自由度。scara臂198被构造成允许柄部184在x-y平面中运动,从而提供两个附加自由度。
158.在一些实施方案中,一个或多个负荷传感器定位在控制器中。例如,在一些实施方案中,负荷传感器(未示出)被定位在万向支架186中的每个万向支架的主体中。通过提供负荷传感器,控制器182的部分能够在导纳控制下操作,从而在使用时有利地减小控制器的感知惯性。在一些实施方案中,定位平台188被配置用于导纳控制,而万向支架186被配置用于阻抗控制。在其他实施方案中,万向支架186被配置用于导纳控制,而定位平台188被配置用于阻抗控制。因此,对于一些实施方案,定位平台188的平移自由度或方位自由度可依赖于导纳控制,而万向支架186的旋转自由度依赖于阻抗控制。
159.f.导航和控制。
160.传统的内窥镜检查可以涉及使用荧光透视(例如,如可以通过c形臂递送的)和其他形式的基于辐射的成像模态,以向操作医师提供腔内指导。相比之下,本公开所设想的机器人系统可以提供基于非辐射的导航和定位装置,以减少医师暴露于辐射并且减少手术室内的设备的量。如本文所用,术语“定位”可以指确定和/或监测对象在参考坐标系中的方位。诸如术前标测、计算机视觉、实时em跟踪和机器人命令数据的技术可以单独地或组合地使用以实现无辐射操作环境。在仍使用基于辐射的成像模态的其他情况下,可以单独地或组合地使用术前标测、计算机视觉、实时em跟踪和机器人命令数据,以改进仅通过基于辐射的成像模态获得的信息。
161.图20是示出了根据示例性实施方案的估计机器人系统的一个或多个元件的位置(诸如器械的位置)的定位系统90的框图。定位系统90可以是被配置为执行一个或多个指令的一组一个或多个计算机装置。计算机装置可以由上文讨论的一个或多个部件中的处理器(或多个处理器)和计算机可读存储器来体现。通过示例而非限制,计算机装置可以位于图1所示的塔30、图1至图4所示的推车11、图5至图14所示的床等中。
162.如图20所示,定位系统90可包括定位模块95,该定位模块处理输入数据91-94以生成用于医疗器械的远侧末端的位置数据96。位置数据96可以是表示器械的远侧端部相对于参考系的位置和/或取向的数据或逻辑。参考系可以是相对于患者解剖结构或已知对象(诸如em场发生器)的参考系(参见下文对于em场发生器的讨论)。
163.现在更详细地描述各种输入数据91-94。术前标测可以通过使用低剂量ct扫描的集合来完成。术前ct扫描被重建为三维图像,该三维图像被可视化,例如作为患者的内部解剖结构的剖面图的“切片”。当总体上分析时,可以生成用于患者的解剖结构(诸如患者肺网络)的解剖腔、空间和结构的基于图像的模型。可以从ct图像确定和近似诸如中心线几何形状的技术,以形成患者解剖结构的三维体积,其被称为模型数据91(当仅使用术前ct扫描生成时也称为“术前模型数据”)。中心线几何形状的使用在美国专利申请14/523,760中有所讨论,其内容全文并入本文中。网络拓扑模型也可以从ct图像中导出,并且特别适合于支气管镜检查。
164.在一些实施方案中,器械可以配备有相机以提供视觉数据(或图像数据)92。定位模块95可处理视觉数据92以实现一个或多个基于视觉的(或基于图像的)位置跟踪模块或特征部。例如,术前模型数据91可以与视觉数据92结合使用,以实现对医疗器械(例如,内窥
镜或推进通过内窥镜的工作通道的器械)的基于计算机视觉的跟踪。例如,使用术前模型数据91,机器人系统可以基于内窥镜的行进预期路径根据模型生成预期内窥镜图像的库,每个图像连接到模型内的位置。在外科手术进行时,机器人系统可以参考该库,以便将在相机(例如,在内窥镜的远侧端部处的相机)处捕获的实时图像与图像库中的那些图像进行比较,以辅助定位。
165.其他基于计算机视觉的跟踪技术使用特征跟踪来确定相机的运动,并且因此确定内窥镜的运动。定位模块95的一些特征可以识别术前模型数据91中的与解剖腔对应的圆形几何结构并且跟踪那些几何结构的变化以确定选择了哪个解剖腔,以及跟踪相机的相对旋转和/或平移运动。拓扑图的使用可以进一步增强基于视觉的算法或技术。
166.光流(另一种基于计算机视觉的技术)可以分析视觉数据92中的视频序列中的图像像素的位移和平移以推断相机运动。光流技术的示例可以包括运动检测、对象分割计算、亮度、运动补偿编码、立体视差测量等。通过多次迭代的多帧比较,可以确定相机(以及因此内窥镜)的运动和位置。
167.定位模块95可使用实时em跟踪来生成内窥镜在全局坐标系中的实时位置,该全局坐标系可被配准到由术前模型表示的患者的解剖结构。在em跟踪中,包括嵌入在医疗器械(例如,内窥镜工具)中的一个或多个位置和取向中的一个或多个传感器线圈的em传感器(或跟踪器)测量由定位在已知位置处的一个或多个静态em场发生器产生的em场的变化。由em传感器检测的位置信息被存储为em数据93。em场发生器(或发射器)可以靠近患者放置,以产生嵌入式传感器可以检测到的低强度磁场。磁场在em传感器的传感器线圈中感应出小电流,可以对该小电流进行分析以确定em传感器与em场发生器之间的距离和角度。这些距离和取向可以在外科手术进行时“配准”到患者解剖结构(例如,术前模型),以确定将坐标系中的单个位置与患者的解剖结构的术前模型中的方位对准的几何变换。一旦配准,医疗器械的一个或多个方位(例如,内窥镜的远侧末端)中的嵌入式em跟踪器可以提供医疗器械通过患者的解剖结构的进展的实时指示。
168.机器人命令和运动学数据94也可以由定位模块95使用以提供用于机器人系统的方位数据96。可以在术前校准期间确定从关节运动命令得到的装置俯仰和偏航。在外科手术进行时,这些校准测量可以与已知的插入深度信息结合使用,以估计器械的方位。另选地,这些计算可以结合em、视觉和/或拓扑建模进行分析,以估计医疗器械在网络内的方位。
169.如图20所示,多个其他输入数据可由定位模块95使用。例如,尽管在图20中未示出,但是利用形状感测纤维的器械可提供形状数据,定位模块95可使用该形状数据来确定器械的位置和形状。
170.定位模块95可以组合地使用输入数据91-94。在一些情况下,这样的组合可以使用概率方法,其中定位模块95向根据输入数据91-94中的每个输入数据确定的位置分配置信度权重。因此,在em数据可能不可靠(如可能存在em干扰的情况)的情况下,由em数据93确定的位置的置信度可能降低,并且定位模块95可能更重地依赖于视觉数据92和/或机器人命令和运动学数据94。
171.如上所讨论的,本文讨论的机器人系统可以被设计成结合以上技术中的一种或多种技术的组合。位于塔、床和/或推车中的机器人系统的基于计算机的控制系统可将计算机程序指令存储在例如非暂态计算机可读存储介质(诸如永久性磁存储驱动器、固态驱动器
等)内,该计算机程序指令在执行时致使系统接收并且分析传感器数据和用户命令,生成整个系统的控制信号并且显示导航和定位数据,诸如器械在全局坐标系内的方位、解剖图等。
172.2.饱和机器人运动的介绍
173.本公开的实施方案涉及用于机器人系统的饱和运动的系统和技术。如本文所述,机器人医疗系统可包括被构造成在给定医疗规程期间控制医疗工具的运动的多个机器人臂。为了实现医疗工具的期望姿势,可将机器人臂放置成可使机器人臂与外部对象(诸如例如,患者、床边工作人员或无生命对象(例如,床上的配件))接触的姿势。因为与外部对象的碰撞可能是危险的(例如,引起对患者的创伤或对机器人系统的损坏),所以希望防止这类碰撞发生。
174.除了防止碰撞之外,机器人系统可遵守某些约束以维持给定医疗规程的安全性。例如,在腹腔镜检查规程中,插管可插入到患者的体壁中,腹腔镜器械可通过插管插入以进入体腔中。为了防止损伤患者的体壁,机器人系统可强制远程运动中心(rcm)与患者的体壁相交,在患者的体壁处机器人臂和医疗器械的运动受到约束。在机器人医疗规程期间可观察到的其他示例性约束包括但不限于:接头最大速度、机器人端部执行器最大速度、机器人肘部速度、工具末端速度、器械腕部运动范围(rom)、器械插入极限、机器人工作空间、避奇异和线性逼近。
175.本公开的具体实施可使得医疗机器人系统的用户能够经由机器人臂命令医疗器械的运动,同时通过提供机器人臂的“饱和”运动来遵守一个或多个约束。如本文所用,饱和运动可以指机器人臂沿着阈值或边界的运动,在超出该阈值或边界时将不满足给定约束。在一个示例中,本公开的各方面可使得机器人臂能够使用饱和运动沿着碰撞边界连续地运动而不中断。可针对其他运动约束采用类似的约束饱和运动,包括同时遵守多个约束的饱和运动。
176.a.碰撞饱和运动
177.如本文所述,机器人医疗系统可包括一个或多个串行操纵器(例如,机器人臂)以控制一个或多个医疗器械的运动。这样的机器人医疗系统的示例示于图1至图14中。由于机器人臂中的每个机器人臂的工作体积,因此每个机器人臂可能能够与其工作体积中的对象碰撞,这可能发生在例如一个机器人臂与另一个机器人臂之间、一个机器人臂与医疗器械轴之间和/或一个机器人臂与医疗工作空间或环境中的另一对象之间。根据本公开的各方面的机器人系统可包括被配置为对工作空间内的系统的不同部件(例如,机器人臂、器械、配件等)进行建模的软件,其中该模型可用于确定是否将发生碰撞。例如,在接收到使医疗器械运动的用户命令时,系统可使用模型来确定医疗器械的命令运动是否将导致工作空间内的碰撞。
178.如果系统在患者侧检测到碰撞或即将发生的碰撞,则系统可停止机器人臂在碰撞方向上的进一步运动,以便防止对患者的损伤或对机器人系统的部件的损坏。在医师侧,系统可通过提供触觉反馈(例如,经由控制器182中所包括的致动器)来引导主控制器(例如,图19的控制器182),以在可避免碰撞的方向上运动主控制器(或致使/引导用户运动主控制器)。一旦主控制器已经由用户在机器人臂可遵循而不导致碰撞的方向上运动,机器人臂然后就可“跳”入无碰撞空间内的命令位置中。机器人臂的这种“跳跃”呈现突然的、不连续的运动,这导致在用户侧的不平稳的或以其他方式不平滑的控制。
179.图21a和图21b示出了根据本公开的各方面的主控制器和从/机器人臂的运动。具体地,图21a示出了可在不使用饱和运动的情况下发生的机器人臂的跳跃效果的示例,而图21b示出了可防止机器人臂的跳跃效果的从/机器人臂的饱和运动的示例。尽管图21a和图21b示出了二维(2d)空间,但是本公开也可等同地应用于其他空间,包括一维(1d)和三维(3d)空间。
180.参考图21a,机器人系统的模型可包括无碰撞空间202以及碰撞空间204,该碰撞空间限定机器人系统的部件不可到达的体积,以便防止碰撞。还示出了主控制器206、从机器人臂208(例如,遵循主控制器206的命令运动的机器人臂)和触觉210的一组示例性运动,该触觉可应用于主控制器206以引导主控制器206的用户远离碰撞空间204运动。尽管图21a和图21b是结合可与对象接触的从机器人臂208的连杆来描述的,但约束饱和运动可用于解决接头约束,诸如接头的有限rom。
181.在某些具体实施中,机器人系统可使用形成一个或多个机器人臂的串行操纵器。系统可应用与用于rcm的软件约束类似的软件约束来执行机器人腹腔镜运动。另外,机器人臂中的每个机器人臂可具有例如七个自由度,从而提供1自由度的零空间。在其他具体实施中,机器人臂可具有更多或更少数量的自由度。当机器人臂具有至少一个零空间自由度时,系统可使用零空间自由度来用于主动碰撞避免,包括连杆碰撞和接头rom极限两者。如果碰撞是不可避免的,则系统可停止在碰撞方向上的进一步机器人臂运动,直到主控制器被带回到主控制器方位,该主控制器方位对应于机器人臂在没有碰撞的情况下可实现的机器人臂方位。例如,主控制器206回到无碰撞空间202中的运动可在触觉引导210下执行。
182.主控制器206沿着第一路径212运动,其中主控制器206的七个位置沿着第一路径212示出(即,在沿着第一路径212运动期间主控制器206的位置的快照)。类似地,从机器人臂208沿着第二路径214运动,其中从机器人臂208的三个位置沿着第二路径214示出。在主控制器206在点b处从点a运动到碰撞空间204中之后,系统防止从机器人臂208跟随主控制器206进入碰撞空间204中,从而防止机器人臂经历碰撞。在主控制器206运动穿过碰撞空间204时,系统将从机器人臂208保持在刚好在碰撞空间204的边界之前的相同方位(例如,在点b处)以防止碰撞发生。当用户将主控制器206运动穿过碰撞空间204时,触觉210在从机器人臂208在点b处的位置的方向上被应用于主控制器206。
183.在主控制器206运动回到无碰撞空间202中到达点c之后,从机器人臂208能够跟随主控制器206的方位而不运动到碰撞空间中,并且因此,从该从机器人臂208在主控制器206在点b处运动到碰撞空间中之前所保持的方位跳跃到主控制器206在点c处离开碰撞空间204之后的方位。虽然图21a所示的主控制器206和从机器人臂208的运动避免了碰撞,但是从机器人臂208从点b到点c的突然的、不连续的运动对于用户而言可能并非自然且可预测的运动。这种行为具有一些用户体验挑战,但是能够安全地观察rcm型约束并且保护机器人臂不与环境中的对象碰撞。根据本公开的各方面,提供了能够观察所有运动约束同时改善用户体验而无需在检测到即将发生的碰撞时完全停止运动的系统和方法。
184.为了减轻“从/机器人跳跃”的问题并且为外科医生创建平滑体验,本公开的各方面采用可提供(a)碰撞饱和运动同时(b)满足各种运动约束的技术。图21b示出了使用碰撞饱和算法来运动从机器人臂208的示例,该碰撞饱和算法也可涉及遵守一个或多个约束。
185.转向图21b,主控制器206以与图21a的示例中相同的模式或运动进行运动。在跟随
主控制器206的同时到达与碰撞空间204的边界时,从机器人臂208尽可能接近地跟随主控制器206的运动而不运动到碰撞空间204中。因此,从机器人臂208沿着碰撞边界运动,直到主控制器206返回到无碰撞空间202,此后从机器人臂208可直接跟随主控制器206。该示例中的触觉210在从机器人臂208的当前方位的方向上被应用于主控制器206,从而向用户提供从机器人臂208和无碰撞空间202相对于主控制器206的方位的位置的反馈。在一些实施方案中,系统可控制主控制器206以响应于确定根据命令运动来使机器人臂运动将致使从机器人臂208同无碰撞空间202与碰撞空间204之间的碰撞边界接触或越过该碰撞边界而向用户提供触觉反馈210。触觉反馈210可包括触知反馈,该触知反馈包括振动。
186.比较图21a和图21b的示例,在图21a的示例中,从机器人臂208从点a被驱动到点b,在点b处检测到碰撞(实际碰撞或几乎碰撞)。此时,系统停止从机器人臂208的进一步运动。在点b处,系统可向主控制器206应用触觉反馈210以引导用户远离碰撞点。一旦主控制器206被引导回到无碰撞空间202中,这就使得从机器人臂208从点b跳跃到点c。相反,在图21b的示例中,从机器人臂208的运动跟随碰撞边界(例如,无碰撞空间202与碰撞空间204之间的边界),使得不发生图21a的不连续的“从/机器人跳跃”。从机器人臂208沿着碰撞边界的这种运动可对应于从机器人臂208的最接近主控制器206命令的运动而不会导致碰撞的运动。此外,图21b中的系统还可被配置为在使用碰撞饱和运动来运动从机器人臂208的同时满足任何其他可适用约束(例如,软件rcm)。
187.图22示出了根据本公开的各方面的可由机器人系统实施的示例性运动学架构300。运动学架构300可被划分成笛卡尔空间302、接头空间304和硬件空间306。运动学架构300包括笛卡尔饱和模块308、状态转变复位模块310、触觉反馈模块312、逆向运动学模块314、组合模块316、碰撞避免和零空间运动模块318(也简称为碰撞避免模块)、α饱和模块320、正向运动学模块322、过滤器324和机器人接头326。尽管图22示出了运动学架构300的一个具体实施,但是在其他具体实施中,所示模块中的一个或多个模块可被移除、在单个模块中实施,和/或可添加附加模块。
188.机器人臂的约束饱和运动可例如经由笛卡尔饱和模块308、α饱和模块320和/或碰撞避免模块318中的一者或多者实施。例如,笛卡尔饱和模块308可实施末端速度饱和和/或器械腕部rom,α饱和模块320可实施接头速度饱和和/或器械末端速度,并且碰撞避免模块318可实施碰撞饱和。由于来自约束、假设和甚至碰撞检测限制的耦合,因此形成运动学架构300的模块在以足够快的回路速率实时运行以稳健地递送碰撞饱和运动时一起提供收敛。
189.图23是示出了根据本公开的一个或多个方面的可由外科机器人系统或其部件针对碰撞饱和运动操作的示例性方法400的流程图。应当理解,图23所示的方法400的步骤可由外科机器人系统的一个或多个处理器执行。为了方便起见,方法400被描述为由系统的处理器执行。
190.处理器可被包括进来作为系统的一部分,其包括被构造成控制医疗器械的运动的机器人臂。系统还可包括至少一个计算机可读存储器,该至少一个计算机可读存储器与处理器通信并且在其上存储有计算机可执行指令,以致使该组处理器执行方法400。
191.方法400可在框401处开始。在框402处,处理器可接收来自用户的用于利用机器人臂使医疗器械运动的用户输入。例如,可从主控制器206,诸如图19的控制器182接收用户输
入。在框404处,处理器可确定根据用户输入使机器人臂运动将致使机器人臂的接触点(参见下图24中的接触点516)接触或越过对象周围的碰撞边界。碰撞边界可将机器人臂的无碰撞工作空间(例如,碰撞空间202)与对象(例如,其可由碰撞空间204表示)分离。在一些具体实施中,确定根据用户输入使机器人臂运动将致使接触点与碰撞边界接触或越过碰撞边界是基于检测到接触点与碰撞边界之间的碰撞。
192.在框406处,处理器可引导机器人臂的运动,使得机器人臂的接触点部分地基于用户输入而沿着碰撞边界连续地运动。响应于在框404中确定根据用户输入使机器人臂运动将致使接触点接触或越过碰撞边界,处理器可沿着碰撞边界引导机器人臂的运动。方法400在框408处结束。
193.图24示出了根据本公开的各方面的在可能处于与对象或障碍512碰撞的风险下的方位处的机器人臂502的示例。机器人臂502包括连接多个联接件的多个接头。具体地,第i接头的原点504示出在机器人臂502的近侧端部处,并且装置操纵器506示出在机器人臂502的远侧端部处。装置操纵器506被构造成控制器械508的运动,该运动在rcm 510处具有运动约束。
194.对象512可位于机器人臂502的可及范围内。为了检测对象512与机器人臂502之间的潜在碰撞,系统可确定机器人臂502和对象512上最靠近碰撞的点以及这些点之间的距离。具体地,系统可确定机器人臂502上的接触点516和对象512上的障碍点514。换句话讲,接触点516属于机器人臂上的一组点,其中接触点516比该组中的所有其他点更靠近对象512。
195.在某些具体实施中,为了生成碰撞饱和运动从而在遵守rcm约束的同时沿着碰撞边界引导机器人臂的运动,处理器可将两个接头运动δq
rc
和δq
sat
加到一起。接头运动δq
rc
和δq
sat
可为以下等式在联接件和/或接头饱和阈值处的逆向运动学解:
[0196][0197]
在一些具体实施中,例如由逆向运动学模块314使用标准加权阻尼最小二乘法来对逆向运动学求解。两个等式(1)分别表示6-dof姿势控制和“饱和”任务。在这些等式中,雅克比矩阵定义如下:
[0198][0199]
此处,j
rc
是远程中心的全雅克比矩阵(和分别是平移和旋转雅克比矩阵),并且j
sat
被表示为饱和雅克比矩阵。ju是定义为(碰撞点的平移雅克比矩阵)或第i接头雅克比矩阵(以更严重者为准)的统一雅克比矩阵。如本文所用,严重性可以指碰撞中对象的物理接近度的归一化测量。例如,值
‘0’
可用于指示对象较远并且因此不被认为是碰撞,而值
‘1’
可用于指示对象距离处于系统停止机器人臂的进一步运动的阈值距离处。通过使用以这种方式构造的严重性度量,可跨不同类型的碰撞(例如,无论是平移的还是定向的)和/或具有不同阈值的碰撞来比较严重性。m可表示dof的数量。
[0200]
等式(1)中的右手侧是任务描述,其可定义如下:
[0201][0202][0203]
其中上行的0强加rcm约束,δα表示期望取向变化,并且δpu是期望饱和任务。在某些具体实施中,期望饱和任务δpu可被定义为对于针对机器人臂502的第i接头的接触点516不同。在一些具体实施中,接触点516的期望饱和任务δpu可基于碰撞避免方向投影矩阵,并且机器人臂502的第i接头的期望饱和任务δpu可基于第i接头的驱动第i接头远离其饱和极限的期望运动。接头饱和极限可被设置为接头极限内的任何容许值。接触点516的期望饱和任务δpu可基于接触点516的期望垂直运动。可基于接触点516与障碍点514之间的距离、饱和阈值和/或接触点516与障碍点514的方位来确定接触点516的期望垂直运动。
[0204]
图25a和图25b示出了根据本公开的各方面的可采用碰撞饱和的两个示例。具体地,图25a示出了主动碰撞饱和600,并且图25b示出了反应碰撞饱和620。图25a和图25b示出了接触点602、对象604、较高阈值606和饱和阈值608。当接触点602与对象604之间的距离小于较高阈值606但大于饱和阈值608时,机器人系统可实施主动碰撞饱和600。在一些具体实施中,饱和阈值608可对应于图21a和图21b所示的无碰撞空间202与碰撞空间204之间的碰撞边界。
[0205]
参考图25a,接触点602的命令运动可包括平行分量610和垂直分量612。在这种状态下,系统可通过将碰撞点的命令垂直分量612按比例缩小到缩放垂直分量614来实施碰撞饱和,以确保缩放垂直分量614不越过饱和阈值608。在满足以下两个条件时可实施主动碰撞饱和600技术:(i)接触点602与对象604之间的距离小于较高阈值606但大于饱和阈值608,并且(ii)所命令的垂直分量612将使接触点602比饱和阈值608更靠近对象604。在一些具体实施中,系统不修改命令运动的垂直分量612。
[0206]
在实施图25a的主动碰撞饱和600技术时,系统可识别用户输入的具有将致使机器人臂的接触点602越过碰撞边界(例如,饱和阈值608)的方向的矢量分量612,并且根据所识别的矢量分量612减少或防止接触点602的运动,使得接触点不越过碰撞边界。
[0207]
系统还可被配置为响应于确定命令运动将使接触点远离饱和阈值608而在不进行修改的情况下使机器人臂的接触点602运动。例如,系统可被配置为确定根据命令运动使机器人臂运动将致使机器人臂的接触点602远离饱和阈值608运动,并且响应于确定根据命令运动来使机器人臂运动将致使机器人臂的接触点602远离饱和阈值608运动,根据命令运动控制机器人臂远离饱和阈值608的运动。
[0208]
机器人系统可响应于接触点602比饱和阈值608更靠近对象604定位而实施图25b所示的反应碰撞饱和620。在这种情况下,系统可通过驱动接触点602远离对象604以确保接触点602回落(例如,饱和)于饱和阈值608来实施反应碰撞饱和620。具体地,系统可运动具有垂直分量622的接触点602,该垂直分量使接触点602运动回到饱和阈值608而不管所命令的垂直分量。反应碰撞饱和620可使命令运动的平行分量624保持不变。
[0209]
通过制止修改主动碰撞饱和600技术和反应碰撞饱和620技术中的每种技术中的命令运动的平行分量610、624,系统可提供沿着饱和边界的滑动运动,例如,如图23的框406
中所实施的。
[0210]
还可将结合图25a和图25b描述的各方面概括为不严格地基于机器人臂上的接触点602与对象604之间的最小距离的阈值。在一些具体实施中,碰撞边界可被构造成提供(i)接触点602与对象604之间的第一阈值距离和/或(ii)接触点602与对象604之间的第一角度阈值。例如,当提供(i)接触点602与对象604之间的第一阈值距离时,第一阈值距离可应用于医疗环境中的任何两个对象之间(例如,第一机器人臂处于与第二机器人臂碰撞的风险下,机器人臂的第一联接件处于到达与机器人臂的第二联接件的接头极限的风险下,处于与第二医疗工具碰撞的风险下的第一医疗工具等)。在另一示例中,当提供(ii)接触点与对象之间的第一角度阈值时,第一角度阈值可应用于将到达与第二联接件的接头极限的第一联接件的场景。换句话讲,两个联接件之间的接头极限可基于:(i)第一阈值距离和/或(ii)第一角度阈值,这取决于具体实施。
[0211]
除了使用第一阈值距离之外,处理器还可提供第二阈值距离和/或角度,其中第二阈值距离和/或角度大于第一阈值距离和/或角度。在一些具体实施中,处理器可确定接触点602位于距对象604的第二阈值距离和/或第二阈值角度内。响应于确定接触点位于距对象的第二阈值距离和/或角度内,处理器可确定根据用户输入使机器人臂运动将致使接触点602与碰撞边界接触或越过碰撞边界。
[0212]
b.辅助约束
[0213]
在某些具体实施中,机器人系统还可被配置为独立于碰撞饱和运动或除了碰撞饱和运动之外提供上文所提及的“辅助”约束中的任一约束的饱和。图26是示出了根据本公开的一个或多个方面的可由外科机器人系统或其部件在遵守辅助约束的同时针对碰撞饱和运动操作的示例性方法700的流程图。应当理解,图26所示的方法700的步骤可由外科机器人系统的处理器执行。为了方便起见,方法700被描述为由系统的处理器执行。
[0214]
处理器可被包括进来作为系统的一部分,其包括被构造成控制医疗器械的运动的机器人臂。系统还可包括至少一个计算机可读存储器,该至少一个计算机可读存储器与处理器通信并且在其上存储有计算机可执行指令,以致使该组处理器执行方法700。
[0215]
方法700可在框701处开始。在框702处,处理器可接收来自用户的用于使机器人臂运动以控制医疗器械的输入。在框704处,处理器可根据输入和一个或多个辅助约束沿着对象周围的碰撞边界引导机器人臂的运动。辅助约束可包括以下各项中的一项或多项:接头最大速度、机器人端部执行器最大速度、机器人肘部速度、工具末端速度、器械腕部rom、器械插入极限、机器人工作空间、避奇异和线性逼近。该方法在框706处结束。
[0216]
在某些具体实施中,处理器可控制机器人臂的运动,同时使速度约束(例如,接头最大速度、机器人端部执行器最大速度、机器人肘部速度和/或工具末端速度)饱和。例如,处理器可确定根据用户输入使机器人臂运动将以超过速度约束的第一速度使机器人臂的至少一部分运动。响应于确定使机器人臂运动以遵循用户输入将以第一速度使机器人臂的至少一部分运动,处理器还可以小于速度约束的第二速度引导机器人臂的运动。
[0217]
根据一个或多个辅助约束的机器人臂的引导可经由图22所示的运动学架构300内的不同模块实施。此外,在某些具体实施中,由于来自约束、假设和/或碰撞检测限制的耦合,因此上面单独在碰撞饱和运动部分中描述的技术可能不足以稳健地提供机器人臂的碰撞饱和运动。这可使用运动学架构300来解决,该运动学架构可在以足够快的回路速率实时
运行时提供收敛。参考图22,结合碰撞饱和运动部分讨论的算法可至少部分地由碰撞避免模块318实施。作为整体,运动学架构300可整体地生成用于运动机器人接头320以执行机器人臂的饱和运动(例如,碰撞饱和和/或约束饱和运动)的从机器人臂命令。
[0218]
图27示出了根据本公开的各方面的笛卡尔饱和模块308(见图22)如何起作用的示例性图示。具体地,笛卡尔饱和模块308可基于机器人臂的当前方位来限制逆向运动学模块314的输入,以防止在逆向运动学模块314中发生某些不利条件。例如,诸如违反线性假设、奇异、机器人工作空间、碰撞检测限制等的不利条件可与其他适当饱和一起被笛卡尔饱和模块308减少或防止。笛卡尔饱和模块308还可使工具末端速度饱和,这可提高医疗器械的安全性。笛卡尔饱和模块308还可使器械腕部rom饱和而不与笛卡尔饱和碰撞。参考图27,示出了来自主控制器的命令运动802、从/机器人姿势804(例如,其可从正向运动学模块322输出)、不具有笛卡尔饱和的α饱和命令运动806和笛卡尔饱和运动808。
[0219]
这些辅助约束的饱和可以与上述碰撞饱和类似的方式执行。例如,在确定命令运动将导致满足或超过与给定约束相关联的阈值时,系统可使将超过阈值的运动饱和,使得未超过阈值,同时允许与将不超过阈值的命令一致的运动(例如,如果约束是多维的,则为高达阈值的运动和/或平行于阈值的运动)。
[0220]
在一些具体实施中,另一辅助约束包括接头空间304中的α饱和。α饱和可以指在运动学线性逼近下在不打破rcm约束的情况下观察接头最大速度的协调接头饱和。α饱和模块320可实施α饱和,该α饱和可用于对装置操纵器(例如,装置操纵器506)和/或沿着机器人臂的任何点强制速度约束,以用于与速度安全性要求的各种顺应性。结合过滤器模块324,α饱和模块320可生成用于机器人接头326的平滑命令,该平滑命令可停留在机器人硬件空间306中以用于适当的物理执行。触觉反馈模块312可被配置为计算主控制器206与从机器人臂208姿势之间的差异,该差异可由主控制器206用于提供触觉力/扭矩并且向用户通知应用于从机器人臂208的运动的饱和(例如,见图21a和图21b)。
[0221]
在某些具体实施中,系统可被配置为实施运动饱和以在机器人臂的运动期间符合多于一个辅助约束。当多个饱和约束处于或接近饱和时,系统可被配置为比较约束的严重性以做出关于在机器人臂的运动期间哪些约束达到饱和的确定。例如,处理器可确定与第一饱和约束相关联的第一严重性度量,并且确定与第二饱和约束相关联的第二严重性度量。处理器还可将第一严重性度量与第二严重性度量进行比较,并且可基于第一严重性度量与第二严重性度量的比较来确定是根据第一饱和约束还是根据第二饱和约束引导机器人臂的运动。例如,处理器可根据具有较大严重性度量的饱和约束引导机器人臂的运动。
[0222]
碰撞和/或其他辅助约束(例如,使用运动学架构300和本文所述的技术)的饱和具有优于其他具体实施的某些优点。例如,某些系统可机械地约束远程中心操纵器,其中可使用接头扭矩饱和。然而,机械约束系统可能不允许更广泛的机器人手术能力,诸如机器人内窥镜检查或伴随规程。有利地,与机械约束系统相比,本公开的各方面提供更多灵活性和多功能性,这是因为本文所述的技术允许调节碰撞边界、回避响应和其他参数以产生期望运动控制行为。本公开的各方面可更普遍地应用于机器人系统,并且可应用于任何串行机器人操纵器,包括具有至少六个dof的那些机器人操纵器。
[0223]
3.实施系统和术语。
[0224]
本文所公开的具体实施提供了用于机器人系统的饱和运动的系统、方法和设备。
[0225]
应当指出的是,如本文所用,术语“联接”或词语联接的其他变型形式可以指示间接连接或直接连接。例如,如果第一部件“联接”到第二部件,则第一部件可经由另一个部件间接连接到第二部件或直接连接到第二部件。
[0226]
本文所述的饱和机器人运动功能可作为一个或多个指令存储在处理器可读或计算机可读介质上。术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。通过示例而非限制,此类介质可包括随机存取存储器(ram)、只读存储器(rom)、电可擦除可编程只读存储器(eeprom)、快闪存储器、致密盘只读存储器(cd-rom)或其他光盘存储装置、磁盘存储装置或其他磁存储装置,或可以用于存储呈指令或数据结构的形式的期望的程序代码并且可以由计算机访问的任何其他介质。应当指出的是,计算机可读介质可为有形的和非暂态的。如本文所用,术语“代码”可以指可由计算装置或处理器执行的软件、指令、代码或数据。
[0227]
本文所公开的方法包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求的范围的情况下,方法步骤和/或动作可彼此互换。换句话讲,除非正在描述的方法的正确操作需要步骤或动作的特定顺序,否则可以在不脱离权利要求的范围的情况下修改特定步骤和/或动作的顺序和/或使用。
[0228]
如本文所用,术语“多个”表示两个或更多个。例如,多个部件指示两个或更多个部件。术语“确定”涵盖多种动作,并且因此,“确定”可包括计算、运算、处理、导出、调查、查找(例如,在表格、数据库或另一种数据结构中查找)、查明等。另外,“确定”可包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)等。另外,“确定”可包括解析、选择、挑选、建立等。
[0229]
除非另有明确指明,否则短语“基于”并不意味着“仅基于”。换句话讲,短语“基于”描述“仅基于”和“至少基于”两者。
[0230]
提供对所公开的具体实施的前述描述以使得本领域的任何技术人员能够制作或使用本发明。对这些具体实施的各种修改对于本领域的技术人员而言将是显而易见的,并且在不脱离本发明的范围的情况下,本文所定义的一般原理可应用于其他具体实施。例如,应当理解,本领域的普通技术人员将能够采用多个对应的替代和等同的结构细节,诸如紧固、安装、联接或接合工具部件的等同方式、用于产生特定致动运动的等同机构、以及用于递送电能的等同机构。因此,本发明并非旨在限于本文所示的具体实施,而是被赋予符合本文所公开的原理和新颖特征的最广范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1