压力微导管的制作方法

文档序号:30295619发布日期:2022-06-04 17:50阅读:221来源:国知局
压力微导管的制作方法

1.本发明涉及到一种血管内压力测量的微导管,特别涉及到一种压力微导管。


背景技术:

2.冠状动脉疾病是全世界死亡的主要原因之一,更好地诊断、监测和治疗冠状动脉疾病的能力可以挽救生命。冠脉造影是常规用来评价冠状动脉的狭窄病变的技术,但是冠脉造影不能反映冠脉血管功能的真实情况,所以基本上不能明确狭窄病变的冠状动脉是否与病患者的心肌缺血症状相关。目前,在临床上用来判断冠状动脉的狭窄病变的方法,主要是应用压力导丝检查得出的血流储备分数(fractional flow reserve,简称ffr)这种技术。
3.ffr定义为狭窄动脉内的最大血流与正常最大血流的比值。为了计算血管内给定狭窄(即有可能放置血管支架的部位)的ffr,需要分别测量并采集狭窄的远端侧(例如,狭窄的下游,远离主动脉)和狭窄的近端侧(例如狭窄的上游,靠近主动脉)的血压读数。临床研究表明,狭窄度越高,ffr值就越低,ffr值是否小于评估值(例如0.75)可以作为有用的判断标准,基于该标准医生可以决定对这样的病人是否实施介入治疗。作为测量血管内血压以测量血管狭窄的ffr值的方法,目前ffr测量使用有创压力传感器测量导管,测量导管内具有压力传感器和压力导丝,压力导丝经过导引导管传送压力传感器至冠状动脉狭窄远端部分处进行压力测量pd,然后压力导丝回撤牵引压力传感器至冠状动脉狭窄近端部分处进行压力测量pa,测量pa的过程中主动脉的压力传感器的压力和压力导丝的压力差应小于+/-9mmhgm,如果压力差值超过+/-9mmhgm,则需要重新调整压力传感器位置,冲洗导引导管,测量pd的过程中需要导丝远端体外校零,导丝在导管移动过程中,有可能会经过形状复杂、变化多端的血管例如心脏的冠状动脉血管,需要来回交换导丝,增加手术的时间而且耗费手术者的体力,增加病人的手术费用和手术风险。


技术实现要素:

4.本发明有鉴于上述现有技术的状况而完成,其目的在于提供一种能够有效地提高压力测量导管的测量准确度,同时能够减少ffr导管的使用步骤和手术时间。
5.为此,本发明提供了一种压力微导管,包括:导管和设置于所述导管的组装芯轴,所述导管为快速交换式结构且包括相连的前端导管和后端导管,所述前端导管具有导丝口,所述后端导管具有空腔,所述组装芯轴设置于所述后端导管中,所述组装芯轴包括多段芯丝、用于连接所述多段芯丝的固定基座、以及固定于所述固定基座的压力传感器,所述多段芯丝中的各段芯丝具有靠近所述导丝口的前端和远离所述导丝口的后端,所述多段芯丝包括依次设置的第一芯丝、第二芯丝和第三芯丝,所述固定基座包括连接所述第一芯丝和所述第二芯丝的第一固定基座以及连接所述第二芯丝和所述第三芯丝的第二固定基座,所述压力传感器包括第一压力传感器和第二压力传感器;所述第一压力传感器设置于所述第一固定基座中,所述第二压力传感器设置于所述第二固定基座中。由此,第一压力传感器和
第二压力传感器能够固定于固定基座,多端芯丝可以支撑固定芯轴。
6.在本发明中,所述第一芯丝为变径芯丝,所述第二芯丝为等径芯丝且所述第二芯丝的前端具有斜切口,所述第三芯丝为变径芯丝且所述第三芯丝的前端具有斜切口;所述第一固定基座与所述第二芯丝的前端的斜切口连接,所述第二固定基座与所述第三芯丝的前端的斜切口连接。在这种情况下,第一芯丝、第二芯丝和第三芯丝可以分别和第一固定基座和第二固定基座连接并固定。
7.在本发明中,所述第一压力传感器和第二压力传感器沿所述组装芯轴的轴向间隔布置以使所述第一压力传感器测量冠状动脉内病变狭窄处远端的压力,所述第二压力传感器测量冠状动脉内病变狭窄处近端压力。在这种情况下,第一压力传感器测量冠状动脉内病变狭窄处远端压力pd和第二压力传感器测量冠状动脉内病变狭窄处近端压力pa通过比值计算可以在较短的时间内获取ffr血流储备分数。
8.在本发明中,所述第一压力传感器和所述第二压力传感器位于所述导管内轴向同一侧。在这种情况下,第一压力传感器和第二压力传感器处于一个平面,可以有利于后端导管顺利通过病变位置。
9.在本发明中,所述第一压力传感器和所述第二压力传感器的间距为5cm至20cm。由此,第一压力传感器能够测量冠状动脉内病变狭窄处远端压力,第二压力传感器能够测量冠状动脉内病变狭窄处近端压力。
10.在本发明中,所述固定基座具有靠近所述导丝口的前端和远离所述导丝口的后端,所述固定基座的前端具有圆管结构,所述固定基座的后端具有开槽,所述第一芯丝的后端插入所述第一固定基座的圆管结构并与所述第一固定基座的圆管结构焊接,所述第二芯丝的前端插入所述第一固定基座的开槽并与所述第一固定基座的开槽焊接;所述第二芯丝的后端插入所述第二固定基座的圆管结构并与所述第二固定基座的圆管结构焊接,所述第三芯丝的前端插入所述第二固定基座的开槽并与所述第二固定基座的开槽焊接。在这种情况下,第一芯丝能够固定于第一固定基座,第二芯丝能够固定于第一固定基座和第二固定基座,第三芯丝能够固定于第二固定基座。
11.在本发明中,所述第一固定基座的圆管结构与所述第一固定基座的开槽之间设置有第一凹槽,所述第一压力传感器设置于所述第一凹槽中,所述第二固定基座的圆管结构与所述第二固定基座的开槽之间设置有第二凹槽,所述第二压力传感器设置于所述第二凹槽中。由此第一压力传感器能够固定于第一凹槽,第二压力传感器能够固定于第二凹槽。
12.在本发明中,所述第一芯丝的后端的横剖面为圆形且所述第一芯丝的后端的横剖面的外径与所述第一固定基座的圆管结构的内径相匹配,所述第二芯丝的前端的横剖面为弓形,所述第二芯丝的前端的横剖面与所述第一固定基座的开槽的横剖面相匹配;所述第二芯丝的后端的横剖面为圆形且所述第二芯丝的后端的横剖面的外径与所述第二固定基座的圆管结构的内径相匹配,所述第三芯丝的前端的横剖面为弓形,所述第三芯丝的前端的横剖面与所述第二固定基座的开槽的横剖面相匹配。在这种情况下,第一芯丝、第二芯丝和第三芯丝可以很好地固定于固定基座,由此能够放置于后端导管中,可以很好地支撑后端导管在血管中移动。
13.在本发明中,所述固定基座具有靠近所述导丝口的前端和远离所述导丝口的后端,所述第一芯丝的后端焊接固定于所述第一固定基座的前端,所述第二芯丝的前端焊接
固定于所述第一固定基座的后端,所述第二芯丝的后端焊接固定于第二固定基座的前端,所述第三芯丝的前端焊接固定于所述第二固定基座的后端。在这种情况下,第一芯丝、第二芯丝和第三芯丝可以很好地固定于固定基座,由此能够放置于后端导管中,可以很好地支撑后端导管在血管中移动。
14.在本发明中,所述第一固定基座的前端和所述第一固定基座的后端之间设置有第一凹槽,所述第一压力传感器设置于所述第一凹槽中,所述第二固定基座的前端和所述第二固定基座的后端之间设置有第二凹槽,所述第二压力传感器设置于所述第二凹槽中。由此能够将第一压力传感器固定于第一固定基座的第一凹槽中,第二压力传感器固定于第二固定基座的第二凹槽中,这样有利于压力传感器准确地测量血压。
15.根据本发明,能够提供一种压力微导管测量冠状动脉内病变狭窄远端压力值pd和冠状动脉内病变狭窄近端压力值pa,与压力微导管相连接的测量系统计算pd与pa的比值在较短时间内获取ffr血流储备分数。
附图说明
16.图1示出了本公开所涉及的压力微导管的应用场景示意图。
17.图2示出了本公开所涉及的压力微导管的平面示意图。
18.图3示出了本公开所涉及的组装芯轴的第一实施例的俯视示意图。
19.图4示出了本公开所涉及的组装芯轴的第一实施例的平面示意图。
20.图5示出了本公开所涉及的压力微导管的第一实施例的纵剖面的剖面示意图。
21.图6示出了本公开所涉及的图5中a区域的放大示意图。
22.图7示出了本公开所涉及的压力微导管的固定基座的第一实施例的纵剖面的剖面示意图。
23.图8示出了本公开所涉及的组装芯轴的第二实施例的俯视示意图。
24.图9示出了本公开所涉及的组装芯轴的第二实施例的平面示意图。
25.图10示出了本公开所涉及的压力微导管的第二实施例的纵剖面的剖面示意图。
26.图11示出了本公开所涉及的图10中b区域的放大示意图。
27.图12示出了本公开所涉及的压力微导管的固定基座的第二实施例的纵剖面的剖面示意图。
28.图13示出了本公开的固定基座在图12中的c位置的横剖面示意图。
具体实施方式
29.以下,参考附图,详细地说明本发明的优选实施方式。在下面的说明中,对于相同的部件赋予相同的符号,省略重复的说明。另外,附图只是示意性的图,部件相互之间的尺寸的比例或者部件的形状等可以与实际的不同。
30.另外,在本发明的下面描述中涉及的小标题等并不是为了限制本发明的内容或范围,其仅仅是作为阅读的提示作用。这样的小标题既不能理解为用于分割文章的内容,也不应将小标题下的内容仅仅限制在小标题的范围内。
31.本发明所涉及的压力微导管,也可以称作为双测压芯片的压力微导管,压力微导管中的压力传感器可以直接测量患者血管内病变处的压力值,获取血流储备分数,能够判
断患者血管病变的狭窄状况。本公开中的所涉及的远端部分可以是相对于手术实施者的远端。
32.本公开中的所涉及的近端部分可以是相对于手术实施者的近端。
33.图1示出了本公开所涉及的压力微导管1的应用场景示意图。图2示出了本公开所涉及的压力微导管1的平面示意图。
34.参见图1,在一些示例中,压力微导管1可以包括前端导管10和后端导管11,前端导管10可以具有导丝口102(也可以称作为rx口),导丝20可以经导丝口102进入前端导管10并从前端导管10另一端穿出。在一些示例中,导丝20预先进入导丝口102的一端可以称作为导丝20的前端,相对前端的另一端可以称作为导丝20的后端,导丝20的后端设置于后端导管11表面。
35.在一些示例中,导丝20可以包覆于前端导管中,换言之,导丝可以为实心结构并且导丝设置于前端导管内以使前端导管和导丝组合后的结构为类似实心结构,导丝20可以指引前端导管10在患者血管内移动,前端导管10与后端导管11可以连接于一体,前端导管10可以在患者血管中移动,在这种情况下,后端导管11能够随着前端导管10一起移动,并且能够移动到患者血管内病变狭窄处位置。
36.参见图2,在一些示例中,组装芯轴12可以设置于后端导管11中。组装芯轴12可以包括多段芯丝、用于连接多段芯丝的固定基座、以及固定于固定基座的压力传感器。
37.图3示出了本公开所涉及的组装芯轴12的第一实施例的俯视示意图。图4示出了本公开所涉及的组装芯轴12的第一实施例的平面示意图。
38.参见图3和图4,组装芯轴12中的多段芯丝可以包括依次设置的第一芯丝121、第二芯丝122和第三芯丝123。在一些示例中,用于连接多段芯丝的固定基座可以包括第一固定基座124和第二固定基座125。多段芯丝中的各段芯丝具有靠近导丝口102的前端和远离导丝口102的后端,本公开中的所涉及的近端部分和远端部分也可以是相对于手术实施者的相对位置。
39.参见图2,在一些示例中,固定于固定基座传感器可以为两个,例如可以为第一传感器126和第二传感器127。
40.如图1所示,在一些示例中,后端导管11可以移动到患者血管内病变狭窄处位置,第一压力传感器126可以位于血管内病变狭窄处远端,第二压力传感器127位于血管内病变狭窄处近端。第一压力传感器126可以测量血管内病变狭窄处远端的压力并生成压力数据,第二压力传感器127可以测量血管内病变狭窄处近端的压力并生成压力数据。
41.实施例1
42.在一些示例中,第一芯丝121可以为变径芯丝。第一芯丝121可以具有靠近导丝口102的前端和远离导丝口102的后端。在一些示例中,第一芯丝121的后端部分的外径至第一芯丝121的前端部分的外径可以逐渐减小。第一芯丝121的前端部分可以为靠近导丝口102的一端,第一芯丝121的后端部分可以为远离导丝口102的一端。在这种情况下,第一芯丝121的前端部分能够方便地装配进入后端导管11中,后端导管11的前端部分具有较小的直径,由此后端导管11能够方便地跨过病变狭窄处。
43.在一些示例中,第二芯丝122可以为等径芯丝。在一些示例中,第二芯丝122的前端部分可以为靠近导丝口102的一端,第二芯丝122的后端部分可以为远离导丝口102的一端。
在一些示例中,第二芯丝122的前端部分可以具有斜切口。
44.在一些示例中,第三芯丝123可以为变径芯丝,第三芯丝123的前端部分可以具有斜切口。在一些示例中,第三芯丝123的前端部分可以为靠近导丝口102的一端,第三芯丝123的后端部分可以为远离导丝口102的一端。第三芯丝123的后端部分的外径至第三芯丝123的前端部分的外径可以逐渐减小。
45.另外,第一芯丝121的前端部分也可以称作为第一芯丝121的远端,第一芯丝121的后端部分也可以称作为第一芯丝121的近端,第二芯丝122的前端部分也可以称作为第二芯丝122的远端,第二芯丝122的后端部分也可以称作为第二芯丝122的近端,第三芯丝123的前端部分也可以称作为第三芯丝123的远端,第三芯丝123的后端部分也可以称作为第三芯丝123的近端。
46.另外,第一压力传感器126和第二压力传感器127可以具有感测部分和引出导线部分。感测部分可以具有感测压力的感测区,引出导线将感测部分的压力信号传送至外部连接的数据处理装置。
47.在一些示例中,第一芯丝121的后端可以焊接固定于第一固定基座124a的前端。第二芯丝122的前端可以焊接固定于第一固定基座124a的后端。在一些示例中,第二芯丝122的前端部分可以具有斜切口,在这种情况下,第一压力传感器126能够很好地装入第一固定基座的第一凹槽1241a(稍后描述)内,第一压力传感器126能够与引出导线更好地焊接。
48.在一些示例中,第二芯丝122的后端可以焊接固定于第二固定基座125a的前端,第二芯丝122可以为等径芯丝。能够有利于压力微导管1的通过性能,不需要再开设导丝腔使用导丝增加其通过性能,由此,第二芯丝122与第二固定基座125a焊接后能够保持较小的外径,使得压力微导管1外径尺寸接近0.014英寸导丝。
49.在一些示例中,第三芯丝123的前端可以焊接固定于第二固定基座125a的后端,第三芯丝123的前端部分具有斜切口。这种情况下,第二压力传感器127可以很好地装入第二固定基座的第二凹槽1251a(稍后描述)内,第二压力传感器127可以与引出导线更好地焊接。
50.另外,第三芯丝123可以为变径芯丝。第三芯丝123的后端部分的外径至第三芯丝123的前端部分的外径可以逐渐减小。在这种情况下,第三芯丝123的前端部分能够设置于后端导管11中,第三芯丝123的前端部分设置于后端导管11,第三芯丝123的前端部分具有较小的外径,在这种情况下,设置在第三芯丝123的前端部分的外部后端导管11的尺寸能够保持接近于0.014英寸,可以顺利地通过病变狭窄处。
51.此外,第三芯丝123的后端部分尺寸可以大于前端部分。由此,第三芯丝123的后端部分重量增加,能够方便施加手术者更加容易推送导管。
52.在一些示例中,第一芯丝121、第二芯丝122以及第三芯丝123的材料可以是不锈钢304材料、不锈钢316材料、镍铬合金或镍钛合金中的一种材料组成。
53.在一些示例中,第一芯丝121、第二芯丝122和第三芯丝123可以是实心的芯丝。
54.在一些示例中,第一芯丝121、第二芯丝122和第三芯丝123表面可以涂敷有生物相容性的涂层,可以形成保护膜。
55.图5示出了本公开所涉及的压力微导管的第一实施例的纵剖面的剖面示意图。
56.图6示出了本公开所涉及的图5中a区域的放大示意图。图7示出了本公开所涉及的
压力微导管的固定基座的第一实施例的纵剖面的剖面示意图。图8示出了本公开所涉及的组装芯轴的第二实施例的俯视示意图。
57.参见图7,在一些示例中,第一固定基座124a的前端和第一固定基座124a的后端之间可以设置有第一凹槽1241a。第一压力传感器126可以设置于第一凹槽1241a中。在一些示例中,第二固定基座125a的前端和第二固定基座125a的后端之间可以设置有第二凹槽1251a,第二压力传感器127可以设置于第二凹槽1251a中。
58.参见图8,在一些示例中,第二芯丝122的前端可以固定于第一固定基座的开槽1242a中。第三芯丝123的前端可以固定于第二固定基座的开槽1252a中。第二芯丝122可以通过激光焊接或超声波焊接固定于第一固定基座的开槽1242a中,第三芯丝123可以通过激光焊接或超声波焊接固定于第二固定基座的开槽1252a中。
59.在一些示例中,第二固定基座125a局部放大图可以如图6所示,第二压力传感器127可以固定于第二固定基座125a中。第三芯丝123的前端可以固定于第二基座125a的后端。在一些示例中,第二压力传感器127的感测部分可以与第二固定基座125a存在间隙。在这种情况下,第二压力传感器127产生压力形变的压力信号能够通过引出导线传送至外部连接的数据处理装置或测量系统。
60.另外,第一固定基座124a的前端也可以称作为第一固定基座124a的远端,第一固定基座124a的后端也可以称作为第一固定基座124a的近端;第二固定基座125a的前端也可以称作为第二固定基座125a的远端,第二固定基座125a的后端也可以称作为第二固定基座125a的近端。
61.在一些示例中,第一压力传感器126可以固定于第一固定基座124a,第一压力传感器126的感测部分与第一固定基座124a存在间隙。在这种情况下,第一压力传感器126产生压力形变的压力信号可以通过引出导线传送至与压力微导管相连接的测量系统。
62.在一些示例中,第一固定基座124a和第二固定基座125a可以是相同形状、相同材料和相同结构的固定基座。在一些示例中,第一固定基座124a可以和第二固定基座125a的结构、材料、形状相同,第一固定基座的第一凹槽1241a可以和第二固定基座的第二凹槽1251a的结构、材料、形状相同。
63.在一些示例中,第二压力传感器127可以设置于第二固定基座125a中的第二凹槽1251a中,第二压力传感器127的感测部分可以与第二固定基座125a的底座存在间隙。在一些示例中,第一压力传感器126可以设置于第一固定基座124a中的第一凹槽1241a中,第一压力传感器126的感测部分可以与第二固定基座124的底座存在间隙。在这种情况下,即使血管内压力微导管进入到形状变化多端的血管时,也能够抑制压力传感器特别是压力传感器的感测部分与压力微导管主体的接触,由此,能够有效地抑制例如压力微导管(特别是前端导管10)的弯曲变形对压力传感器的压力测量结果造成的影响,提高血管内压力测量导管的测量精度。
64.在一些示例中,第一压力传感器126和第二压力传感器127可以沿组装芯轴的轴向间隔布置以使第一压力传感器126测量冠状动脉内病变狭窄处远端的压力,第二压力传感器127测量冠状动脉内病变狭窄处近端压力。第一压力传感器126和第二压力传感器127可以在患者的一个心动周期内或多个心动周期内可以测量到血管内多个压力值,与压力微导管外部连接的测量系统将计算、分析并处理第一压力传感器126和第二压力传感器127测量
到的血管内多个压力值,能够在较短的时间内直接计算出患者的血流储备分数。
65.在一些示例中,第一压力传感器126和第二压力传感器127可以位于轴向同一侧。在这种情况下,能够更好地减少后端导管11的直径,以利于后端导管11在血管中移动并顺利地通过病变狭窄处。
66.另外,第一压力传感器126与第二压力传感器127的轴向间距可以为5至20cm。优选地,第一压力传感器126与第二压力传感器127的轴向间距可以为10cm。
67.在一些示例中,第一压力传感器126可以通过激光焊接、粘结或超声波焊接固定于第一固定基座124a。第二压力传感器127可以通过激光焊接、粘结或超声波焊接固定于第二固定基座125a。
68.此外,第一压力传感器126还可以通过卡接的方式固定于第一固定基座124a,第二压力传感器127也可以通过卡接的方式固定于第二固定基座125a。
69.在一些示例中,芯丝可以通过激光焊接、超声波焊接固定于固定基座。由此,第一芯丝121、第二芯丝122和第三芯丝123可以通过激光焊接、超声波焊接分别固定于第一固定基座124a和第二固定基座125a。
70.在一些示例中,芯丝还可以通过钎焊焊接固定于固定基座。由此,第一芯丝121、第二芯丝122和第三芯丝123能够通过钎焊焊接分别固定于第一固定基座124a和第二固定基座125a。
71.在一些示例中,后端导管11可以是一层结构,其组成材料可以是由尼龙弹性体pebax材料或聚对苯二甲酸乙二醇酯pet材料中的一种组成。在一些示例中,后端导管11也可以是双层结构,其结构可以是由聚酰亚胺pi和聚四氟乙烯ptfe组成的复合结构,内层可以是聚酰亚胺内管,外层可以是聚四氟乙烯外管,也可以内层是聚四氟乙烯内管,外层是聚酰亚胺外管。
72.此外,后端导管11还可以是三层结构,三层结构可以由高密度聚乙烯hdpe、线性低密度聚乙烯lldpe和尼龙nylon11组成的复合结构,内层、中层和外层材料可以排列组合,优选地,复合结构可以是高密度聚乙烯hdpe内层、线性低密度聚乙烯lldpe中层和尼龙nylon11外层。
73.实施例2
74.图9示出了本公开所涉及的组装芯轴的第二实施例的平面示意图。
75.在一些示例中,固定基座具有可以靠近导丝口102的前端和远离导丝口102的后端。固定基座的前端可以具有圆管结构,固定基座的后端可以具有开槽。
76.在一些示例中,第一芯丝121为变径芯丝,第一芯丝121的后端部分的外径至第一芯丝121的前端部分的外径逐渐减小,第一芯丝121的后端插入第一固定基座124b前端的圆管结构并与第一固定基座124b的圆管结构焊接。在这种情况下,第一芯丝121可以很好地固定于第一固定基座124b。
77.在一些示例中,第二芯丝122为等径芯丝,第二芯丝122的前端具有斜切口,第二芯丝122的前端插入第一固定基座的开槽1242b并与第一固定基座的开槽1242b焊接,此外,第二芯丝122的后端插入第二固定基座125的圆管结构并与第二固定基座125的圆管结构焊接。在这种情况下,第二芯丝122可以固定于第一固定基座124b和第二固定基座125。
78.在一些示例中,第三芯丝123可以是前端具有斜切口的变径芯丝,第三芯丝123的
后端部分的外径至第三芯丝123的前端部分的外径逐渐减小,第三芯丝123的前端插入第二固定基座的开槽1252b并与第二固定基座的开槽1252b焊接。由此第三芯丝123的前端能够固定在第二固定基座125b中。
79.在一些示例中,第一芯丝121的前端也可以称作为第一芯丝121的远端,第一芯丝121的后端也可以称作为第一芯丝121的近端,第二芯丝122的前端也可以称作为第二芯丝122的远端,第二芯丝122的后端也可以称作为第二芯丝122的近端,第三芯丝123的前端也可以称作为第三芯丝123的远端,第三芯丝123的后端也可以称作为第三芯丝123的近端。
80.另外,第一固定基座124b的前端也可以称作为第一固定基座124b的远端,第一固定基座124b的后端也可以称作为第一固定基座124b的近端;第二固定基座125b的前端也可以称作为第二固定基座125b的远端,第二固定基座125b的后端也可以称作为第二固定基座125b的近端。
81.在一些示例中,第一芯丝121、第二芯丝122和第三芯丝123的材料可以是不锈钢304材料、不锈钢316材料、镍铬合金或镍钛合金中的一种材料组成。
82.优选地,第一芯丝121可以为镍钛合金,第二芯丝122和第三芯丝123可以为不锈钢304,分成三根芯丝能够比较利于方便加工,第一芯丝121为镍钛合金,第二芯丝122和第三芯丝123为不锈钢304导管的能够有相对较好的推送性能。
83.在一些示例中,第一芯丝121、第二芯丝122和第三芯丝123可以是实心的芯丝。这样可以有效地增加芯丝的重量,方便手术施加者操控压力微导管。
84.在本实施方式中,第一芯丝121的后端的横剖面为圆形且第一芯丝121的后端的横剖面的外径与第一固定基座124b的圆管结构的内径相匹配,由此第一芯丝121能够很好地焊接在第一固定基座124b的圆管结构中。
85.在本实施方式中,第二芯丝122的前端的横剖面为弓形,第二芯丝122的前端的横剖面与第一固定基座的开槽1242b的横剖面(参见图13)相匹配,第二芯丝122的后端的横剖面为圆形且第二芯丝122的后端的横剖面的外径与第二固定基座125b的圆管结构的内径相匹配。在这种情况下,第二芯丝122能够很好地固定于第一固定基座124b和第二固定基座125b。
86.在本实施方式中,第三芯丝123的前端的横剖面与第二固定基座的开槽1252b的横剖面(参见图13)相匹配。在这种情况下,第三芯丝123的前端能够很好地焊接在第二固定基座的开槽1252b中。
87.在一些示例中,第一固定基座124b的具有圆管结构的前端和第一固定基座124b的后端的第一开槽1242b之间设置有第一凹槽1241b,第一压力传感器126设置于第一凹槽1241b中,第二固定基座125b的具有圆管结构的前端和第二固定基座125b的后端的第二开槽1252b之间设置有第二凹槽1251b,第二压力传感器127设置于所述第二凹槽1251b中。由此,第一压力传感器126和第二压力传感器127能够很好地固定于固定基座的凹槽中。
88.在一些示例中,第一压力传感器126和第二压力传感器127位于轴向同一侧,这样可以很好地减少后端导管11的直径,以利于后端导管11在血管中移动并顺利地通过病变狭窄处。
89.另外,第一压力传感器126与第二压力传感器127的轴向间距为5cm至20cm,优选地,第一压力传感器126与第二压力传感器127的轴向间距为10cm。
90.在一些示例中,第一压力传感器126通过激光焊接、粘结或超声波焊接固定于第一固定基座124b,第二压力传感器127通过激光焊接、粘结或超声波焊接固定于第二固定基座125b。
91.此外,第一压力传感器126还可以通过卡接的方式固定于第一固定基座124b,第二压力传感器127也可以通过卡接的方式固定于第二固定基座125b。
92.在一些示例中,芯丝通过激光焊接、超声波焊接固定于固定基座,由此第一芯丝121、第二芯丝122和第三芯丝123可以通过激光焊接、超声波焊接分别固定于第一固定基座124b和第二固定基座125b。
93.在一些示例中,芯丝还可以通过钎焊焊接固定于固定基座,由此第一芯丝121、第二芯丝122和第三芯丝123可以通过钎焊焊接分别固定于第一固定基座124b和第二固定基座125b。
94.在一些示例中,第一固定基座124b和第二固定基座125b可以由不锈钢、金属合金或硬质工程塑料组成。其中,金属合金可以是钴铬合金、镍铬合金、镍钛合金、钼合金,或者不锈钢掺杂以上任何材料的合金,或以上任何一种合金的复合材料。另外,硬质工程塑料可以是abs、pmma、pet、pbt、peek、ptfe等。
95.此外,第三芯丝123的后端部分尺寸大于前端部分,由此,第三芯丝123的后端部分重量增加,可以方便手术施加者更加容易地推送压力微导管。
96.在一些示例中,第一压力传感器126固定于第一固定基座124b的第一凹槽1241b中,第二芯丝122的前端部分有斜切口,由此第一压力传感器126的引出导线能够方便地焊接到第一压力传感器126上。
97.在一些示例中,第二压力传感器127固定于第二固定基座125b的第二凹槽1251b中,第三芯丝123的前端部分有斜切口,由此第二压力传感器127的引出导线有足够的空间并能够方便地焊接到第二压力传感器127上。
98.图10示出了本公开所涉及的压力微导管的第二实施例的纵剖面的剖面示意图。
99.在一些示例中,第一芯丝121、第一固定基座124b、第一压力传感器126、第二芯丝122、第二固定基座125b、第二压力传感器127和第三芯丝123组成组装芯轴12,组装芯轴12设置于压力微导管1的后端导管11中。
100.在一些示例中,导丝20包覆于前端导管10中,前端导管10与后端导管11连接于一体(参见图1),导丝20指引前端导管10在患者血管中移动,在这种情况下,后端导管11可以随着前端导管10一起移动,后端导管11可以移动到患者冠状动脉内病变狭窄处位置。由此设置于后端导管11中的组装芯轴12可以跟随后端导管11一起移动。
101.在一些示例中,第一压力传感器126和第二压力传感器127可以跟随组装芯轴12一起移动到患者冠状动脉内病变狭窄处位置。
102.另外,第一压力传感器126和第二压力传感器127沿所述组装芯轴的轴向间隔布置以使第一压力传感器126测量冠状动脉内病变狭窄处远端的压力,第二压力传感器127测量冠状动脉内病变狭窄处近端压力。第一压力传感器126和第二压力传感器127可以在患者的一个心动周期内或多个心动周期内可以测量到血管内多个压力值,外部连接的数据处理装置将计算、分析并处理第一压力传感器126和第二压力传感器127测量到的血管内多个压力值,能够在较短时间内计算出患者的血流储备分数。
103.图11示出了本公开所涉及的图10中b区域的放大示意图。
104.在一些示例中,第二压力传感器127设置于第二固定基座125b中的第二凹槽1251b中,第二压力传感器127的感测部分与第二固定基座125b的底座存在间隙;同样地,第一压力传感器126设置于第一固定基座124b中的第一凹槽1241b中,第一压力传感器126的感测部分与第二固定基座124的底座存在间隙。在这种情况下,即使血管内的压力微导管1进入到形状变化多端的血管时,也能够抑制压力传感器特别是压力传感器的感测部分与压力微导管1主体的接触,由此,能够有效地抑制例如压力微导管1(特别是前端导管10)的弯曲变形对压力传感器的压力测量结果造成的影响,从而提高血管内压力微导管1的测量精度。
105.图12示出了压力微导管1的固定基座的第二实施例的纵剖面的剖面示意图。
106.在一些示例中,第一芯丝121的后端的横剖面为圆形且第一芯丝121的后端的横剖面的外径与第一固定基座124b的圆管结构的内径相匹配,由此第一芯丝121能够很好地焊接在第一固定基座124b的圆管结构中。
107.图13示出了本公开的固定基座在图12中的c位置的横剖面示意图。
108.在一些示例中,第二芯丝122的前端的横剖面为弓形,第二芯丝122的前端的横剖面与第一固定基座的开槽1242b的横剖面(参见图13)相匹配,第二芯丝122的后端的横剖面为圆形且第二芯丝122的后端的横剖面的外径与第二固定基座125b的圆管结构的内径相匹配。在这种情况下,第二芯丝122能够很好地固定于第一固定基座121和第二固定基座122。
109.在一些示例中,第三芯丝123的前端的横剖面与第二固定基座的开槽1252b的横剖面(参见图13)相匹配。在这种情况下,第三芯丝123的前端能够很好地焊接在第二固定基座的开槽1252b中。
110.在本实施方式中,第一固定基座124b和第二固定基座125b可以是相同形状、相同材料和相同结构的固定基座。图12示出的是第一固定基座124b和第一固定基座的开槽1242b示意图,第二固定基座125b可以和第一固定基座124b结构、材料、形状和尺寸相同,第二固定基座的开槽1252b可以和第一固定基座的开槽1242b结构、材料、形状和尺寸相同。
111.虽然以上结合附图和实施方式对本发明进行了具体说明,但是其并不是为了限制本发明,应当理解,对于本领域技术人员而言,在不偏离本发明的实质和范围的情况下,可以对本发明进行变形和改变,这些变形和改变均落入本发明的权利要求所保护的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1