一种光控变构聚氨基酸多功能纳米材料及其制备和应用

文档序号:32437756发布日期:2022-12-06 19:58阅读:96来源:国知局
一种光控变构聚氨基酸多功能纳米材料及其制备和应用

1.本发明涉及智能材料技术领域,具体涉及一种光控变构聚氨基酸多功能纳米材料及其制备方法和应用。


背景技术:

2.蛋白质是一种组成生命体的重要成分,是由氨基酸以肽键连接成的生物大分子。聚氨基酸具有与蛋白质相似的结构,具有良好的生物相容性和可降解性。此外聚氨基酸还具有较好的可修饰性,能够通过对其侧基和氨基酸结构进行调控来调控其自组装性能及功能性。聚氨基酸主链存在密集的分子内或分子间氢键,使其能形成高度有序的高级结构,如α螺旋、β折叠、β转角等,这对开发新型功能性材料及蛋白质结构模拟等领域提供了优势,相比于传统的高分子材料,聚氨基酸可以通过氢键、π-π共轭和静电相互作用形成有趣的高级自组装仿生结构。此外,与传统两亲性高分子主要通过亲疏水性调控自组装形貌不同,聚氨基酸嵌段的α螺旋和β折叠等刚性构象能够引入更高的形状各向异性和有序性,从而显著影响高分子的自组装行为。除了自组装行为外,二级构象还对聚合物纳米材料的性能具有重要的影响。众所周知,许多细胞穿透肽具有阳离子螺旋二级结构,因此能够破坏细胞膜或内涵体膜的脂质双分子层。
3.在自然界,生物体内的某些蛋白质在执行或完成其生理功能时往往空间构象发生一定的改变(如血红蛋白氧化时构象发生变化;水母中荧光蛋白氧化时构象发生转变进而表现出开关式荧光行为),以适应生理环境的需要。目前,科研学家通过赋予聚氨基酸刺激响应性调控分子链的库伦作用、疏水作用和氢键作用等来调控聚氨基酸二级结构,进而调控其自组装性能。这些基于聚氨基酸构象转变的研究大多是从高度有序到低有序或无序结构的转变。近几年,尽管基于聚氨基酸二级构象的有序转变已经取得一定的进展,但相应的调控方法还有待进一步丰富;此外,这些调控方法大多是响应于诸如氧化还原、酶和ph等内源性刺激,这些响应于内源性刺激的材料在生物体内的使用效果面临诸多挑战。首先,内源性刺激在不同个体、组织器官中呈异质分布,并随着病情的发展而不断变化,导致刺激响应的特异性不理想。其次,由于生物体的复杂性,不同细胞和细胞器中的刺激因子水平不平衡且始终处于动态变化的状态。此外,生物响应型材料体系与机体的持续反应可能会进一步消耗刺激源,从而导致响应效率下降。更重要的是,大多数刺激响应高分子纳米材料的敏感键位于其疏水内核或被保护外壳屏蔽起来,给水分子、谷胱甘肽(gsh)、酶和其它生物大分子的攻击带来位阻障碍。因此,设计新颖的智能材料来克服刺激响应的时空障碍具有重要的意义,特别是针对聚氨基酸二级构象有序转变的调控。


技术实现要素:

4.针对上述缺陷,本发明提供一种光控变构聚氨基酸多功能纳米材料,所得纳米材料能够在光照条件下使其高级结构和功能发生变化,其具有高响应速度和强时空可控性,还兼具光热性能,具有杀伤和成像能力;并且制备方法简单。进而使其在自组装、生物传感、
药物递送、疾病诊断及治疗等领域具有较好的应用潜力。
5.本发明的技术方案:
6.本发明要解决的第一个技术问题是提供一种光控变构的聚氨基酸多功能纳米材料,所述聚氨基酸多功能纳米材料包含聚氨基酸衍生物和光敏剂;所述聚氨基酸衍生物的结构如式i所示:
[0007][0008]
其中,所述r1为含有m基团的取代基,所述m基团为:r
′‑
苯基、c
2-c
20
的直链烷基、c
3-c
60
的支链烷基、联苯基、r
″‑
联苯基、疏水性荧光染料分子及其衍生物的脱氢基团、疏水性生物活性分子及其衍生物的脱氢基团以及含有多个环状结构的直链或支链烷基中的至少一种,其中,r

为c
2-c
20
的直链烷基或c
3-c
60
的支链烷基,r

为c
1-c
20
的直链烷基或c
3-c
60
的支链烷基,n>0。
[0009]
所述光控聚氨基酸多功能纳米材料在外部光刺激的作用下能够高效快速地实现所述纳米材料高级结构和功能的转变,且始终为有序的高级结构。
[0010]
进一步,r1中,所述疏水性荧光染料分子及其衍生物的脱氢基团选自:尼罗红及其衍生物脱氢基团、异硫氰酸荧光素及其衍生物脱氢基团、花青素类荧光染料及其脱氢基团、芘及其衍生物脱氢基团、具有聚集诱导发光效应的分子的脱氢基团、苝及其衍生物脱氢基团或亲脂性羰花青染料及其衍生物脱氢基团;所述疏水性生物活性分子及其衍生物的脱氢基团选自:阿霉素及其衍生物脱氢基团、紫杉醇及其衍生物的脱氢基团、喜树碱及其衍生物脱氢基团、环丙沙星及其衍生物脱氢基团或植物销氨醇衍生物及其脱氢基团;所述含有多个环状结构的直链或支链烷基选自:偶氮苯基、萘基、r
″‑
萘基、菲基、r
″‑
菲基、精蒽基、r
″‑
精蒽基、荧蒽基、r
″‑
荧蒽基、屈基、r
″‑
屈基、芴基、r
″‑
芴基、苊基、r
″‑
苊基或十六烷基;r

为c
1-c
20
的直链烷基或c
3-c
60
的支链烷基。
[0011]
优选的,r1中的m基团选自下述结构式中的一种:
[0012]
[0013][0014]
进一步,式ⅰ中,n(聚合度)≧5;优选的:10≤n≤100,更优选的:10≤n≤50。
[0015]
进一步,所述聚氨基酸衍生物的结构式如式ⅱ所示:
[0016][0017]
其中,r2选自亲水性聚合物取代基。
[0018]
进一步,r2选自:甲氧基聚乙二醇胺脱氨基基团、聚赖氨酸脱氨基基团、聚谷氨酸脱氨基基团或聚天冬氨酸脱氨基基团中的一种;优选为甲氧基聚乙二醇胺脱氨基基团和聚赖氨酸脱氨基基团。
[0019]
进一步,所述功能性聚氨基酸衍生物在一定条件下其高级结构和功能能够发生转变,并且始终保持有序的高级结构。
[0020]
进一步,所述光敏剂选自下述物质中的一种:血卟啉衍生物、苯并卟啉类衍生物、卟吩衍生物、吲哚菁绿、ir780、硼二吡咯类衍生物或5-氨基乙酰丙酸类衍生物。
[0021]
进一步,所述光敏剂选自下述结构式中一种:
[0022][0023]
式中,r
2-r
10
为氢原子或任意取代基,x为卤素原子,r
2-r
10
可以相同,也可以不同。
[0024]
进一步,所述光控变构的聚氨基酸多功能纳米材料为下述纳米材料:
[0025]
所述聚乙二醇-聚半胱氨酸-喜树碱和ir780形成的纳米材料;或:
[0026]
所述聚乙二醇-聚半胱氨酸-喜树碱和吲哚菁绿形成的纳米材料;或:
[0027]
所述聚赖氨酸-聚半胱氨酸-芘和吲哚菁绿形成的纳米材料;或:
[0028]
所述聚赖氨酸-聚半胱氨酸-芘和ir780形成的纳米材料;或:
[0029]
所述聚乙二醇-聚半胱氨酸-十六烷基和四苯基卟啉形成的纳米材料;或:
[0030]
所述聚乙二醇-聚半胱氨酸-喜树碱和卟啉形成的纳米材料。
[0031]
进一步,所述聚氨基酸衍生物和光敏剂的质量比为:20:1~100:1。
[0032]
本发明要解决的第二个技术问题是提供上述光控变构聚氨基酸纳米材料的制备方法,其是由聚氨基酸衍生物和光敏剂分子通过共组装或滴加法制得。
[0033]
本发明要解决的第三个技术问题是指出上述光控变构聚氨基酸纳米材料在生物传感或药物递送中的用途。
[0034]
进一步,光控变构聚氨基酸纳米材料用作生物传感或药物递送的整个作用过程中,能够始终保持有序的高级结构(如α螺旋,β折叠等)。
[0035]
本发明的有益效果:
[0036]
与现有技术相比,本发明提供的光控变构聚氨基酸多功能纳米材料能够在光照条件下,高效快速地实现高级结构有序转变和功能性的有效调控;克服了刺激响应的位阻障碍、渗透障碍和浓度障碍等问题,不同于现有高级结构的转变技术,本发明所提供的光控变构聚氨基酸多功能纳米材料具有更快的响应速度和更强的时空可控性,且制备方法比较简单。而且本发明提供的光控变构聚氨基酸多功能纳米材料中聚氨基酸衍生物的r1可以为含有多个环状结构的直链或支链烷基、疏水性荧光染料、疏水性生物活性分子;光敏分子除了能够调控聚氨基酸衍生物高级结构和功能外,还具有一定的杀伤作用,另所使用的光敏分子还兼具光热性能,具有杀伤和成像能力。因此,本发明所提供的功能性聚氨基酸衍生物在自组装、生物传感、药物传递、疾病诊断和治疗等方面具有巨大的应用潜力。
附图说明:
[0037]
图1为实施例2所得聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料透射电镜图片。
[0038]
图2为实施例2所得聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料cd谱图。
[0039]
图3为实施例3所得聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料nir光照后的透射电镜图片。
[0040]
图4为实施例3所得聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料nir光照后不同时间的cd谱图。
[0041]
图5为实施例3所得聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料nir光照(左图)和h2o2处理(右图)构象转变速度。
[0042]
图6为实施例5所得聚乙二醇-聚半胱氨酸-芘/吲哚菁绿纳米材料nir光照前(左)和光照5min后(右)的cd谱图。
[0043]
图7为实施例7中聚乙二醇-聚半胱氨酸-喜树碱/ir780(a)和聚乙二醇-聚半胱氨酸-芘/吲哚菁绿(b)纳米材料nir光照和h2o2处理nr(左)和r6g(右)的释放曲线。
[0044]
图8为实施例8中聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料nir光照和h2o2处理入胞效率。
[0045]
图9为实施例8中聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料nir光照和h2o2处理胞内递送dox(左)和fitc-dextran(右)能力。
[0046]
图10为实施例9中聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料包载不同药物后抑制细胞生长情况。
[0047]
图11为实施例10中聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料注射进小鼠体内后的肿瘤温度。
[0048]
图12为实施例10中聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料注射进小鼠体内24h后的荧光成像。
[0049]
图13为实施例11中聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料包载不同药物后注射进小鼠体内后的抗肿瘤效果;其中s表明索拉菲尼,m表明蜂毒肽,a-pdi表明免疫检查点pdi阻断剂,saline表明生理盐水。
具体实施方式
[0050]
本发明提供一种光控变构聚氨基酸多功能纳米材料,其由聚氨基酸衍生物和光敏剂分子自组装形成。该光控变构聚氨基酸多功能纳米材料在外源光照刺激下可有效克服位阻和渗透障碍,极大提高刺激响应的效率,获得比外加高浓度氧化剂(10%h2o2)更快的高级结构转变速度和更快的药物释放速率。再者,高级结构转变速度和功能性调控速度与光敏剂分子的浓度和光照时间密切相关,具有优异的时空可控性。
[0051]
下面给出实施例以对本发明进行具体描述,但值得指出的是以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的普通专业人员根据上述发明的内容对本发明所作出的一些非本质的改进和调整,仍属于本发明的保护范围。
[0052]
实施例1聚乙二醇-聚半胱氨酸-喜树碱的制备
[0053]
1)、半胱氨酸-喜树碱的制备
[0054]
将10-羟基喜树碱(4.0g)溶于n,n-二甲基甲酰胺(dmf)(50ml)中,冰浴至0℃,加入n-溴代丁二酰亚胺(nbs)(1.0g,5.5mmol),室温反应2h,反应完毕后倒入冰水中(300ml),加入1mol/lhcl调节ph 3~4,充分搅拌后抽滤,水洗,干燥,得黄色产品9-溴-10-羟基喜树碱。
[0055]
将半胱氨酸盐酸盐水合物(5.52g)溶于140ml氢氧化钠溶液中(2m),加入催化剂四正丁基碘化胺(0.8g),冰盐浴冷却;将9-溴-10-羟基喜树碱(3.25g)溶于氯仿(77ml)和乙醇(260ml)的混合溶剂,然后通过恒压漏斗滴加至反应体系,自然恢复至室温反应48h;反应停止后减压浓缩,然后用二氯甲烷提取产物,所得油相依次用饱和碳酸氢钠水溶液和饱和氯化钠溶液洗涤两遍,水相反洗后合并有机相,用无水硫酸钠过夜干燥;抽滤浓缩,所得固体干燥后通过柱层析色谱法提纯,得到半胱氨酸-喜树碱单体(产率60%);
[0056]
以氘代氯仿为溶剂,对上述半胱氨酸-喜树碱原料进行核磁共振分析,δ0.88ppm(t,3h),1.81-1.95ppm(m,4h),2.39ppm(s,1h),5.29ppm(s,2h),5.42ppm(s,2h),6.50ppm(s,1h),7.28ppm(s,1h),7.63ppm(d,1h),8.07ppm(d,1h),8.72ppm(s,1h),11.2ppm(s,1h)。
[0057]
2)、半胱氨酸-喜树碱环内羧酸酐的制备
[0058]
取上述制备的半胱氨酸-喜树碱单体(3.2g)溶于30ml无水四氢呋喃,缓慢加入三光气(0.56g)的四氢呋喃溶液(20ml),于50℃下反应4h;然后浓缩四氢呋喃,所得产物在四氢呋喃/正己烷混合溶剂中重结晶3次后干燥保存,得到半胱氨酸-喜树碱环内羧酸酐;产率70%。
[0059]
3)、功能性聚乙二醇-聚半胱氨酸-喜树碱的制备
[0060]
取上述所得的半胱氨酸-喜树碱环内羧酸酐(2.41g)溶于30ml n,n-二甲基甲酰胺中,加入甲氧基聚乙二醇胺(mpeg-nh2)(0.96g),于35℃下反应3天;反应结束后,在冰乙醚中沉淀3次,真空干燥48h;得到聚乙二醇-聚半胱氨酸-喜树碱。
[0061]
实施例2光控变构聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料的制备
[0062]
取实施1所得的聚乙二醇-聚半胱氨酸-喜树碱10mg溶于0.8ml四氢呋喃,3mg ir780(结构式见下图)0.2ml二甲基亚砜(dmso),将两种溶液混合,以30s/d的速度缓慢滴加到快速搅拌的去离子水(9ml)中,滴加完毕后,继续搅拌半小时;然后将液体转移到mwco 3500的透析袋中,于去离子水中透析3天,每隔3h换一次水;然后将液体离心(3500r/min),过滤(0.45μm),定容得到聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料。
[0063][0064]
采用动态光散射(dls)测定所制得的纳米材料的粒径,其结果为115nm;采用透射电镜(tem)对纳米材料的形貌进行表征,结果如图1所示,表明所制得的纳米材料为囊泡结构。采用圆二色谱仪对纳米材料的二级构象进行测试,结果如图2所示,所制得的纳米材料含有β折叠结构。
[0065]
实施例3聚乙二醇-聚半胱氨酸-喜树碱/ir780响应性测试
[0066]
取实施例2所制得的聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料(3ml)给予光照(808nm,2w/cm2)。
[0067]
取实施例2所制得的聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料(3ml)在10%双氧水及5%的醋酸环境中,于37℃反应24h;然后将液体转移到mwco3500的透析袋中,于去离子水中透析2天,每隔3h换一次水;最后收集得到氧化后聚乙二醇-聚半胱氨酸-喜树碱氧化纳米材料作为对照例。
[0068]
采用动态光散射(dls)测定所制得的聚乙二醇-聚半胱氨酸-喜树碱/ir780光照后纳米材料的粒径,其结果为122nm;采用透射电镜(tem)对聚乙二醇-聚半胱氨酸-喜树碱/ir780光照后纳米材料的形貌进行表征,结果如图3所示,所制得的纳米材料仍然为囊泡结构,囊泡膜变薄。采用圆二色谱仪对光照和氧化后纳米材料的二级构象进行测试,结果如图4所示,所制得的两种纳米材料均转变为α螺旋结构,但光照条件下转变速率更快(图5),外加h2o2组需要在5%冰醋酸条件下氧化16h(此方法需要的条件较为苛刻,在体内较难实现),而光照条件下5min就实现了螺旋含量82%左右的转变,条件温和,且螺旋度的调控操作性更强,其具有更大的应用潜力。
[0069]
实施例4聚赖氨酸-聚半胱氨酸-芘的制备
[0070]
1)、半胱氨酸-芘的制备
[0071]
将半胱氨酸盐酸盐水合物(8.53g)溶于180ml氢氧化钠溶液中(2m),加入催化剂四正丁基碘化胺(1.3g),冰盐浴冷却;将1-溴-芘(8.32g)溶于氯仿(120ml)和乙醇(300ml)的混合溶剂,然后通过恒压漏斗滴加至反应体系,自然恢复至室温反应72h;反应停止后减压浓缩,然后用二氯甲烷提取产物,所得油相依次用饱和碳酸氢钠水溶液和饱和氯化钠溶液洗涤两遍,水相反洗后合并有机相,用无水硫酸钠过夜干燥;抽滤浓缩,所得固体干燥后通过柱层析色谱法提纯,得到半胱氨酸-芘原料(产率82%)。
[0072]
以氘代氯仿为溶剂,对上述半胱氨酸-芘原料进行核磁共振分析,δ2.39ppm(s,1h,-ch-nh2),3-3.5ppm(m,5h),5.6ppm(t,2h),7.81ppm(d,6h)
[0073]
2)、半胱氨酸-芘环内羧酸酐的制备
[0074]
取上述制备的半胱氨酸-芘单体(7.39g)溶于65ml无水四氢呋喃,缓慢加入三光气(3.2g)的四氢呋喃溶液(30ml),于60℃下反应4h;然后浓缩四氢呋喃,所得产物在四氢呋喃/正己烷混合溶剂中重结晶3次后干燥保存,得到半胱氨酸-芘环内羧酸酐;产率73%。
[0075]
3)、功能性聚赖氨酸-聚半胱氨酸-芘的制备
[0076]
取上述所得的半胱氨酸-芘环内羧酸酐(6.09g)溶于35mln,n-二甲基乙酰胺中,加入聚(苄氧羰基-l-赖氨酸)(pll)(3.62g),于35℃下反应4天;反应结束后,在冰乙醚中沉淀3次,真空干燥48h;得到聚赖氨酸-聚半胱氨酸-芘。
[0077]
实施例5光控变构聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿纳米材料制备及响应性测试
[0078]
取实施例4所得的聚赖氨酸-聚半胱氨酸-芘10mg溶解于1ml二氯甲烷,以30s/d的速度缓慢滴加入快速搅拌的去离子水(9ml)中,滴加完毕后,继续搅拌半小时,然后将液体转移到mwco 3500的透析袋中,于去离子水中透析3天,每隔3h换一次水;然后将液体离心(3500r/min),过滤(0.45μm),定容得到聚赖氨酸-聚半胱氨酸-芘纳米材料。取吲哚菁绿3mg溶于0.5mldmso中,然后以30s/d的速度缓慢滴加入快速搅拌的聚赖氨酸-聚半胱氨酸-芘纳米材料纳米材料溶液中。滴加完毕后,继续搅拌半小时,然后将液体转移到mwco 3500的透析袋中,于去离子水中透析3天,每隔3h换一次水;然后将液体离心(3500r/min),过滤(0.45μm),定容得到聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿纳米材料。
[0079]
取上述得的聚乙二醇-聚半胱氨酸-芘/吲哚菁绿纳米材料(3ml)给予光照(808nm,2w/cm2)。
[0080]
利用动态光散射电位仪对所得光照前后纳米材料的粒径进行测试,其结果为聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿纳米材料粒径为115nm,光照后的聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿纳米材料粒径为129.6nm。采用圆二色谱仪对纳米材料的二级构象进行测试,结果如图6所示,由图6可知,聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿纳米材料的二级构象为β折叠,光照后的聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿纳米材料的二级构象转变为α螺旋结构。
[0081]
实施例6聚乙二醇-聚半胱氨酸-十六烷基/四苯基卟啉纳米材料的制备
[0082]
1)、半胱氨酸-十六烷基的制备
[0083]
将半胱氨酸盐酸盐水合物(8.52g)溶于120ml氢氧化钠溶液中(2m),加入催化剂四正丁基碘化胺(1g),冰盐浴冷却;将氯代十六烷(c16-cl)(8.62g)溶于氯仿(77ml)和乙醇(260ml)的混合溶剂,然后通过恒压漏斗滴加至反应体系,自然恢复至室温反应36h;反应停止后减压浓缩,然后用二氯甲烷提取产物,所得油相依次用饱和碳酸氢钠水溶液和饱和氯化钠溶液洗涤两遍,水相反洗后合并有机相,用无水硫酸钠过夜干燥;抽滤浓缩,所得固体干燥后通过柱层析色谱法提纯,得到半胱氨酸-十六烷基单体(产率64%)。
[0084]
2)、半胱氨酸-十六烷基环内羧酸酐的制备
[0085]
取上述制备的半胱氨酸-十六烷基单体(3.3g)溶于30ml无水四氢呋喃,缓慢加入三光气(0.42g)的四氢呋喃溶液(20ml),于55℃下反应3.5h;然后浓缩四氢呋喃,所得产物在四氢呋喃/正己烷混合溶剂中重结晶3次后干燥保存,得到半胱氨酸-十六烷基环内羧酸酐;产率74%。
[0086]
3)、功能性聚乙二醇-聚半胱氨酸-十六烷基的制备
[0087]
取上述所得的半胱氨酸-十六烷基环内羧酸酐(2.52g)溶于30mln,n-二甲基甲酰胺中,加入甲氧基聚乙二醇胺(mpeg-nh2)(0.85g),于37℃下反应3天;反应结束后,在冰乙醚中沉淀3次,真空干燥48h;得到聚乙二醇-聚半胱氨酸-十六烷基。
[0088]
4)纳米材料的制备
[0089]
取上述所得的聚乙二醇-聚半胱氨酸-十六烷基10mg溶于0.8ml四氢呋喃,3mg四苯基卟啉溶于0.2ml二甲基亚砜(dmso),将两种溶液混合,以30s/d的速度缓慢滴加到快速搅拌的去离子水(9ml)中,滴加完毕后,继续搅拌半小时;然后将液体转移到mwco 3500的透析袋中,于去离子水中透析3天,每隔3h换一次水;然后将液体离心(3500r/min),过滤(0.45μm),定容得到聚乙二醇-聚半胱氨酸-十六烷基/四甲基卟啉纳米材料。
[0090]
实施例7光控变构聚氨基酸多功能纳米材料的药物释放行为研究
[0091]
将200μlr6g水溶液(0.2mg ml-1
)或尼罗红(nr)丙酮溶液(0.2mg ml-1
)滴加到2ml实施例3和实施例5所得的纳米材料(0.2mg ml-1
)溶液中,搅拌30min,超声2小时后用mwco 3500的透析袋透析12h,每隔4h换一次水。然后通过紫外分光光度计测试其吸光度,调节r6g水溶液的浓度,使纳米材料中r6g的吸光度与水溶液中相同,然后通过f-4600测试两者的荧光强度,r6g激发波长为526nm,nr激发波长为530nm。通过荧光分光光度计检测了包载了不同荧光染料的聚合物纳米粒子在不同条件处理下的药物释放行为。结果如图7所示,由图7可知:实施例3所得的聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料光照后具有优异的药物释放行为,囊泡膜通透性提高,且明显快于外加h2o2组(对照例),nr的释放速率提高2.3倍,r6g的释放速率提高2.5倍;实施例5所得的聚赖氨酸-聚半胱氨酸-芘/吲哚菁绿光照后具有优异的药物释放行为,囊泡膜通透性提高,且明显快于外加h2o2组(对照例),nr的释放速率提高2.6倍,r6g的释放速率提高2.4倍。这主要是由于光照后其构象由β折叠转变为α螺旋,分子间作用减弱,打开了药物释放开关;此外,光照减小了刺激源进攻的位阻,所以速度明显快于外加h2o2组。
[0092]
实施例8光控变构聚氨基酸功能性纳米材料入胞性能研究
[0093]
分别选择实施例3制备的纳米材料与hela细胞共培养4h后,利用激光共聚焦进行观察,结果如图8所示,实施例3所得的聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料光照后(nir)的荧光强度比光照前强,光照组具有更优异的入胞性能;分析其原因,α螺旋构象有利于入胞,所以表现为α螺旋的光照后聚乙二醇-聚半胱氨酸-喜树碱/ir780比表现为β折叠的聚乙二醇-聚半胱氨酸-喜树碱/ir780更容易进入细胞,入胞效率提升5.8倍。作为对照,实施例3的消旋聚合物光照组相比于未光照组入胞效率提升2.1倍,但入胞能力明显弱于光照后的聚乙二醇-聚半胱氨酸-喜树碱/ir780,说明光照所产生的的光热效果虽然能够增强纳米材料的入胞,但构象对入胞的性能影响更大;此外,外加双氧水组入胞能力相比于未刺激组入胞效率提升3.2倍,明显弱于光照组,且在光照组中光照和α螺旋对入胞的影响具有协同效应(5.8>3.2+2.1)。
[0094]
为了研究药物递送能力,以dox为疏水性小分子药物,以fitc-dextran为大分子药物模拟物,将其包载进入聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料,结果显示聚乙二醇-聚半胱氨酸-喜树碱/ir780光照组细胞内具有更强的dox和fitc-dextran荧光,且主要分布在细胞核内,有效实现了小分子药物和大分子药物的递送;且递送效率明显优于外加双氧水组,不仅整体荧光相比于双氧水组更强(约1.2-1.5倍),而且核内荧光明显增强(约1.3-1.7倍)。分析其原因,光照所导致的纳米材料变构行为增强了其入胞行为和释放速率(如图9所示)。
[0095]
实施例9功能性聚氨基酸体外肿瘤抑制实验
[0096]
选择实施例3制备的纳米材料包载gsh合成抑制剂索拉菲尼(srf)和毒性肽蜂毒肽(mel)后与4t1细胞共培养,利用mtt法得到细胞存活率,绘制出4t1细胞随各载药体系浓度变化存活率的曲线,结果如图10所示,由图10可知,所有样品都表现出了浓度依赖的细胞毒性;而且联合治疗组具有最优异的抗肿瘤效果,且联合治疗组显现出优异的协同治疗效果,协同指数明显小于1,药物间具有优异的协同效应。
[0097]
实施例10光控变构聚氨基酸多功能纳米材料成像研究
[0098]
选择实施例3制备的纳米材料研究光控变构聚氨基酸纳米材料体内成像性能。将荷瘤小鼠随机进行分组(每组n=3),通过尾静脉将磷酸盐缓冲液(pbs),自由ir780和聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料注射到荷瘤小鼠体内。给药24h后将肿瘤暴露于808nm激光(2w cm-2
)下5分钟,然后通过光热成像仪对其进行光热成像,通过小动物活体成像系统对其进行荧光成像。24h后处死小鼠,收集肿瘤和主要器官,对其进行荧光成像,光热成像结果如图11,结果为:注射了聚乙二醇-聚半胱氨酸-喜树碱/ir780的小鼠,其肿瘤部位的温度在近红外光照射后均增加到50度左右,而pbs组只有轻微的温度上升。此外,注射了自由ir780的组温度只上升到39度左右,这说明聚乙二醇-聚半胱氨酸-喜树碱/ir780具有优异的肿瘤富集能力。荧光成像结果表明:自由ir780作为一种小分子染料没有肿瘤靶向能力,主要分布在器官,且很快被代谢;而聚乙二醇-聚半胱氨酸-喜树碱/ir780呈现出较好的肿瘤靶向能力和肿瘤滞留时间。另外,离体器官的荧光成像和肿瘤切片也证实聚乙二醇-聚半胱氨酸-喜树碱/ir780具有较好的肿瘤靶向性(图12)。可以预见,如活体成像所示,聚乙二醇-聚半胱氨酸-喜树碱/ir780更倾向于富集在肿瘤部位而不是器官,这表明它们可能在肿瘤部位具有高效的pdt、ptt和引发其构象转变的能力,且具有较低的副作用。
[0099]
实施例11光控变构聚氨基酸多功能纳米材料体内肿瘤研究
[0100]
以实施例3所得的纳米材料为研究对象,以gsh合成抑制剂索拉菲尼(srf)为小分子药物模型,以蜂毒肽为大分子亲水性抗癌药物模型包载进聚乙二醇-聚半胱氨酸-喜树碱/ir780中。将srf和蜂毒肽(mel,10mg ml-1
)的混合液以30s/d速度缓慢滴入含中,然后将溶液转入mwco 6000透析袋中透析48h,每隔3h换一次水。然后以3000r min-1
的速度离心15min,0.22μm孔径的滤器进行过滤,在4℃冰箱中密封保存。通过尾静脉注射方式将载药后的聚乙二醇-聚半胱氨酸-喜树碱/ir780纳米材料注射到接种了4t1细胞的小鼠体内,每隔三天记录小鼠在治疗期间的体重和肿瘤大小。在第15天处死部分小鼠,提取淋巴和脾脏并收集血液。将淋巴和脾脏研磨,洗涤重悬后,过滤得到单细胞悬液,加入anti-cd8-apc避光孵育半小时后用流式细胞仪检测cd8+t细胞的数量,加入anti-cd80-fitc和anti-cd86-apc避光孵育半小时后检测dcs的数量。将血液离心后取上清液,检测小鼠血清中的tnf-α和inf-γ的含量。结果如图13,图13表明:载有srf和mel的聚乙二醇-聚半胱氨酸-喜树碱/ir780的纳米材料在光照后具有最佳的肿瘤抑制效果和免疫微环境重塑能力,肿瘤完全抑制,且具有优异的抗转移和抗复发的能力。这主要是由于该功能化的聚乙二醇-聚半胱氨酸-喜树碱/ir780在光照条件下实现高级结构和功能的改变,提高纳米材料的入胞和控释效果,从而在体内达到很好的特异性肿瘤抑制效果和免疫微环境重塑能力。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1