用于将消融能量递送到组织的系统、设备和方法与流程

文档序号:33619840发布日期:2023-03-25 11:00阅读:46来源:国知局
用于将消融能量递送到组织的系统、设备和方法与流程
用于将消融能量递送到组织的系统、设备和方法
1.本技术是申请号为“201980031149.7”,申请日为“2019年5月7日”,名称为“用于将消融能量递送到组织的系统、设备和方法”的中国专利申请的分案申请。
2.相关申请的交叉引用
3.本技术要求于2018年9月20日提交并且标题为“用于将消融能量递送到组织的系统、设备和方法(systems,apparatuses and methods for delivery of ablative energy to tissue)”的美国临时申请第62/733,968号以及于2018年5月7日提交并且标题为“用于将消融能量递送到组织的系统、设备和方法(systems,apparatuses and methods for delivery of ablative energy to tissue)”的美国临时申请第62/667,950号的权益。本技术还与于2017年10月27日提交并且标题为“用于将消融能量递送到组织的系统、设备和方法(systems,apparatuses and methods for delivery of ablative energy to tissue)”的美国专利申请第15/796,375号有关,所述美国专利申请是于2016年10月26日提交的标题为“用于将消融能量递送到组织的系统、设备和方法(systems,apparatuses and methods for delivery of ablative energy to tissue)”的美国专利申请序列号15/334,646的分案,所述美国专利申请是于2016年10月19日提交的标题为“用于将消融能量递送到组织的系统、设备和方法(systems,apparatuses and methods for delivery of ablative energy to tissue)”的pct申请号pct/us2016/057664的继续申请,所述pct申请要求于2016年1月5日提交的标题为“用于将脉冲电场消融能量递送到组织的方法和设备(method and apparatus for delivery of pulsed electric field ablative energy to tissue)”的美国临时申请第62/274,926号的优先权。上述申请中的每一个的全部公开内容通过引用以其全文并入。


背景技术:

4.在过去的二十年中,用于组织疗法的脉冲电场的生成已经从实验室转移到临床应用,而在过去的四十年或更长时间中,已经研究了高电压和大电场的短暂脉冲对组织的影响。将短暂的高dc电压施加到组织可以生成范围通常为数百伏/厘米的局部高电场,这可以通过在细胞膜中生成孔隙来破坏细胞膜。虽然这种电驱动的孔隙生成或电穿孔的精确机制尚不清楚,但认为施加相对大的电场会在细胞膜中的脂质双层中生成不稳定性,从而导致在膜中出现局部间隙或孔隙的分布。如果在膜处施加的电场大于阈值,则电穿孔可以是不可逆的,并且孔隙保持开放,从而允许生物分子材料跨膜交换并导致坏死和/或凋亡(细胞死亡)。随后,周围的组织在自然过程中愈合。
5.因此,在医学和递送方法中的已知电穿孔应用未解决高电压应用、电极排序、组织选择性和安全能量递送,特别是在采用导管装置进行用于心律失常的消融疗法的背景下。此外,未满足对薄型柔性无创伤装置以及对装置设计和剂量波形的组合的需要,所述装置可以在最小化对健康组织的损害的同时选择性地将高dc电压电穿孔消融疗法有效地递送到所关注区域中的组织,所述组合涉及最少的或不涉及装置重定位,从而允许有效、安全且快速的临床程序。


技术实现要素:

6.此处描述了用于通过不可逆电穿孔来消融组织的系统、装置和方法。在一些实施例中,一种系统可以包含消融装置,所述消融装置包含多个电极,所述多个电极被配置成生成用于消融受试者的组织(例如,在心脏解剖结构中)的电场。脉冲波形发生器可以可耦接到所述消融装置并且被配置成以脉冲波形的形式将电压脉冲递送到所述消融装置。所述脉冲波形可以包含所述脉冲波形的层级的第一级,所述第一级包含第一组脉冲和隔开所述第一组脉冲的连续脉冲的第一时间延迟,所述第一组脉冲中的每个脉冲具有脉冲持续时间。所述层级的第二级可以包含多个第一组脉冲作为第二组脉冲以及隔开所述多个第一组脉冲中的连续的第一组脉冲的第二时间延迟,每个第二时间延迟是第一时间延迟的持续时间的至少三倍。所述层级的第三级可以包含多个第二组脉冲作为第三组脉冲以及隔开所述多个第二组脉冲中的连续的第二组脉冲的第三时间延迟,每个第三时间延迟是第二时间延迟的持续时间的至少三十倍。所述层级的第四级可以包含多个第三组脉冲作为第四组脉冲以及隔开所述多个第三组脉冲中的连续的第三组脉冲的第四时间延迟,每个第四时间延迟是第三时间延迟的持续时间的至少十倍。
7.在一些实施例中,每个第一组脉冲中的每个脉冲包含各自具有至少500伏的电压振幅的双相脉冲,每个双相脉冲的脉冲持续时间的范围为约0.5纳秒到约20微秒。在一些实施例中,所述第四组脉冲可以包含至少两个第三组脉冲和少于四十个第三组脉冲。在一些实施例中,每个第四时间延迟可以具有恒定的持续时间。在一些实施例中,所述第四时间延迟的持续时间变化。在这些实施例中的一些实施例中,所述第四时间延迟包含至少一个时间延迟重复值。在这些实施例中的一些实施例中,每个第四时间延迟的持续时间处于从第三时间延迟的持续时间的至少十倍延伸到小于第三时间延迟的持续时间的一千倍的范围内。在一些实施例中,每个第四时间延迟的持续时间可以大于心脏的心动周期。
8.在一些实施例中,所述脉冲波形进一步包含所述层级的第五级,所述第五级包含多个第四组脉冲作为第五组脉冲以及隔开所述多个第四组脉冲中的连续的第四组脉冲的第五时间延迟,每个第五时间延迟是第四时间间隔中的至少一个的持续时间的至少十倍。在一些实施例中,所述脉冲波形发生器可以被配置成与心脏的心动周期同步地以所述脉冲波形的形式递送所述电压脉冲,使得在心脏的不同心动周期的不应期期间递送所述多个第二组脉冲中的连续的第二组脉冲,并且其中所述第四组脉冲的递送窗跨心脏的多个心动周期延伸。在这些实施例中的一些实施例中,每个第二组脉冲包含至少两个第一组脉冲和少于四十个第一组脉冲。在这些实施例中的一些实施例中,心脏刺激器可以被配置成生成用于控制心脏的所述心动周期的定时的起搏信号。在一些实施例中,所述脉冲波形发生器可以被进一步配置成将所述电压脉冲递送到所述消融装置的多个电极组,其中递送到第一电极组的电压脉冲与电压脉冲到第二电极组的递送偏移一定时间段。
9.在一些实施例中,一种系统可以包含消融装置,所述消融装置包含多个电极,所述多个电极被配置成生成用于消融受试者的组织的电场。脉冲波形发生器可以可耦接到所述消融装置。所述脉冲波形发生器可以被配置成通过交织跨多个电极组递送的电压脉冲以脉冲波形的形式将所述电压脉冲递送所述消融装置。所述脉冲波形可以包含所述脉冲波形的层级的第一级,所述第一级包含第一组脉冲和隔开所述第一组脉冲的连续脉冲的第一时间延迟,所述第一组脉冲中的每个脉冲具有脉冲持续时间。所述层级的第二级可以包含多个
第一组脉冲作为第二组脉冲以及隔开所述多个第一组脉冲中的连续的第一组脉冲的第二时间延迟,每个第二时间延迟是第一时间延迟的持续时间的至少三倍。所述层级的第三级可以包含多个第二组脉冲作为第三组脉冲以及隔开所述多个第二组脉冲中的连续的第二组脉冲的第三时间延迟,每个第三时间延迟是第二级时间延迟的持续时间的至少三十倍。
10.在一些实施例中,每个第一组脉冲中的每个脉冲包含各自具有至少500伏的电压振幅的双相脉冲,每个双相脉冲的脉冲持续时间的范围为约0.5纳秒到约20微秒。
11.在一些实施例中,所述脉冲波形发生器可以被配置成通过以下来递送所述电压脉冲:与电压脉冲到所述多个电极组中的第二电极组的递送偏移一定时间段而将电压脉冲递送到所述多个电极组中的第一电极组。在这些实施例中的一些实施例中,电压脉冲到所述第一电极组的所述递送与电压脉冲到所述第二电极组的所述递送偏移的所述时间段可以小于所述第二时间延迟的持续时间,使得递送到所述第二电极组的连续的第一组脉冲在递送到所述第一电极组的连续的第一组脉冲之后。在这些实施例中的一些实施例中,电压脉冲到所述第一电极组的所述递送与电压脉冲到所述第二电极组的所述递送偏移的所述时间段可以小于所述第二时间延迟的持续时间的至少约百分之五十五。
12.在一些实施例中,所述脉冲波形发生器可以被配置成与心脏的心动周期同步地递送所述电压脉冲,使得在心脏的不同心动周期的不应期期间递送针对给定电极组的所述多个第二组脉冲中的连续的第二组脉冲,并且在单个不应期期间递送被递送到所述多个电极组中的至少两个电极组的所述第二组脉冲。在这些实施例中的一些实施例中,心脏刺激器可以被配置成生成用于控制心脏的所述心动周期的定时的起搏信号。
13.在一些实施例中,一种方法可以包含以脉冲波形的形式生成电压脉冲,所述脉冲波形包含:所述脉冲波形的层级的第一级,所述第一级包含第一组脉冲和隔开所述第一组脉冲中的连续脉冲的第一时间延迟,所述第一组脉冲中的每个脉冲具有脉冲持续时间;所述层级的第二级,所述第二级包含多个第一组脉冲作为第二组脉冲以及隔开所述多个第一组脉冲中的连续的第一组脉冲的第二时间延迟,每个第二时间延迟是第一时间延迟的持续时间的至少三倍;所述层级的第三级包含多个第二组脉冲作为第三组脉冲以及隔开所述多个第二组脉冲中的连续的第二组脉冲的第三时间延迟,每个第三时间延迟是第二级时间延迟的持续时间的至少三十倍;以及所述层级的第四级,所述第四级包含多个第三组脉冲作为第四组脉冲以及隔开所述多个第三组脉冲中的连续的第三组脉冲的第四时间延迟,每个第四时间延迟是第三时间延迟的持续时间的至少十倍。所述方法可以进一步包含将所述电压脉冲递送到消融装置的一个或多个电极组,使得所述一个或多个电极组生成用于消融受试者的组织的脉冲电场。
14.在一些实施例中,所述第四组脉冲可以包含至少两个第三组脉冲和少于四十个第三组脉冲。在一些实施例中,所述第四时间延迟的持续时间可以变化,其中每个第四时间延迟的持续时间处于从第三时间延迟的持续时间的至少十倍延伸到小于第三时间延迟的持续时间的一千倍的范围内。
15.在一些实施例中,所述方法可以进一步包括用心脏刺激器生成一组起搏信号以及将所述一组起搏信号递送到心脏。所述电压脉冲可以与所述一组起搏信号同步地递送,使得在与所述一组起搏信号中的每个起搏信号相关联的不应期期间递送所述多个第二组脉冲中的每个第二组脉冲,并且其中所述第四组脉冲的递送窗跨心脏的多个心动周期延伸。
16.在这些实施例中的一些实施例中,每个第四时间延迟的持续时间可以大于将成功起搏信号与所述一组起搏信号隔开的时间段。在一些实施例中,所述脉冲波形可以进一步包含所述层级的第五级,所述第五级包含多个第四组脉冲作为第五组脉冲以及隔开所述多个第四组脉冲中的连续的第四组脉冲的第五时间延迟,每个第五时间延迟是第四时间间隔中的至少一个的持续时间的至少十倍。
17.在一些实施例中,一种方法可以包含以脉冲波形的形式生成电压脉冲,所述脉冲波形包含:所述脉冲波形的层级的第一级,所述第一级包含第一组脉冲和隔开所述第一组脉冲中的连续脉冲的第一时间延迟,所述第一组脉冲中的每个脉冲具有脉冲持续时间;所述层级的第二级,所述第二级包含多个第一组脉冲作为第二组脉冲以及隔开所述多个第一组脉冲中的连续的第一组脉冲的第二时间延迟,每个第二时间延迟是第一时间延迟的持续时间的至少三倍;并且所述层级的第三级包含多个第二组脉冲作为第三组脉冲以及隔开所述多个第二组脉冲中的连续的第二组脉冲的第三时间延迟,每个第三时间延迟是第二级时间延迟的持续时间的至少三十倍。所述方法可以进一步包含通过交织递送到多个电极组中的电极组中的至少两个电极组的所述电压脉冲,将所述电压脉冲递送到消融装置的所述多个电极组,使得一个或多个电极组生成用于消融受试者的组织的脉冲电场。
18.在一些实施例中,可以与所述电压脉冲到所述至少两个电极组中的第二电极组的递送偏移一定时间段而将所述电压脉冲递送到所述至少两个电极组中的第一电极组。在一些实施例中,电压脉冲到所述第一电极组的所述递送与电压脉冲到所述第二电极组的所述递送偏移的所述时间段可以小于所述第二时间延迟的持续时间的至少约百分之五十五。
19.在一些实施例中,所述方法可以进一步包括用心脏刺激器生成一组起搏信号以及将所述一组起搏信号递送到心脏。所述电压脉冲与所述一组起搏信号同步地递送可以为使得在与所述一组起搏信号中的不同起搏信号相关联的不应期期间递送所述多个第二组脉冲中的每个第二组脉冲,并且可以在单个不应期期间递送被递送到所述多个电极组中的至少两个电极组的所述第二组脉冲。
附图说明
20.图1是根据实施例的具有沿其远侧轴杆安置的多个电极的导管的示意性图示,所述导管安置在心外膜,使得所述导管紧密地包裹在心脏解剖结构的肺静脉周围。
21.图2是示出了根据实施例的具有针对每个脉冲限定的脉冲宽度的电压脉冲序列的示例波形。
22.图3示意性地展示了根据实施例的示出脉冲宽度、脉冲之间的间隔以及脉冲分组(grouping)的脉冲层级。
23.图4提供了根据实施例的显示嵌套层级的不同级别的单相脉冲的嵌套层级的示意性图示。
24.图5是根据实施例的显示嵌套层级的不同级别的双相脉冲的嵌套层级的示意性图示。
25.图6示意性地示出了根据实施例的带编号导管电极的圆圈,其中可以顺序地选择电极组以用于施加电压脉冲波形的相应序列。
26.图7示意性地展示了根据实施例的心电图和心脏起搏信号的时序以及心房和心室
不应时间段并指示了不可逆电穿孔消融的时间窗。
27.图8示意性地展示了根据实施例的作为一系列波形分组在相应的一系列连续心跳之上递送的电极组激活时序。
28.图9是根据实施例的不可逆电穿孔系统的示意性图示,所述不可逆电穿孔系统包含系统控制台,所述系统控制台又包含电压/信号发生器、控制器和开关单元,所述电压/信号发生器、控制器被配置成向所选的电极子组施加电压并且与用户接口一起可通信地连接到计算机或处理器,所述开关单元被配置成将其它设备与可以从电压发生器递送到消融导管的电压脉冲电隔离。
29.图10是根据实施例的处于初始配置的用户接口的示意性图示。
30.图11是根据实施例的示出了初始化功能的接合的用户接口的示意性图示。
31.图12是根据实施例的示出了初始化之后的所需步骤的用户接口的示意性图示。
32.图13是示出了其中在完成先前步骤之后系统准备好用于递送消融能量的配置的用户接口的示意性图示。根据实施例,在此配置中,用户接口包含用于消融的按钮。
33.图14示意性地展示了根据实施例的示出脉冲宽度、脉冲之间的间隔以及脉冲分组的脉冲层级。
34.图15示意性地展示了根据实施例的示出针对电极对的脉冲宽度、脉冲之间的间隔以及脉冲分组的脉冲层级。
35.图16示意性地展示了根据实施例的针对电极对的脉冲群组和脉冲群组之间的时间延迟。
36.图17示意性地展示了根据实施例的来自两元素团集的电极组的两个电极组的交织的脉冲群组。
37.图18示意性地展示了根据实施例的在心跳之上递送的消融能量递送序列。
38.图19示意性地展示了根据实施例的示出针对电极对的脉冲宽度、脉冲之间的间隔以及脉冲分组的脉冲层级。
具体实施方式
39.此处描述了用于通过不可逆电穿孔来消融组织的系统、装置和方法。用于将脉冲波形递送到组织的系统通常可以包含脉冲波形发生器和耦接到脉冲波形发生器的消融装置。消融装置可以包含至少两个电极,所述至少两个电极被配置成用于在使用期间将消融脉冲递送到组织。脉冲波形发生器可以被配置成以脉冲波形的形式将电压脉冲递送到消融装置。
40.如本文所公开的用于电穿孔能量递送的脉冲波形可以通过减小与不可逆电穿孔相关联的电场阈值来增强向组织递送能量的安全性、效率和有效性,从而在减少递送的总能量的情况下产生更有效的消融损伤。在一些实施例中,本文所公开的电压脉冲波形可以是分级的并且具有嵌套结构。例如,脉冲波形可以包含具有相关联的时间尺度的脉冲的分级分组。在一些实施例中,本文所公开的方法、系统和装置可以包括上文引用和并入的申请中的一个或多个申请中描述的方法、系统和装置中的一种或多种方法、系统和装置:于2016年10月19日提交的国际申请序列号pct/us2016/057664、于2016年10月26日提交的美国专利申请序列号15/334,646和于2017年10月27日提交的美国专利申请序列号15/796,375。
41.在一些实施例中,系统包含脉冲波形发生器和耦接到脉冲波形发生器的消融装置。消融装置包含至少一个电极,所述至少一个电极被配置成用于在使用期间将消融脉冲递送到组织。脉冲波形发生器被配置成以脉冲波形的形式将电压脉冲递送到消融装置。施加到给定电极的脉冲波形的层级的第一级包含第一组脉冲和隔开连续脉冲的第一时间间隔(即,第一时间延迟),每个脉冲具有脉冲持续时间。脉冲波形的层级的第二级包含多个第一组脉冲作为第二组脉冲以及隔开连续的第一组脉冲的第二时间间隔(即,第二时间延迟),第二时间间隔是第一时间间隔的持续时间的至少三倍。脉冲波形的层级的第三级包含多个第二组脉冲作为第三组脉冲以及隔开连续的第二组脉冲的第三时间间隔(即,第三时间延迟),第三时间间隔是第二时间间隔的持续时间的至少30倍。脉冲波形的层级的第四级包含多个第三组脉冲作为第四组脉冲以及隔开连续的第三组脉冲的第四时间间隔(即,第四时间延迟),第四时间间隔是第三时间间隔的持续时间的至少十倍。
42.在一些实施例中,每个第一组脉冲中的脉冲包含脉冲持续时间的范围为约1微秒到约300微秒的单相脉冲。在一些实施例中,每个第一组脉冲中的脉冲包含脉冲持续时间的范围为约0.5纳秒到约20微秒的双相脉冲。在一些实施例中,第二时间间隔是脉冲持续时间的至少十倍。在一些实施例中,第三时间间隔的范围为约数百毫秒或十分之几秒。在一些实施例中,第四时间间隔的范围为从约几秒到约几分钟。在一些实施例中,第四时间间隔可以在一系列第三组脉冲上变化或不恒定。在一些实施例中,第四时间间隔可以包含最后一个时间延迟重复值。
43.在一些实施例中,每个第二组脉冲包含至少2个第一组脉冲和少于40个第一组脉冲。在一些实施例中,每个第三组脉冲包含至少2个第二组脉冲和少于30个第二组脉冲。在一些实施例中,每个第四组脉冲包含至少两个第三组脉冲和少于四十个第三组脉冲。
44.在一些实施例中,脉冲波形包含层级的第五级,所述第五级包含多个第四组脉冲作为第五组脉冲以及隔开连续的第四组脉冲的第五时间间隔。在一些实施例中,每个第五组脉冲包含至少一个第四组脉冲到约50个第四组脉冲。
45.使用经过排序的一组电极配对递送电穿孔能量可以提高在心跳期间递送能量的效率和/或速度。这对于在预定时间段内(例如,在心跳、心脏腔室的不应窗等内)完成消融能量的递送可以是有用的。例如,在各种实施例中,消融递送可以在小于约100毫秒、小于约150毫秒、小于约200毫秒和小于约250毫秒的时间窗内完成。
46.在一些实施例中,消融能量递送可以被实施为在预定数量的连续或不同心跳之上使用不同组的电极配对对脉冲的顺序递送。具体地说,可以使用一组电极配对来对消融递送进行排序。例如,针对电极配对序列中的每个电极配对,可以递送在连续的脉冲群组之间具有群组延迟的一个或多个脉冲群组。在这些实施例中的一些实施例中,每个电极配对可以包含与一组阴极配对的一组阳极。以此方式,在一个或多个心跳期间,能量递送可以跨多组电极配对交织。在与第一组成对电极相关联的群组延迟期间,可以使用第二组成对电极来递送一个或多个脉冲群组。
47.在一些实施例中,施加到给定电极的脉冲波形的层级的第一级可以包含第一组脉冲和隔开连续脉冲的第一时间间隔,每个脉冲具有脉冲持续时间。脉冲波形的层级的第二级可以包含多个第一组脉冲作为第二组脉冲以及隔开连续的第一组脉冲的第二时间间隔。第二时间间隔可以是第一时间间隔的持续时间的至少三倍。脉冲波形的层级的第三级可以
包含多个第二组脉冲作为第三组脉冲。第三时间间隔可以隔开连续的第二组脉冲。第三时间间隔可以是第二时间间隔的持续时间的至少三十倍。脉冲波形的层级的第四级可以包含多个第三组脉冲作为第四组脉冲。第四时间间隔可以隔开连续的第四组脉冲。第四时间间隔可以是第三时间间隔的持续时间的至少十倍。
48.如本文所公开的用于电穿孔能量递送的脉冲波形可以通过降低与不可逆电穿孔相关联的电场阈值来增强能量递送的安全性、效率和有效性,从而在减少递送的总能量的情况下产生更有效的消融损伤。这进而可以拓宽电穿孔的临床应用领域,包含各种心律失常的治疗性治疗。
49.本公开解决了对以下装置和方法的需要:所述装置和方法通常用多个装置快速、选择性且安全地递送不可逆电穿孔疗法,使得在一些实施例中,可以减小和/或最小化峰值电场值,同时可以在期望组织消融的区域中保持足够大的电场幅值。这也降低了过度组织损伤或生成电弧的可能性,并且局部高温有所增加。
50.如本文结合所提及数字指示所使用的术语“约”和“大约”意指所提及数字指示加减所述所提及参考数字指示的高达10%。例如,语言“约50个”单位或“大约50个”单位意指45个单位到55个单位。如本文所使用的,术语“电穿孔”是指向细胞膜施加电场以改变细胞膜对细胞外环境的渗透性。如本文所使用的,术语“可逆电穿孔”是指向细胞膜施加电场以暂时改变细胞膜对细胞外环境的渗透性。例如,经受可逆电穿孔的细胞可以观察到一个或多个孔隙在其细胞膜中暂时和/或间歇形成,所述一个或多个孔隙在电场移除后闭合。如本文所使用的,术语“不可逆电穿孔”是指向细胞膜施加电场以永久改变细胞膜对细胞外环境的渗透性。例如,经受不可逆电穿孔的细胞可以观察到一个或多个孔隙在其细胞膜中形成,所述一个或多个孔隙在电场移除后仍然存在。
51.概述
52.图1是具有沿其轴杆安置的多个电极的导管15的示意性图示。导管在图1中与心脏7相关地示出,并且导管15心外膜地包裹在左心房的由附图标记10、11、12和13(在图1中分别为左上、左下、右上和右下)表示的肺静脉周围并且具有由深色带指示的电极(如在图1中由附图标记17表示的那些),所述电极包裹在左心房的肺静脉10、11、12、13周围和/或在其周围的轮廓中成环。在一些实施例中,导管端8和9紧紧地拉在一起并固持在束紧工具(未示出)内部,以确保导管电极紧密地包裹在肺静脉10、11、12、13周围。一种使用剑突下心包通路位置和基于导丝的递送方法来完成围绕肺静脉放置多电极消融导管的方法和设备描述于标题为“用于刺穿通过组织结构并消融组织区域的导管、导管系统和方法(catheters,catheter systems and methods for puncturing through a tissue structure and ablating a tissue region)”的pct专利申请公开号wo2014/025394中,所述专利申请公开的全部公开内容通过引用以其全文并入本文。
53.在一些实施例中,导管电极17可以以金属带或金属环状物的形式构造。在一些实施例中,每个电极17可以被构造成是柔性的。例如,电极17可以呈围绕导管15的轴杆的金属螺旋弹簧或螺旋状绕组的形式。作为另一个实例,一个或多个电极17可以呈沿轴杆安置并且电连接在一起的一系列金属带或金属环状物的形式,其中电极之间的导管轴杆的柔性部分为整个电极提供柔性。在一些实施例中,电极17的至少一部分可以包含生物相容性金属,如但不限于钛、钯、银、铂和/或铂合金。在一些实施例中,电极17的至少一部分包含铂和/或
铂合金。在一些实施例中,导管轴杆可以由柔性聚合物材料制成,如(仅出于非限制性实例的目的)聚四氟乙烯、聚酰胺(如尼龙)或聚醚嵌段酰胺。电极17可以连接到通向导管15的近侧手柄部分(未示出)的绝缘电引线(未示出),其中引线中的每个引线上的绝缘能够在没有电介质击穿的情况下维持跨其厚度至少700v的电位差。尽管如图1所示将导管15放置在心外膜,即在心包下方,但是在替代性实施例中,消融导管可以另外或替代性地可用于心内膜放置。
54.应当了解到,本文提供的具体消融装置和其它实例仅描述用于说明性目的,并且被配置成用于在各种组织类型和解剖结构中使用的各种其它消融装置可以受益于本文的本公开中描述的波形的使用,而不脱离本发明的范围。
55.电极排序
56.本文描述了用于使用经过排序的一组电极配对递送电穿孔能量的系统、装置和方法,所述递送在一个或多个心跳期间并入了时间延迟并跨多组电极配对交织。在一些实施例中,每个电极配对可以包括与一组阴极配对的一组阳极。如本文中更详细地描述的,在与第一组成对电极相关联的脉冲群组之后的群组延迟期间,可以递送与至少第二组成对电极相关联的脉冲群组以便交织正在递送的脉冲群组。对于预定数量的连续或不同心跳,在每个心跳期间,脉冲的这种顺序递送可以在多组电极配对之上发生。具体地说,对于每个电极配对,可以递送在连续的脉冲群组之间具有群组延迟的多个脉冲群组。
57.使用如本文所描述的消融系统和装置中的任何消融系统和装置,消融能量可以在预定数量的心跳之上递送。在一些实施例中,可以选择一组m个电极配对以便以预定的电极配对序列递送一组脉冲。m个电极配对可以划分成n个团集。n个团集中的至少一个团集可以包含一组两个或更多个阳极-阴极电极配对。
58.团集至少对应于电极子组的阳极-阴极配对。然而,团集通常是指一组多个电极配对(每个配对涉及阳极-阴极电极子组)。例如,阳极a1与阴极c1和c2的第一电极配对可以由符号(a
1-(c1,c2))表示,并且这限定了电极子组配对。这种单个电极子组配对本身可以限定团集。更一般地,团集可以包括多个此类电极子组配对。团集的一个有用的实施例或构造包括两个电极子组配对。已知此类配对的序列中有m个电极子组配对,如果m为偶数,则可以将这m个配对划分成m/2个团集,每个团集包括2个电极子组配对。如果m为奇数,则团集中的一个团集将包括单个电极子组配对,并且其它团集将包括2个电极子组配对。
59.在另一个实例中,用于第一心跳的电极配对序列可以包含以下三个电极配对:(a
1-(c1,c2))、(a
2-(c2,c3))和(a
3-(c3,c4)),其中第一团集包含第一电极对(a
1-(c1,c2))和第二电极对和(a
2-(c2,c3)),并且第二团集包含第三电极配对(a
3-(c3,c4))。
60.一组电极配对可以递送在连续的脉冲群组之间具有群组时间延迟的多个脉冲群组。在一些应用中,群组时间延迟可以相对较长(例如,数百微秒或数千微秒),并且此延迟可以比单个脉冲群组的持续时间显著更长。然而,在用于第一电极配对的群组时间延迟时间段期间,可以使用第二电极配对来递送脉冲群组,使得来自不同电极配对的脉冲群组交织。
61.图15展示了包括用于单个电极配对的分组1551的p个脉冲群组,其中每个脉冲群组1523、1543相隔群组时间延迟1531(长度为td)。一组双相脉冲1505可以形成第一脉冲群组1523。还展示了第二脉冲群组1543,其中分组1551中的p个此类脉冲群组与一个心跳期间
的给定电极配对相对应。尽管此实例展示了双相脉冲,但是在一些实施例中也可以使用单相脉冲。第一级时间间隔1512可以隔开连续的双相脉冲1505。连续的脉冲群组1523可以相隔第二级时间间隔1531(例如,群组时间延迟)。在一些实施例中,第二级时间间隔1531的长度可以是第一级时间间隔1512的长度的至少三倍。多个脉冲分组1551、1571可以形成第三级结构或第三级脉冲组(即,超级分组)。连续的脉冲分组1551、1571可以相隔第三级时间间隔1561。在一些实施例中,第三级时间间隔1561的长度可以是第二级时间间隔1531的长度的至少三十倍。
62.图16展示了一组脉冲群组1603、1607以及脉冲群组之间的时间延迟1611。具体地说,第一脉冲群组1603和第二脉冲群组1607相隔持续时间或长度为td的群组时间延迟间隔1611。在本文公开的交织的(例如,多路复用的)排序方案中,在电极配对组的每个团集中,来自第二电极配对组的脉冲群组可以与来自第一电极配对组的脉冲群组交织。例如,在与第一电极配对组相对应的脉冲群组之后的时间间隔t
d2
之后,可以递送与第二电极配对组相对应的脉冲群组。图17展示了来自两元素电极配对组团集中的两个电极组的交织的脉冲群组。以此方式,可以高效地执行通过期望的电极序列完成能量递送。如果代替图17所展示的交织,通过一组电极配对顺序地递送用于每个电极配对的p个脉冲群组,则消融能量的递送将会花费两倍长的时间。第一团集中的第一电极配对组可以递送由图17中的细括号表示的一组脉冲群组1703、1705、1707。类似地,第一团集中的第二电极配对组可以递送由图17中的粗括号表示的一组脉冲群组1723、1725。第一电极配对组的脉冲群组可以相隔持续时间或长度为t
d1
的时间间隔1754。在第一电极配对组的脉冲群组1703之后可以是第二电极配对组的脉冲群组1723。例如,第二电极组的脉冲群组1723以在第一电极配对组的脉冲群组1703之后的持续时间或长度为t
d2
的时间间隔1751来递送。在一些实施例中,持续时间t
d2
可以是t
d1
的约一半(例如,小于t
d1
的约百分之五十五)。应当了解到,在一些实施例中,不同电极配对组的脉冲群组之间的时间间隔1751可以是相对于与给定电极配对组的群组时间延迟相对应的时间间隔1754而言的其它时间分数(即,除了t
d1
的约一半之外的分数,例如,小于t
d1
的三分之一或四分之一)。
63.可以以类似的方式为一组电极配对的每个团集提供脉冲递送,其中针对每个团集中的两个电极组,脉冲群组交织(并且如果最后团集包括仅一个电极组则无交织)。可以在与电极配对组的连续团集相对应的连续脉冲群组之间提供时间延迟间隔(例如,持续时间为t
d2
)。
64.在一些实施例中,可以使用本文所描述的电极配对(a
1-(c1,c2))、(a
2-(c2,c3))和(a
3-(c3,c4))来施加图17中所示的脉冲递送序列,其中第一团集包含第一电极配对(a
1-(c1,c2))和第二电极配对(a
2-(c2,c3))。第二团集可以包含第三电极配对(a
3-(c3,c4))。对于电极配对组的第一团集,可以将第一电极配对(a
1-(c1,c2))的p个脉冲群组1703、1705、1707等与第二电极配对(a
2-(c2,c3))的p个脉冲群组1723、1725等交织。在长度为t
d2
的时间延迟之后,第二团集的第三电极配对(a
3-(c3,c4))的p个脉冲群组可以在不交织的情况下递送。
65.图18示意性地展示了根据实施例的在单个心跳之上递送的消融递送序列。在第一团集((a
1-(c1,c2))和(a
2-(c2,c3)))的第一脉冲超级群组(或分组)1871之后是第二团集(a
3-(c3,c4))的第二脉冲超级群组1875。第一脉冲超级群组1871可以包含在对应于每个电极组的p个脉冲群组之上交织(例如,交替、多路复用)的第一电极配对(a
1-(c1,c2))的一组
脉冲群组1811、1813等以及第二电极配对(a
2-(c2,c3))的另一组脉冲群组1821、1823等。时间延迟1863可以将第一团集(a
1-(c1,c2))的脉冲1871的脉冲递送与第二团集(a
2-(c2,c3))的脉冲1875的脉冲递送隔开。第二脉冲超级群组1875可以包含第二团集的仅第三电极配对(a
3-(c3,c4))的一组脉冲群组1831、1833。脉冲群组1831、1833可以包含可以各自相隔与群组延迟相对应的具有持续时间或长度td的时间间隔1865的p个群组。在一些实施例中,群组延迟(如本文的实例中的群组延迟)可以介于约10微秒与约50毫秒之间。尽管图18展示了针对一个心跳的按序消融递送,但是可以针对预定数量的心跳递送类似的序列。
66.应注意的是,可以限定并使用任何数量的电极配对组,如方便即将到来的实施方案的;以上实例是为了清楚起见且仅出于示例性目的而提供的。在一些实施例中,本文所公开的方法、系统和装置可以包括于2018年4月26日提交的国际申请序列号pct/us2018/029552中的一项或多项中描述的方法、系统和装置中的一种或多种方法、系统和装置,所述国际申请的内容特此通过引用以其全文并入。
67.同样,尽管上文提供的具体实例展示了其中限定了两元素团集的成对排序,但是更一般地,可以限定电极组的n元素团集,其中交织的序列以与本文提供的具体实例中描述的方式类似的方式通过每个团集的n个元素来限定。
68.本文所描述的交织或多路复用过程可以提高可以在每个心跳中递送消融能量序列的效率或速度。当在心跳之上和/或在心脏腔室的不应窗内递送整个消融序列存在时间约束时,这可以是有用的。在一些实施例中,可以针对每个心跳独立地限定电极配对组的消融序列。在这种情况下,在每个心跳中限定的具体团集可以变化。然而,序列的交织可以以与本文所描述的方式类似的方式发生。
69.尽管参考脉冲群组(例如,第一组脉冲)描述了脉冲波形的交织或多路复用,但是如图17和18所描绘的,可以了解到,脉冲波形的层级的更高级别可以在电极组之间交织。例如,递送到第一电极组和第二电极组的电压脉冲可以在层级的较高级别下进行交织,例如,包含层级的第三级(例如,第二组脉冲的交织)、层级的第四级(例如,第三组脉冲的交织)等等且依此类推。
70.另外,在一些实施例中,交织的电极组的具体序列可以在多个心跳之上变化,所述多个心跳作为一个整体对应于一系列第二组脉冲(例如,第三组脉冲)到每组电极配对的递送。例如,可以在第一心跳期间递送交织的电极组(a
1-c1,a
2-c2)、(a
3-c3,a
4-c4)的序列(在每个括号内部的电极组之间交织),而交织的电极组(a
3-c3,a
4-c4)、(a
1-c1,a
2-c2)的序列可以在第二心跳中递送。
71.此外,在一些实施例中,在每个心跳期间,一个或多个电极组可以不出现在消融序列中。例如,交织的电极组(a
1-c1,a
2-c2)可以在第一心跳和第三心跳中出现在消融序列中,但是在第二心跳中不出现。给定电极组的连续第二组脉冲通常在不同的心跳期间递送,但不一定在连续心跳之上递送。
72.分级波形
73.图2展示了呈矩形双脉冲序列形式的脉冲电压波形,其中如脉冲101等每个脉冲与脉冲宽度或持续时间相关联。脉冲宽度/持续时间可以为约0.5微秒、约1微秒、约5微秒、约10微秒、约25微秒、约50微秒、约100微秒、约125微秒、约140微秒、约150微秒,包含其间的所有值和子范围。图2的脉冲波形展示了一组单相脉冲,其中所有脉冲的极性都相同(在图2中
均为正,如从零基线测量的)。在一些实施例中,如对于不可逆电穿孔应用,每个脉冲101的高度或脉冲101的电压振幅可以为约400伏、约1000伏、约5000伏、约10,000伏、约15,000伏,包含其间的所有值和子范围。如图2所示,脉冲101与相邻脉冲相隔时间间隔102,所述时间间隔有时也称为第一时间间隔。第一时间间隔可以为约1微秒、10微秒、约50微秒、约100微秒、约200微秒、约500微秒、约800微秒、约1毫秒,包含其间的所有值和子范围,以便生成不可逆电穿孔。
74.图3介绍了具有嵌套脉冲层级的结构的脉冲波形。图3示出了一系列单相脉冲,如具有脉冲宽度/脉冲持续时间w的脉冲115,所述一系列脉冲相隔的时间间隔(有时也称为第一时间间隔或时间延迟)如118为连续脉冲之间的持续时间t1,m1个所述脉冲被布置成形成脉冲群组121(有时也称为第一组脉冲)。此外,波形具有连续群组之间相隔的时间间隔119(有时也称为第二时间间隔或时间延迟)为持续时间t2的m2个此类脉冲群组(有时也称为第二组脉冲)。图3中用122标记的m2个此类脉冲群组的集合构成层级的下一级,所述下一级可以被称为分组和/或第二组脉冲。脉冲宽度w和脉冲之间的时间间隔118的持续时间t1两者的范围均可以为数微秒到数百微秒,包含其间的所有值和子范围。在一些实施例中,时间间隔119的持续时间t2可以比时间间隔118的持续时间t1大至少三倍。在一些实施例中,比率t2/t1的范围可以介于约3与约300之间,包含其间的所有值和子范围。
75.图4进一步阐述了嵌套脉冲层级波形的结构。在此图中,一系列m1个脉冲(未示出单独脉冲)形成脉冲群组130(例如,第一组脉冲)。一个群组与下一个群组之间相隔的群组间时间间隔142为持续时间t2(例如,第二时间间隔或时间延迟)的一系列m2个此类群组形成分组132(例如,第二组脉冲)。一个分组与下一个分组之间相隔的时间间隔144为持续时间t3(例如,第三时间间隔)的一系列m3个此类分组形成层级中的下一级,在图中标记为超级分组134(例如,第三组脉冲)。在一些实施例中,时间间隔t3可以比时间间隔t2大至少约三十倍。在一些实施例中,时间间隔t3可以比时间间隔t2大至少五十倍。在一些实施例中,比率t3/t2的范围可以介于约30与约800之间,包含其间的所有值和子范围。脉冲层级中的单独电压脉冲的振幅的范围在任何地方都可以为500伏到7,000伏或更高,包含其间的所有值和子范围。第一组脉冲中的单独脉冲可以是单相脉冲或双相脉冲或者可以包括单相脉冲和双相脉冲的组合。
76.图14更进一步阐述了嵌套脉冲层级波形的结构。在此图中,一系列m1个脉冲(未示出单独脉冲)形成脉冲群组1420(例如,第一组脉冲)。一个群组与下一个群组之间相隔的群组间时间间隔1422为持续时间t2(例如,第二时间间隔或时间延迟)的一系列m2个此类群组形成分组1430(例如,第二组脉冲)。一个分组与下一个分组之间相隔的时间间隔1432为持续时间t3(例如,第三时间间隔或第三时间延迟)的一系列m3个此类分组形成层级中的下一级,在图中标记为超级分组1440(例如,第三组脉冲)。在一些实施例中,时间间隔1432的持续时间t3可以比时间间隔1422的持续时间t2大至少约三十倍。在一些实施例中,时间间隔1432的持续时间t3的范围可以为约数百毫秒或十分之几秒。此外,可以存在相隔的时间间隔1442为持续时间t4的一系列或多个m4个超级分组如1440,所述超级分组包括层级的另外的级别(例如,第四组脉冲),被称为超超级分组。在一些实施例中,超级分组的数量m4可以是范围介于1到50之间的任何整数,包含其间的所有值和子范围。在一些实施例中,时间间隔1442的持续时间t4可以比时间间隔1432的持续时间t3大至少十倍。在一些实施例中,时间
间隔1442的持续时间t4的范围可以为约几秒到约几分钟。在一些实施例中,比率t4/t3的范围可以介于约10与约1000之间,包含其间的所有值和子范围。在一些实施例中,单独超级分组之间的时间间隔1442的持续时间t4跨所有m4个超级分组可以是恒定的。替代性地,时间间隔1442的持续时间t4可以在不同对超级分组之间变化。时间间隔1442的一个或多个时间间隔的持续时间可以手动地选择或随机地设置得高于最小阈值持续时间。最小阈值持续时间的范围可以为几秒(例如,5秒或更长时间)。在一些实施例中,时间间隔1442可以具有根据顺序或图案而变化的持续时间。例如,在m4个超级分组内的超级分组群组可以包含连续地相隔持续时间t
4,1
、t
4,2
、t
4,3


t
4,q
(其中q是大于1的任何整数)的时间间隔序列的超级分组对,t
4,1
、t
4,2
、t
4,3


t
4,q
的值可以在合适的值范围内选择(例如,范围为几秒、数十秒或几分钟的持续时间)。时间间隔序列t
4,1
、t
4,2
、t
4,3


t
4,q
可以进一步跨另外的超级分组群组重复任何次数,以进一步生成脉冲波形的另外的部分。脉冲层级中的单独电压脉冲的振幅的范围在任何地方都可以为500伏到7,000伏或更高,包含其间的所有值和子范围。
77.在一些实施例中,当脉冲波形与心脏的心动周期同步地递送时,单独超级分组(例如,第三组脉冲)可以跨心脏的多个心动周期延伸,其中包含一个或多个脉冲群组的脉冲分组在每个心动周期期间(例如,在心动周期的不应期期间)被递送。在一些实施例中,连续的超级分包之间的每个时间间隔或时间延迟(例如,第三时间间隔或第三时间延迟)可以大约对应于心动周期的持续时间,使得可以在心脏的连续心动周期期间(例如,在其不应期期间)递送连续的超级分组。在一些实施例中,隔开连续的超超级分组的每个时间间隔或时间延迟(例如,第四时间间隔或时间延迟)可以大于心脏的心动周期。在一些实施例中,如本文所描述的,系统和方法可以包含心脏刺激装置或心脏刺激器,所述心脏刺激装置或心脏刺激器可以生成起搏脉冲以使脉冲波形的递送与心脏的心动周期同步。
78.包括第四组脉冲的多个第三级脉冲可以提供更有效的治疗或疗法递送。通过施加多个第三组脉冲,可以不可逆地打开由单个第三组脉冲可逆地打开的细胞膜中的纳米孔,由此生成更大的消融区。例如,在临床应用中,在递送第一个第三组脉冲以用于消融递送之后,在递送第二个第三组脉冲以继续消融递送之前,可以存在范围介于约5秒与约500秒之间的时间间隔或停顿t4。这种类型的消融递送从治疗性角度来看可以是有益的并且可以针对某些心律失常病状递送更完整的治疗。例如,这可以确保跨心房壁连续且透壁的消融区的生成。在一些实施例中,随后的第三组脉冲也可以被递送。在一些实施例中,连续的第三组脉冲之间的时间间隔可以变化而不是固定的。在一些实施例中,连续的第三组脉冲之间的时间间隔的持续时间t4的最小值可以由发生器设置以支持此递送模式用于脉冲波形结构中的层级的更高级别。在一些实施例中,时间间隔的持续时间t4的最小值可以是至少约5秒。
79.图19进一步阐述了根据实施例的脉冲层级波形的结构。图19中所展示的波形相对于参考图14所展示和描述的波形添加了层级的另一个级别。具体地说,图19中的波形可以包含根据图14的嵌套脉冲层级波形的结构并且包含多个脉冲的层级中的另一个级别。
80.如参考图14所描述的,嵌套脉冲层级波形的层级的第四级可以包含形成超超级分组的一系列或多个m4个超级分组。每个超级分组可以包含一系列或多个m3个分组,每个分组可以包含一系列或多个m2个群组,并且每个群组可以包含一系列或多个m1个脉冲。
81.参考图19,可以以迭代的方式进一步概括层级的概念。如图19所描绘的,一系列超
超级分组1950(每个超超级分组包含一系列m4个超级分组,在图19中未示出)可以相隔持续时间为t5的时间间隔1952。超超级分组1950和时间间隔1952中的每一个的总持续时间可以跨所述一系列超超级分组1950和时间间隔1952变化或相同。这一系列超超级分组1950可以形成脉冲波形层级的较高级别(例如,第五组脉冲),其可以被称为超分组。
82.在某些情况下,包括第五组脉冲的多个第四级脉冲可以提供更有效的治疗或疗法递送。虽然图19所展示的波形被描述为包含具有第五组脉冲的层级的第五级,但是可以了解到,具有层级的任何数量的甚至更高级别(包含更高级别的脉冲)的波形连续生成。例如,可以生成具有第六级、第七级等的波形,以分别各自包含第六组脉冲、第七组脉冲等。
83.可以通过来自层级的下一较低级别的多个或一系列脉冲组来限定脉冲的层级的每个级别,来自层级的较低级别的每组脉冲与下一个相隔一定的时间间隔或时间延迟。如上文参考图14所描述的,将连续组脉冲与层级的较低级别隔开的时间间隔的持续时间可以跨所述一系列恒定或变化。例如,层级的第r级可以包含来自r-1级别的一系列脉冲组和将每组脉冲与r-1级别隔开的时间间隔tr。
84.如先前参考图14中所展示的波形所描述的,通过施加多个第r组脉冲,可以不可逆地打开由单个第r组脉冲可逆地打开的细胞膜中的纳米孔,由此生成更大的消融区。例如,在一些临床应用中,当r大于3时,在递送第一个第r组脉冲以用于消融递送之后,在递送第二个第r组脉冲以继续消融递送之前,可以存在范围介于约5秒与约500秒之间的时间间隔或停顿。这种类型的消融递送从治疗性角度来看可以是有益的并且可以针对某些心律失常病状递送更完整的治疗。例如,这可以确保跨心房壁连续且透壁的消融区的生成。在一些实施例中,随后的第r组脉冲也可以被递送。在一些实施例中,连续的第r组脉冲之间的时间间隔可以变化而不是固定的。在一些情况下,可以开发治疗性策略以包含通过具有层级的不同级别的波形进行的消融递送,所述不同级别包含不同的时间间隔、脉冲数量和/或脉冲强度。例如,治疗性策略可以包含使用具有以下的波形递送的消融:层级的连续增加或减少的级别、层级的每个级别中连续增加或减少的脉冲数量或层级的每个级别中脉冲之间连续增加或减少的时间间隔,以实现对某些心律失常病状的更彻底治疗。在一些实施例中,连续的第r组脉冲之间的时间间隔的最小值可以由发生器设置以支持此递送模式用于脉冲波形结构中的层级的更高级别。在一些实施例中,当r大于3时,时间间隔的最小值可以是至少约5秒。
85.图5提供了具有分级结构的双相波形序列的实例。在图中所示的实例中,如151等双相脉冲具有正电压部分以及负电压部分以完成脉冲的一个周期。相邻周期之间存在的时间延迟152(例如,第一时间间隔)为持续时间t1,并且n1个此类周期形成脉冲群组153(例如,第一组脉冲)。一个群组与下一个群组之间相隔的群组间时间间隔156(例如,第二时间间隔)为持续时间t2的一系列n2个此类群组形成分组158(例如,第二组脉冲)。所述图还示出了第二分组162,其中分组之间的时间延迟160(例如,第三时间间隔)为持续时间t3。就像单相脉冲一样,也可以形成分级结构的更高级别。每个脉冲的振幅或双相脉冲的电压振幅的范围在任何地方都可以为500伏到7,000伏或更高,包含其间的所有值和子范围。脉冲宽度/脉冲持续时间的范围可以为几纳秒或甚至几亚纳秒到数十微秒,而延迟t1的范围可以为零到几微秒。群组间时间间隔t2可以比脉冲宽度大至少十倍。在一些实施例中,时间间隔t3可以比时间间隔t2大至少约二十倍。在一些实施例中,时间间隔t3可以比时间间隔t2大至少五十
倍。
86.本文公开的实施例包含被结构化为包含层级的不同级别处的波形元素/脉冲的分级波形的波形。如图3中的115等单独脉冲包括层级的第一级并且具有相关联的脉冲持续时间和连续脉冲之间的第一时间间隔。一组脉冲或第一级结构的元素形成层级的第二级,如图3中的脉冲群组/第二组脉冲121。除了其它参数之外,与波形相关联的参数为如以下等描述第二级结构/第二组脉冲的参数:第二组脉冲的总持续时间(未示出)、第一级元素/第一组脉冲的总数以及连续第一级元素之间的第二时间间隔。在一些实施例中,第二组脉冲的总持续时间可以介于约20微秒与约10毫秒之间,包含其间的所有值和子范围。一组群组、第二组脉冲或第二级结构的元素形成层级的第三级,如图3中的群组分组/第三组脉冲122。除了其它参数之外,存在描述第三级结构/第三组脉冲的第三组脉冲的总持续时间(未示出)、第二级元素/第二组脉冲的总数以及连续第二级元素之间的第三时间间隔。在一些实施例中,第三组脉冲的总持续时间可以介于约60微秒与约250毫秒之间,包含其间的所有值和子范围。
87.在一些实施例中,一组分组的第三组脉冲可以形成层级的第四级,如包括限定第四组脉冲(例如,第四组脉冲1440)的多个第三组脉冲(例如,第三组脉冲1430)的超超级分组,参见图14。此外,如参考图19所描述的,多个或一系列第四组脉冲(例如,超超级分组)可以形成层级的第五级,如在图19中所展示的波形中。虽然参考附图描述了层级的具体级别,但是可以了解到,取决于特定程序的因素和/或要求,可以使用具有层级的任何数量的更高级别(包含更高级别的脉冲)的波形的迭代生成来执行消融程序。上文参考图19描述了这种更高级别概括。
88.除了其它参数之外,存在描述第五级结构的第四组脉冲的总持续时间(未示出)、第四级元素/第四组脉冲的总数以及连续第四级元素之间的第四时间间隔。在一些实施例中,第四组脉冲的总持续时间可以介于约100毫秒与约15分钟之间,包含其间的所有值和子范围。连续的第四组脉冲之间的持续时间的范围可以介于约5秒与500秒之间。波形的总体迭代或嵌套结构可以继续达到更高的多个级别,如十级结构或更多级的结构。
89.在一些实施例中,如本文所描述的具有嵌套结构和时间间隔层级的分级波形可以用于不可逆电穿孔消融能量递送,从而提供良好的控制程度和选择性以用于在不同组织类型中应用。可以利用合适的脉冲发生器生成各种分级波形。应当理解,虽然为了清楚起见本文的实例标识了单独的单相和双相波形,但是应当注意,还可以生成/实施组合波形,其中波形层级的一些部分是单相的,而其它部分是双相的。
90.在涉及心脏消融的治疗的实施例中,上文描述的脉冲波形可以与选自如消融导管等导管上的一组电极的电极双极一起施加。导管的电极子组可以被选择为阳极,而消融导管的另一个电极子组可以被选择为阴极,其中电压波形施加在阳极与阴极之间。作为非限制性实例,在消融导管是放置在心外膜的消融导管的情况下,导管可以包裹在肺静脉周围,并且一个电极可以被选择为阳极,并且另一个电极可以被选择为阴极。图6展示了示例圆形导管配置,其中近似在直径上相对的电极对(例如,电极603和609、电极604和610、电极605和611以及电极606和612)可被激活为阳极-阴极组。所公开的脉冲波形中的任何脉冲波形可以逐步地或顺序地施加在此类电极组序列之上。作为非限制性实例,图6描绘了电极子组激活序列。作为第一步骤,分别选择电极603和609作为阳极和阴极,并且跨这些电极施加本
文所描述的具有分级结构的电压波形(例如,图14的波形)。在小的时间延迟(例如,小于约5毫秒)下,作为下一步骤,分别选择电极604和610作为阳极和阴极,并且跨此组电极再次施加波形。在小的时间延迟之后,作为下一步骤,分别选择电极605和611作为阳极和阴极,以用于电压波形的下一次施加。在下一步骤中,在小的时间延迟之后,分别选择电极606和612作为阳极和阴极以用于电压波形施加。在一些实施例中,在心动周期的不应期期间施加跨电极对施加的波形中的一个或多个波形,如本文中更详细地描述的。
91.在一些实施例中,在心动周期的不应期期间施加本文描述的消融脉冲波形,以避免心脏的窦性节律中断。在一些实施例中,治疗方法包含用心脏刺激器对心脏进行电起搏以确保起搏捕获从而建立心动周期的周期性和可预测性,并且然后在可以递送一个或多个脉冲消融波形的心动周期的不应期内限定时间窗。图7展示了施加了心房和心室起搏两者的实例(例如,其中起搏引线或导管分别位于右心房和右心室中)。在水平轴上表示时间的情况下,图7展示了如64和65等一系列心室起搏信号和如62和63等一系列心房起搏信号以及由起搏信号驱动的一系列ecg波形60和61。如图7中粗箭头所指示的,存在分别在心房起搏信号68和心室起搏信号64之后的心房不应时间窗62和心室不应时间窗69。如图7所示,可以限定持续时间tr的公共不应时间窗66位于心房不应时间窗68和心室不应时间窗69两者内。在一些实施例中,可以在此公共不应时间窗66中施加一个或多个电穿孔消融波形。如图7所指示的,此不应时间窗68的开始与起搏信号64偏移一定的时间偏移59。在一些实施例中,时间偏移59可以小于约25毫秒。在下一次心跳时,类似限定的公共不应时间窗67是可用于施加一个或多个消融波形的下一个时间窗。以此方式,可以在一系列心跳之上施加一个或多个消融波形,从而每次心跳时仍在公共不应时间窗内。在一个实施例中,对于给定的电极组,可以在心跳之上施加如上文在脉冲波形层级中限定的每个脉冲分组,使得在一系列心跳之上施加一系列分组。
92.根据实施例,图8中展示了在一系列电极组之上的电极激活时序。使用期望向j个电极组(每个电极组通常包括至少一个阳极和至少一个阴极)施加分级消融波形的示例场景,在一些实施例中,如上文所描述的利用心脏起搏,并且首先将脉冲分组(如包含一个或多个脉冲群组或一组或多组脉冲)施加到电极组1,并且在小的时间延迟td(差不多约100微秒或更短时间)下,之后是将脉冲分组施加到电极组2。随后,在另一个时间延迟下,将脉冲分组施加到电极组3并且依此类推施加到电极组j。在单个心跳的不应时间窗(如公共不应时间窗66或67)期间,递送脉冲分组到所有j个电极组的施加的此序列632,并且到电极组的每次施加构成所述电极组的一个分组。现在考虑单相分级波形的情况。参考图3中所示的单相波形实例,波形具有各自的脉冲宽度为w的一系列单相脉冲,所述一系列单相脉冲相隔的时间间隔为连续脉冲之间的持续时间t1,m1个所述脉冲被布置成形成脉冲群组。此外,波形具有连续群组之间相隔的时间间隔为持续时间t2的m2个此类脉冲群组,由此限定分组。如果如此处所描述的在j个电极组之上依次施加此波形,则可以写出下列不等式
93.j[m2(m1w+t1(m
1-1))+t2(m
2-1)]+td(j-1)《t
r (1)
[0094]
使得脉冲波形参数m1和m2必须满足电极组的给定数量j,以供整个消融脉冲递送在不应时间窗tr内发生。在一些实施例中,不应时间窗tr可以是约140毫秒或更短时间。不应窗的开始相对于起搏信号的时间偏移可以小于约10毫秒。尽管时间间隔w、t1、t2和td可以是任意的,但是当用有限状态机(例如,计算机处理器)实施时,所述时间间隔是以一些合适的单
位(例如,微秒、纳秒或基本处理器时钟时间段的整数倍)测量的整数。已知电极组的数量j,等式(1)表示丢番图不等式,所述丢番图不等式相互约束脉冲波形参数(脉冲宽度、时间间隔以及脉冲和群组的数量),使得在j个电极组之上施加波形的总持续时间小于给定的公共不应期。在一些实施例中,可以基于对脉冲波形参数的部分约束来得到丢番图不等式的解集。例如,发生器可以要求输入脉冲波形参数和/或相关参数中的一些,例如,脉冲宽度w和时间延迟td,此后,系统控制台确定其余的脉冲波形参数。在这种情况下,电极组的数量j对于系统来说也是约束解确定的输入。在一个实施例中,系统控制台可以显示波形参数的多于一个此类可能解集,以供用户作出选择,而在替代性实施例中,系统作出自动选择或对波形参数的确定。在一些实施例中,可以例如在脉冲发生器系统控制台上以预先确定的形式计算并直接实施解。例如,所有脉冲波形参数都被预先确定以满足类似于等式(1)的丢番图不等式,并且波形已经在系统上进行了预编程;可能的是,一个或多个预先确定的解可以取决于电极组的数量j,或者替代性地,一个或多个解可以通过假设电极组的最大数量来预先确定。在一些实施例中,可以预先确定多于一个解并且所述解可用于系统控制台上的用户选择。
[0095]
尽管丢番图不等式(1)适用于在单个不应时间窗上递送单个波形分组,但整个波形有时可以涉及多个分组。分组数量可以是预先确定的,并且在一个实施例中,范围可以为1到28个分组,包含其间的所有值和子范围。在一个实施例中,合适的不应时间窗tr可以是预先确定和/或预先限定的,或者在替代性实施例中,所述不应时间窗可以由用户从某个预定范围内选择。尽管为单相分级波形明确地写出了不等式(1),但是对于双相波形或对于组合了单相元素和双相元素的波形,可以写出类似的不等式。
[0096]
图8中提供了通过多个电极组j递送消融波形的示意性图示,其中一系列分组在波形层级的顶级处。在整个电极序列之上通过j个电极组的序列连续递送第一波形分组632;此序列的波形参数满足丢番图不等式,如等式(1)。此整个电压波形序列在单个起搏的心跳的限定的不应时间窗内递送。在等于一个起搏期的分组延迟t3之后,在整个电极序列之上通过j个电极组以相同的波形参数连续递送下一个波形分组633。波形递送通过预定数量的分组继续,直到最后的波形分组636通过j个电极组连续递送为止。因此,消融递送发生在与分组一样多的起搏的心跳之上。如适合于且方便临床应用的,波形的电压振幅的范围可以介于大约700v与大约10,000v之间并且更优选地介于大约1,000v与大约8,000v之间,包含其间的所有值和子范围。
[0097]
在一些实施例中,可以将电极组的完整序列细分成电极组的更小的子序列/电极子组。例如,可以将j个电极组的完整序列细分成n个子序列,其中第一子序列/第一子组中具有j1个电极组,第二子序列/第二子组中具有j2个电极组,并且依此类推,其中第n个子序列中具有jn个电极组。波形分组首先在j1个电极组的第一子序列之上施加,然后在j2个电极组的第二子序列之上施加,并且依此类推,其中在整个过程中采用心脏起搏并且在适当的不应时间窗内施加所有波形分组。
[0098]
此外,在电极组的每个子序列之上的波形递送可以以本文所描述的方式进行多路复用,以提高消融递送的效率和/或速度,其中团集包括1个、2个、3个、4个或更多个成对的电极子组,如本文所描述的。
[0099]
尽管此处将脉冲波形递送描述为在心动周期的信号不应期内递送每个脉冲分组
或第二组脉冲,但是在其它实施例中可以了解到,可以改变参数(例如,脉冲、群组、分组等的数量以及时间间隔或时间延迟的持续时间),以允许在单个不应期内递送脉冲波形的层级的更高级别。例如,在实施例中,多个第二组脉冲(例如,超级分组)可以被配置成在单个不应期期间递送,其中脉冲、群组、分组等的数量以及第一、第二等时间间隔或延迟的持续时间被调整以适应单个不应期内的层级的所有三个级别。
[0100]
系统
[0101]
图9是用于被配置成用于递送脉冲电压波形的消融系统200的系统架构的示意性图示。系统200包含系统控制台215,所述系统控制台又包含脉冲波形发生器和控制器202、用户接口203以及开关205,所述开关用于将(多个导管可以到连接的)连接盒210与由发生器递送的电压脉冲隔离。在一些实施例中,发生器/控制器202可以包含处理器,所述处理器可以为被配置成运行和/或执行一组指令或代码的任何合适的处理装置。处理器可以为例如通用处理器、现场可编程门阵列(fpga)、专用集成电路(asic)、数字信号处理器(dsp)等。处理器可以被配置成运行和/或执行应用进程和/或与系统和/或和系统相关联的网络(未示出)相关联的其它模块、进程和/或功能。
[0102]
在一些实施例中,系统200还可以包含存储器和/或数据库(未示出),所述存储器和/或数据库被配置成用于例如存储起搏数据、波形信息等。存储器和/或数据库可以独立地是例如随机存取存储器(ram)、存储器缓冲器、硬盘驱动器、数据库、可擦可编程只读存储器(eprom)、电可擦只读存储器(eeprom)、只读存储器(rom)、闪速存储器等。存储器和/或数据库可以存储用于使发生器/控制器202执行与系统200相关联的模块、进程和/或功能(如脉冲波形生成和/或心脏起搏)的指令。
[0103]
系统200可以通过例如被实施为有线网络和/或无线网络的一个或多个网络与其它装置(未示出)进行通信,所述网络中的每个网络可以是任何类型的网络,例如,局域网(lan)、广域网(wan)、虚拟网、电信网和/或互联网。如本领域中已知的,任何或所有通信可以是安全的(例如,加密的)或不安全的。系统200可以包含和/或涵盖个人计算机、服务器、工作站、平板计算机、移动装置、云计算环境、在这些平台中的任何平台上运行的应用或模块等。
[0104]
系统控制台215将消融脉冲递送到消融导管209,所述消融导管适当地定位在患者解剖结构中,例如在围绕患者心脏的心包空间中的患者肺静脉的环中。心脏内ecg记录和起搏导管212通过连接盒210耦接到ecg记录系统208。ecg记录系统208连接到心脏刺激器或起搏单元207。心脏刺激器207可以将起搏输出发送到记录和起搏导管212;心房和心室起搏信号两者通常都可以作为来自心脏刺激器207的输出生成,并且在一些实施例中,可以存在单独的心脏内心房和心室起搏导管(未示出)或引线,所述心脏内心房和心室起搏导管或引线中的每个心脏内心房和心室起搏导管或引线然后可以安置和/或定位在适当的心脏腔室内。同一起搏输出信号还被发送到消融系统控制台215。起搏信号由消融系统控制台接收,并且基于起搏信号,消融波形可以由发生器/控制器202在如本文所描述的公共不应窗内生成。在一些实施例中,公共不应窗可以在心室起搏信号之后(或在非常小的延迟之后)基本上立即开始并且此后持续大约250毫秒或更短的持续时间。在这种情况下,整个消融波形分组在此持续时间内递送,如先前所解释的。
[0105]
与消融系统控制台215相关联的用户接口203可以以如方便应用的各种形式实施。
当通过心剑下途径递送心外膜消融导管并如图1所示将其放置在心外膜围绕肺静脉时,可以通过使端穿过束紧工具而将所述心外膜消融导管在端8和9处束紧在适当位置。取决于具体的左心房解剖结构的大小,电极的子组可以以包围的方式安置在肺静脉周围,而电极的剩余部分则可以被拉入束紧工具(图1中未示出)内部并且因此未暴露。在这种实施例中,包围/暴露电极可以被选择性地用于递送消融能量。图10中示意性地描绘了适合用于与消融导管一起使用的用户接口的实施例。在图10中,用户可以分别如窗653和654中所指示的选择束紧工具内部的近侧电极的数量和束紧工具内部的远侧电极的数量,其中用户针对相应的电极数量分别作出了选择650和651。导管上的不在束紧工具内部的互补电极/电极子组(从完整组的导管电极中取得)是暴露电极以用于脉冲电场的递送以进行电穿孔消融。要递送的波形的振幅由输入机构例如图10中的可以在由657所指示的预定电压范围内移动的滑块658控制。一旦选择了电压振幅,就接合用户接口上提供的初始化(initialization或initialize)按钮655以使消融系统准备好用于能量递送。在一个实例中,这可以采取触发器的形式,所述触发器用于为电容器组充电以储存能量以便随后递送到导管。
[0106]
如图11所示,初始化按钮660还可以充当指示初始化过程正在进行的状态指示器。可以通过文本(如图11中所示的“初始化中
…”
和/或如黄色等颜色,以指示初始化尚未开始或仍在进行)来指示状态。一旦初始化过程完成(例如,电容器组充分或令人满意地带电),如图12所示,则相同的按钮663现在指示过程(“已初始化”)完成,并且在如所展示的一些实施例中,所述按钮可以改变颜色(例如,从黄色变为绿色)和/或形状以进一步指示初始化完成。同时,消融系统等待从心脏刺激器或起搏单元接收起搏信号。一旦检测到和/或确认了起搏信号并且初始化过程完成,则第二按钮665现在变得可用于供用户接合,以用于确认起搏捕获。如果由消融系统控制台未检测到起搏信号,则不启用第二按钮665。用户可以监测ecg显示器(未示出)以结合心脏内ecg记录观察心脏刺激器起搏输出,以确认起搏捕获(这确认了心房和心室收缩确实是由起搏信号驱动的,以便建立可预测的公共不应窗)。一旦用户从ecg数据在视觉上确认了起搏捕获,则其就可以接合“确认起搏捕获”按钮665以确认消融系统上的起搏捕获。
[0107]
如图13所示,一旦在消融系统上确认了起搏捕获,系统现在就可用于消融或脉冲电场递送。起搏捕获确认按钮现在改变外观670(外观可以在颜色、形状等上改变)并指示消融递送准备度,如670所示。此外,消融递送按钮675现在变得对用户来说可用。用户可以接合消融递送按钮675以与起搏的心律同步地递送消融。在一些实施例中,用户在消融递送持续时间内接合按钮675,在所述消融递送持续时间结束时,按钮改变形状或颜色以指示消融递送的完成。在一些实施例中,如果用户在消融递送完成之前从按钮675上脱离,则消融递送以不超过例如20毫秒的小时间滞差立即停止。在一些实施例中,如果用户在消融按钮675被显示为可用之后仍未接合所述消融按钮,则作为安全机制,所述消融按钮在被禁用之前仅在有限的持续时间内保持可用于接合。在一些实施例中,消融按钮675可以是用户接口显示器上的软件或图形按钮,而在另一个实施例中,所述消融按钮可以是机械按钮,所述机械按钮的响应取决于如由系统确定的其激活状态或可用性,或者在另一个实施例中,按钮675可以是但不限于呈各种控制输入装置中的任何一种控制输入装置的形式,如杆、操纵杆、计算机鼠标等。在一个实施例中,消融系统可以具有单独的紧急停止按钮以提供另外的安全性,例如,如果期望立即去激活系统的话。在一个实施例中,消融控制台可以安装在滚动小
车或轮式推车上,并且用户可以使用在无菌区中的触摸屏接口来控制系统。触摸屏可以是例如可安装在标准医疗导轨或立柱上的塑料壳体中的lcd触摸屏,并且触摸屏至少可以具有上文所描述的功能。接口可以例如用透明的无菌塑料盖布覆盖。
[0108]
如本文所详述的波形参数可以通过信号发生器的设计来确定,并且在一些实施例中,参数可以是预定的。在一些实施例中,波形参数的至少一个子组可以由用户控制来确定,如可以方便给定的临床应用的。本文的具体实例和描述本质上是示例性的,并且本领域的技术人员可以基于本文所教导的材料来开发各种变化而不脱离本文所公开的实施例的范围。
[0109]
本文描述的一个或多个实施例涉及一种计算机存储产品,所述计算机存储产品具有非暂时性计算机可读介质(也可以称为非暂时性处理器可读介质),所述非暂时性计算机可读介质上具有用于执行各种计算机实施的操作的指令或计算机代码。计算机可读介质(或处理器可读介质)是非暂时性的,从这个意义上来讲,它本身不包含暂时性传播信号(例如,在如空间或电缆等传输介质上承载信息的传播电磁波)。介质和计算机代码(也可以称为代码或算法)可以是为特定的一个目的或多个目的而设计和构建的那些。非暂时性计算机可读介质的实例包含但不限于:磁存储介质,如硬盘、软盘和磁带;光学存储介质,如光碟/数字视频光盘(cd/dvd)、光碟只读存储器(cd-rom)和全息装置;磁光存储介质,如光盘;载波信号处理模块;以及硬件装置,所述硬件装置特别地被配置成存储和执行程序代码,如专用集成电路(asic)、可编程逻辑装置(pld)、只读存储器(rom)和随机存取存储器(ram)装置。本文描述的其它实施例涉及一种计算机程序产品,所述计算机程序产品可以包含例如本文公开的指令和/或计算机代码。
[0110]
本文所描述的一个或多个实施例和/或方法可以通过软件(在硬件上执行)、硬件或其组合来执行。硬件模块可以包含例如通用处理器(或微处理器或微控制器)、现场可编程门阵列(fpga)和/或专用集成电路(asic)。软件模块(在硬件上执行)可以用各种软件语言(例如,计算机代码)表达,所述软件语言包含c、c++、ruby、visual和/或其它面向对象的、程序上的或其它编程语言和开发工具。计算机代码的实例包含但不限于由计算机使用解释程序执行的微代码或微指令、机器指令(如通过编译器产生的机器指令)、用于产生web服务的代码以及含有更高级指令的文件。计算机代码的另外的实例包含但不限于控制信号、加密代码和压缩代码。
[0111]
尽管本文以说明性心外膜导管作为实例进行了讨论,但是应理解,包括多个电极以用于递送脉冲电场(pef)能量和组织消融的心内膜导管和其它医疗装置可以受益于本文所公开的用于高效电极排序和pef消融递送的多路复用和交织。在一些实施例中,本文所公开的方法、系统和装置可以包括于2018年4月27日提交的国际申请序列号pct/us2018/29938中的一项或多项中描述的方法、系统和装置中的一种或多种方法、系统和装置,所述国际申请的内容特此通过引用以其全文并入。
[0112]
虽然上文已经描述了各个实施例,但是应理解,所述实施例是通过举例而不是限制的方式呈现的。在上文所描述的方法指示某些事件以某种次序发生的情况下,可以修改某些事件的次序排序。另外,所述事件中的某些事件在可能的情况下可以在并行过程中同时执行并且如上文所描述的那样顺序地执行。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1