一种衣物处理装置及其控制方法与流程

文档序号:33422328发布日期:2023-03-11 00:11阅读:27来源:国知局
一种衣物处理装置及其控制方法与流程

1.本发明属于衣物处理技术领域,具体地说,涉及一种衣物处理装置及其控制方法。


背景技术:

2.随着人们生活水平的日益提高,洗衣机已经逐渐成为人们家中必备的家电之一,大多数人都将洗衣机作为洗衣服的主要工具。由于人们生活节奏比较快,洗衣时经常忘记检查衣服口袋,而衣物口袋中经常会含有硬币、钥匙、金属饰品、手机、耳机等金属异物。
3.由于洗涤过程中,衣物不断被反复搅拌,这些金属异物很可能从衣物的口袋中掉出,直接与洗衣机的内筒接触,会使得洗衣机的内筒、衣物受到磨损,且硬币、钥匙、金属饰品等体积较小的异物容易卡入内筒的缝隙中,可能造成内筒卡死、电机过载等等问题,对洗衣机造成严重损伤甚至损坏,并且手机、耳机等电子产品浸水后也无法继续使用,也会造成用户的财物损失。
4.申请号为201721626521.3的专利公开了一种具有金属探测功能的洗衣机,机体的中央安装有脱水桶,脱水桶的外侧固定安装有探测线圈。当金属物体进入探测线圈时,线圈两端的信号值产生变化,这个变化的信号经过金属探测器线路板处理,使报警器发出报警声,指示灯亮,提示有金属物。
5.上述申请公开的洗衣机,虽然能够对投放的衣物中的衣物是否有金属进行检测,但是由于洗衣机本身的强磁场环境,洗衣机脱水桶、外壳、电磁阀和显示板以及其他金属电器件都会对探测线圈产生干扰。例如,用户在投掷较重的衣物、或者用户室内施工等会使得脱水桶出现晃动,而脱水桶的晃动将会引发脱水桶外侧安装的探测线圈产生磁场变化,容易误触发报警器报警,严重影响探测线圈识别的准确率,降低用户的使用体验。
6.有鉴于此,特提出本发明。


技术实现要素:

7.本发明要解决的技术问题在于克服现有技术的不足,提供一种衣物处理装置的控制方法,通过在衣物投放口增设的红外感应模块来辅助金属检测模块的检测,能够有效地屏蔽掉如内筒晃动、敲击外壳等衣物处理装置内部磁场改变对金属检测的干扰,减少误触发报警的现象。
8.为解决上述技术问题,本技术第一方面公开了一种衣物处理装置的控制方法,所述衣物处理装置的衣物投放口处分别设置有金属检测模块和红外感应模块,所述控制方法包括:
9.衣物处理装置的控制系统在判断到所述金属检测模块与所述红外感应模块均产生触发信号,则进行报警,否则不进行报警。
10.进一步地,所述控制系统在判断到金属检测模块与红外感应模块同时产生触发信号,或者,在设定时间差范围内先后都产生触发信号时,进行报警,否则不进行报警。
11.进一步地,在衣物处理装置工作过程中,若判断到所述金属检测模块产生金属触
发信号,则进一步判断所述红外感应模块在设定的时间差范围内是否也产生红外触发信号,若是,则进行报警;若否,则不进行报警。
12.优选地,设定所述时间差范围为t0秒,则在所述金属检测模块产生触发信号的前t0秒或后t0秒内,
13.若判断到所述红外感应模块也为触发状态,则可推断出是由于投放的衣物中有金属异物触发的金属检测模块,则进行报警,否则不进行报警。
14.进一步地,还包括以下步骤:
15.实时获取金属检测模块输出的金属感应信号的瞬时斜率值,比较瞬时斜率值与设定的斜率阈值;
16.当判断到金属感应信号的瞬时斜率值大于设定的斜率阈值时,判断此时红外感应信号是否为触发状态;
17.若是,则进行报警;若否,则不进行报警。
18.进一步地,当判断到所述金属检测模块输出的金属感应信号超过设定的动态平均阈值时,再开始执行所述实时获取输出的金属感应信号的瞬时斜率值的步骤。
19.进一步地,所述获取金属检测模块输出的金属感应信号的瞬时斜率值具体包括以下步骤:
20.采集金属检测模块的输出电压信号v1、v2、......、vn;
21.基于采集到的输出电压信号绘制随时间t变化的检测波形曲线;
22.当判断到输出电压信号低于设定的动态平均阈值时,则开始计算输出电压信号的瞬时斜率值p=δv/δt;
23.优选地,所述输出电压信号采样频率为t1,δv=v
n-2-vn,δt=2t1,瞬时斜率值p=(v
n-2-vn)/2t1;
24.优选地,所述瞬时斜率值p直接取δv,即v
n-2-vn的差值;
25.优选地,所述输出电压信号采样频率为每10~20ms一个点,即20ms≥t1≥10ms。
26.进一步地,所述衣物处理装置还包括用于检测内桶振动的振动检测装置,所述控制方法包括:
27.在判断到所述金属检测模块和所述红外感应模块都产生触发信号时,
28.进一步判断此时振动检测装置是否产生触发信号,若是,则不进行报警;若否,则进行报警;
29.优选地,所述振动检测装置为设置在内桶上的加速度传感器。
30.进一步地,所述衣物处理装置还包括语音报警单元,所述控制系统根据判断结果控制语音报警单元是否发出语音报警提示;
31.优选地,所述衣物处理装置还包括灯光显示单元,所述灯光显示单元至少包括报警灯和干扰灯。
32.本技术的第二方面,还提供了一种衣物处理装置,采用上述衣物处理装置的控制方法。
33.进一步地,所述衣物处理装置还包括盘座,所述衣物投放口设于所述盘座内;
34.所述金属检测模块和红外感应模块设于盘座内同一高度位置。
35.进一步地,所述盘座内设有用于安装所述金属检测模块的环形安装槽;
36.所述红外感应模块包括沿衣物投放口的径向方向对称设置在所述环形安装槽内的红外发射模块和红外接收模块。
37.采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
38.1、本发明提供的衣物处理装置的控制方法,通过在衣物投放口增设的红外感应模块来辅助金属检测模块检测,在金属检测模块产生触发信号时,通过红外感应模块判断此时是否有衣物通过,只有在金属检测模块与红外感应模块均产生触发信号,判断出是由于经过的衣物中有金属异物而引发的金属检测模块产生的触发信号时,才会进行报警,能够有效地屏蔽掉如内筒晃动、或者敲击衣物处理装置外壳等引发的衣物处理装置内部磁场改变对金属检测的干扰,提高金属检测模块识别的准确率,减少误触发报警的现象,提升用户的使用体验。
39.2、本发明提供的衣物处理装置还包括用于检测内桶振动的振动检测装置,在金属检测模块和红外感应模块都产生触发信号时,进一步判断此时振动检测装置是否产生触发信号,若振动检测装置也为触发状态,则不进行报警。上述方法主要针对用户连续投掷多件衣服,前面投放的衣服已经出现撞击内桶底,触发金属检测模块产生感应信号,然而后面的衣服才刚刚穿过投放口,红外感应模块依旧高电平,也是被触发的状态,而引发的误报警的现象,能够有效地屏蔽掉极端现象对金属检测结果的干扰,进一步提高金属检测模块识别的准确率。
40.下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
41.附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
42.图1是本发明实施例中在投放的衣物中有金属异物时,金属信号、红外信号、瞬时斜率值随时间变化的波形曲线示意图;
43.图2是本发明实施例中衣物处理装置的控制方法的第一种实施方式流程图;
44.图3是本发明实施例中不同类型的干扰与衣物中有金属异物的金属感应信号和红外信号对比图;
45.图4是对应图3的金属检测模块的输出电压的瞬时斜率值对比图;
46.图5是本发明实施例中内桶晃动时金属感应信号和红外信号的变化示意图;
47.图6是对应图3金属检测模块的输出电压的瞬时斜率值变化示意图;
48.图7是本发明实施例中衣物处理装置的控制方法的第二种实施方式流程图;
49.图8是本发明实施例中衣物处理装置的控制方法的第三种实施方式流程图(增加了内桶振动的判断);
50.图9是本发明实施例中在投放的衣物中有金属异物时,金属检测模块输出的电压信号随时间变化的波形曲线示意图;
51.图10是本发明实施例中衣物处理装置金属异物类型判断的一种实施方式流程图;
52.图11是本发明实施例中衣物处理装置的结构原理示意简图;
53.图中:1、衣物投放口;2、金属检测模块;31、红外发射模块;32、红外接收模块;4、控制系统。
54.需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
55.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
56.在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
57.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
58.下面结合实施例对本发明进行进一步地详细的说明。
59.实施例一
60.如图1至图11所示,本实施例公开了一种衣物处理装置的控制方法,所述衣物处理装置的衣物投放口处分别设置有金属检测模块和红外感应模块;
61.所述控制方法包括:衣物处理装置的控制系统在判断到所述金属检测模块与所述红外感应模块都产生触发信号时,进行报警,否则不进行报警。
62.本发明提供的衣物处理装置只有在金属检测模块与红外感应模块都产生触发信号,判断出是由于经过的衣物中有金属异物而引发的金属检测模块产生的触发信号,才会进行报警,能够有效地屏蔽掉如内筒晃动、或者敲击衣物处理装置外壳等引发的衣物处理装置内部磁场改变对金属检测的干扰,提高金属检测模块识别的准确率,减少误触发报警的现象,提升用户的使用体验。
63.进一步地,所述控制系统在判断到金属检测模块与红外感应模块同时产生触发信号,或者,所述控制系统在判断到金属检测模块与红外感应模块在设定时间差范围内先后都产生触发信号时,则进行报警,否则不进行报警。
64.进一步地,在一种实施方式中,如图2所示,在衣物处理装置工作过程中,若判断到所述金属检测模块产生金属触发信号,则进一步判断所述红外感应模块在设定的时间差范围内是否也产生红外触发信号,若是,则进行报警;若否,则不进行报警。
65.优选地,设定所述时间差范围为t0秒,则在所述金属检测模块产生触发信号的前t0秒或后t0秒内,若判断到所述红外感应模块也为触发状态,则可推断出是由于投放的衣物中有金属异物触发的金属检测模块,而非内桶振动、开关盖或者敲击箱体的干扰,则进行报警。
66.在上述方案中,t0根据模拟投放实验及相应的计算公式获得的,t0的大小主要取
决于金属检测模块与红外感应模块在内桶轴向方向上的间隙距离,金属检测模块与红外感应模块之间的间隙距离越大,t0越大,反之则越小。
67.具体地,在一种实施方式中,若金属检测模块设置在红外感应模块上方的设定高度位置,则在所述金属检测模块产生触发信号之后的t0秒内,若判断到所述红外感应模块也为触发状态,则可推断出是由于投放的衣物中有金属异物触发的金属检测模块,则进行报警,否则不进行报警。
68.在另一种实施方式中,若红外感应模块设置在金属检测模块上方的设定高度位置,则在所述金属检测模块产生触发信号之前的t0秒内,若判断到所述红外感应模块也为触发状态,则可推断出是由于投放的衣物中有金属异物触发的金属检测模块,则进行报警,否则不进行报警。
69.在另一种实施方式中,若红外感应模块与所述金属检测模块设置在衣物投放口内同一高度位置,所述控制系统在判断到金属检测模块与红外感应模块同时都产生触发信号时,才会进行报警。为了提高金属异物的检测效率,优选地,本实施例中所述红外感应模块与所述金属检测模块设置红外感应模块与所述金属检测模块设置在同一高度位置。
70.本实施例中,在所述金属检测模块产生感应信号时,判断此时红外感应模块是否产生红外触发信号,通过红外感应模块的红外信号是否被遮挡,是否产生红外触发信号来判断此时衣物投放口是否有衣物经过,如果判断出有衣物经过则可推断出金属检测模块产生感应信号是由于投放的衣物中有金属异物而引起的,则进行报警,否则不报警,有效地避免因内桶振动等原因造成的金属检测模块误判的现象发生。
71.或者,另一种实施方式中,通过所述红外感应模块来记录衣物的投放时间,判断该投放时间内,金属检测模块的检测信号是否发生改变,若金属检测模块产生金属触发信号则进行报警;如果在该投放时间段之外的其他时间内,所述金属检测模块产生金属触发信号,则不进行报警。
72.本技术通过安装在衣物处理装置盘座内衣物投放口的红外感应模块检测衣物的投入过程,同时金属检测模块实时检测衣物投放口是否有金属异物穿过。如果两种触发信号同时或者在设定时间差范围内前后发生,则说明确实有金属异物进入衣物处理装置内桶,而非敲击机体、晃动内桶引发的干扰信号。
73.进一步地,结合图1、图3、图4、图7和图11所示,本实施例提供的衣物处理装置的控制方法还包括以下步骤:
74.实时获取金属检测模块输出的金属感应信号的瞬时斜率值p,比较瞬时斜率值p与设定的斜率阈值p0;
75.当判断到金属感应信号的瞬时斜率值p大于设定的斜率阈值p0时,判断此时红外感应信号是否为触发状态;
76.若是,则进行报警;若否,则不进行报警。
77.在上述方案中通过利用金属检测模块输出的金属感应信号的瞬时斜率值来作为判断是否产生金属触发信号的判断依据,能够有效地提高金属检测模块对小金属物件的识别率,金属识别率更高。
78.结合图3至图6所示,当判断到金属感应信号的瞬时斜率值大于设定的斜率阈值时,金属检测模块处于被触发状态,金属检测模块被触发可能是投放的衣物中有金属异物,
或者是内桶振动等内部干扰而引发的,则进一步通过判断红外感应模块此时的红外感应信号是否被遮挡,来判断出此时衣物投放口是否有衣物经过,推断出是否是由于投放的衣物中有金属异物触发的金属检测模块,若是则状态标志位为3,衣物处理装置进行报警;若是由内桶晃动等原因引发的,如图5中所示,则状态标志位为2,衣物处理装置不进行报警。
79.需要说明的是,图3、图5中所示的标志位不同数字代表衣物处理装置的不同状态,其中标志位为1或接近1,代表正常投放衣物;标志位为2或接近2,代表输出电压大于动态平均阈值且瞬时斜率值大于设定斜率阈值;标志位为3或接近3,代表金属检测模块与所述红外感应模块同时产生触发信号。红外信号为1时,代表红外感应模块处于被触发状态,有衣物经过投放口;红外信号为0时,代表红外感应模块处于未被触发状态,无衣物经过衣物投放口。
80.进一步地,结合图1、图3、图4所示,当判断到所述金属检测模块输出的金属感应信号超过设定的动态平均阈值时,再开始执行所述实时获取输出的金属感应信号的瞬时斜率值的步骤。本实施例中在所述金属感应信号超过设定的动态平均阈值时,再执行判断金属检测模块是否产生触发信号的步骤,在金属检测模块的金属感应信号产生微小的波动时,不会去判断金属感应信号的瞬时斜率值与设定斜率阈值的大小,减少无畏资源浪费的现象,使得整个判断过程更加简化、合理化。
81.优选地,如图3-图7所示,本实施例中所述金属感应信号为电压信号,当判断到金属检测模块输出的电压信号低于设定的动态平均阈值v0时,开始判断所述电压信号的瞬时斜率值与设定的电压斜率阈值的大小,在判断到所述电压信号的瞬时斜率值大于设定的电压斜率阈值,则推断出金属检测模块产生金属触发信号,判断此时的红外信号是否处于触发状态。
82.上述方案中所述动态平均阈值v0计算方式如下:
83.v0=v
mean-r,r=5mv,k=100个点。
84.本实施例中,所述金属检测模块产生触发信号的判断依据是金属感应信号的瞬时斜率值大于设定斜率阈值;红外感应模块产生触发信号的判断依据是红外信号处于被遮挡状态。具体地,结合图11所示,所述红外感应模块包括沿衣物投放口的径向方向对称设置在衣物投放口1处的红外发射模块31和红外接收模块32,在所述红外接收模块32未接收到红外发射模块发射31的红外信号,则推断出红外感应模块处于被触发的状态,衣物投放口1有衣物经过。
85.进一步地,结合图7所示,所述获取金属检测模块输出的金属感应信号的瞬时斜率值具体包括以下步骤:
86.采集金属检测模块的输出电压信号v1、v2、......、vn;
87.基于采集到的输出电压信号绘制随时间t变化的检测波形曲线;
88.当判断到输出电压信号低于设定的动态平均阈值时,则开始计算输出电压信号的瞬时斜率值p=δv/δt;
89.优选地,所述输出电压信号采样频率为t1,δv=v
n-2-vn,δt=2t1,瞬时斜率值p=(v
n-2-vn)/2t1。所述瞬时斜率值取前两个点的输出电压信号v
n-2
与vn进行计算分析得出,当然不限于取前两个点的输出电压信号,也可以取前三个点、前四个点的输出电压信号来
计算瞬时斜率值。
90.或者,换另一种说法,当判断到输出电压信号低于设定的动态平均阈值时,获取输出电压信号在检测波形曲线每一点的导数,当判断到所述导数大于设定阈值时,即可判断出金属检测模块产生触发信号,判断此时红外感应模块是否为触发状态。
91.优选地,本实施例中,所述瞬时斜率值p直接取δv,即v
n-2-vn的差值,即也可以通过电压信号的瞬时下降值来判断金属检测模块是否产生触发信号,与瞬时斜率值能够达到相同的效果,并且还能够简化判断步骤。
92.优选地,结合图3至图6所示,所述输出电压信号采样频率为每10~20ms一个点,即20ms≥t1≥10ms。
93.本技术通过时间重合宽度方法,当判断金属检测模块的输出电压信号下降至低于动态平均阈值时,计算斜率值,当输出电压信号的瞬时斜率值到达设定斜率阈值,判断红外传感信号是否出现高电平,如果出现则进行报警,红外触发信号过早或过晚出现都不会异物报警,以屏蔽掉如内桶晃动、敲击盘座或者敲击箱体引发的对金属检测的内部干扰。
94.在另一种较为优选的方案中,结合图8所示,本实施例提供的衣物处理装置还包括用于检测内桶振动的振动检测装置,所述控制方法包括:
95.在判断到所述金属检测模块和所述红外感应模块都产生触发信号时,
96.进一步判断此时振动检测装置是否产生触发信号,若是,则不进行报警;若否,则进行报警。
97.在上述方案中,所述触发信号为内桶产生振动,内桶的振动幅度大于设定阈值。在金属检测模块和红外感应模块都产生触发信号时,进一步判断此时振动检测装置是否产生触发信号,若振动检测装置也为触发状态,则不进行报警。
98.上述方法主要针对用户连续投掷多件衣服,前面投放的衣服已经出现撞击内桶底,触发金属检测模块产生感应信号,然而后面的衣服才刚刚穿过投放口,红外感应模块依旧高电平,也是被触发的状态,而引发的误报警的现象,能够有效地屏蔽掉极端现象对金属检测结果的干扰,进一步提高金属检测模块识别的准确率。
99.优选地,所述振动检测装置为设置在内桶上的加速度传感器,加速度传感器安装在衣物处理装置内桶上,测量内桶是否出现震动或位置偏移。由于内桶是大型金属件,它的移动或者震动都会在线圈里面产生感应电流,影响线圈对金属物品的检测。当用户投掷衣服时,衣服对内桶的冲击会产生震动,就被加速度传感器检测到。如果用户连续投掷多件衣服,且用户前面投放的衣服中有金属物品,整个投掷的过程中,线圈首先检测到金属物品穿过,金属信号出现下降变化,此时红外信号由于遮挡,也会出现红外信号高电平状态,前面投放的衣服开始撞击内桶,金属信号再次下降变化,同时出现加速度传感器信号,后面的衣服还刚刚穿过衣物投放口,红外信号依旧高电平,此时如果没有加速度传感器,就会出现误触发的现象。
100.进一步地,所述衣物处理装置还包括语音报警单元,所述控制系统根据判断结果控制语音报警单元是否发出语音报警提示。
101.具体地,在判断到所述金属检测模块与所述红外感应模块都产生触发信号时,控制所述语音报警单元发出相关语音报警提示,提醒用户及时将衣物中的金属异物取出。在判断到金属检测模块产生触发信号、红外感应模块未产生触发信号时,则不进行报警提醒,
排除如内桶晃动、敲击箱体或者敲击盘座等对金属检测的干扰。
102.或者,在另一种较为优选的方案中,在判断到金属检测模块、红外感应模块、振动检测装置都产生触发信号时,则不进行报警提醒,排除连续投掷重衣物造成内桶晃动,对金属检测的干扰,进一步减小误报警概率。
103.优选地,所述衣物处理装置还包括灯光显示单元,所述灯光显示单元至少包括报警灯和干扰灯。
104.在所述衣物处理装置判断到是由于投放的衣物中有金属异物而引发的金属检测模块产生的金属触发信号,则控制所述报警灯亮,优选地,控制报警灯以快闪的方式,提示用户。
105.在所述衣物处理装置判断到是由于内桶晃动、或者敲击箱体等内部干扰而引发的金属检测模块产生的金属触发信号,则控制所述干扰灯亮,提示用户。
106.本技术基于电磁感应和涡流效应原理的金属检测方式,叠加红外传感信号判断衣物是否穿过衣物处理装置盘座,利用二维的时间重合宽度方式,实现判断金属异物,防止干扰误触发。
107.结合图11所示,本实施例还提供了一种衣物处理装置,采用上述衣物处理装置的控制方法。
108.进一步地,所述衣物处理装置还包括箱体以及设置在箱体顶部的盘座,所述衣物投放口1设于所述盘座内,供用户投入或者取出衣物。本技术中,所述金属检测模块2和红外感应模块设于盘座内同一高度位置,进一步保证二者检测的同步性,提高识别率。
109.进一步地,所述盘座内设有用于安装所述金属检测模块2的环形安装槽;所述金属检测模块包括内具金属探测线圈的环形探头,所述环形探头可以通过螺钉或者卡扣等方式可拆卸地固定安装在所述环形安装槽内。
110.所述红外感应模块包括沿衣物投放口1的径向方向对称设置在所述环形安装槽内的红外发射模块31和红外接收模块32。红外发射模块31和红外接收模块32与金属探测线圈安装在同一水平面上,保证时间的同步。
111.所述金属检测模块2、红外发射模块31和红外接收模块32均与衣物处理装置的控制系统4相连,以实现与衣物处理装置之间信号的传输和控制。
112.优选地,本实施例中,所述环形安装槽位于盘座内远离内桶侧,这样使得金属探测线圈尽可能远离内桶,留出足够的下落高度区分金属信号和撞击内桶信号。
113.本实施例中,所述衣物处理装置可以为波轮洗衣机、滚筒洗衣机、洗干一体机或者干衣机等衣物处理设备。
114.实施例二
115.如图9和图10所示,本实施例是在实施例一基础上提供了一种衣物处理装置控制方法,主要目的是为了解决现有的具有金属检测功能的衣物处理装置不能准确地判断出金属异物的类型的问题。
116.本实施例提供的一种衣物处理装置的控制方法,在判断所述金属检测模块与所述红外感应模块都产生触发信号时,进一步执行以下步骤:
117.基于金属检测模块输出的电压信号绘制随时间变化的t变化的检测波形曲线,提取检测波形曲线的数据特征,并根据所述数据特征分析判断出金属异物的类型。
118.本实施例根据提取到的测波形曲线的数据特征,分析判断出金属异物的类型,衣物处理装置的控制系统可以准确地判断出金属异物的类型,并提醒用户金属异物类型,提高衣物处理装置的智能化程度,人机交互能力更强,提升用户的使用体验。
119.进一步地,结合图9、图11所示,所述的控制方法还包括以下步骤:
120.提取检测波形曲线下降至最低点b点时的峰值电压vb,计算出b点电压信号的下降值δvb=v0-vb;
121.将所述电压信号的下降值δvb与预设的第一判定数据进行比较分析,并根据分析结果判断出金属异物的类型。
122.在上述方案中,v0为实施例一中所述的设定的动态平均阈值。
123.如下表1所示,在一种实施方式中,所述预设的第一判定数据包括第一预设参数阈值。判断比较所述电压信号的下降值δvb与第一预设参数阈值x1的大小,并根据判断结果推断出金属物品的类型。
124.δv物品判断≤x1物品1>x1物品2
125.表1
126.在另一种实施方式中,所述预设的第一判定数据包括第一设定数值区间范围,通过判断所提取的电压信号的下降值δvb所在的区间范围则推断出金属物品的类型。所述第一设定数值区间范围至少包括两个及以上的数值区间,不同数值区间对应不同类型的金属物品。
127.进一步地,本实施例提供的控制方法还包括:设定检测波形曲线的下降沿达到设定电压阈值v0的点为a点,获取ab点的斜率k
ab

128.分别将b点电压信号的下降值δvb与预设的第一判定数据、斜率k
ab
与预设的第二判定数据进行比较分析,并根据分析结果判断出金属异物的类型。
129.具体地,如下表2所示,在一种实施方式中,所述预设的第二判定数据包括第二预设参数阈值,判断比较所述电压信号的下降值δvb与第一预设参数阈值x1的大小、斜率k
ab
与第二预设参数阈值y1的大小,并根据判断结果推断出金属物品的类型。
[0130][0131]
表2
[0132]
或者,在另一种实施方式中,所述预设的第一判定数据包括第一设定数值区间范围,所述预设的第二判定数据包括第二设定数值区间范围,通过判断所提取的电压信号的下降值δvb所在的第一设定数值区间范围、k
ab
所在的第二设定数值区间范围,推断出金属物品的类型。所述第二设定数值区间范围至少包括两个及以上的数值区间。通过采用区间范围的判断方式,可以区分判断出更多数量的金属异物,金属异物类型的检测更加全面丰富,更能够满足用户的使用需求。
[0133]
当然,本实施例中,不限于仅通过电压信号的下降值δvb和斜率k
ab
这两个数据特征来判断金属异物的类型,还可以例如t
bc
、数据特征比q=δvb/t
bc
等数据特征来判定金属异物的类型。
[0134]
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1