用于光学涂层的保护层的制作方法

文档序号:2013899阅读:322来源:国知局
专利名称:用于光学涂层的保护层的制作方法
本申请是申请号为03802615.5、申请日为2003年1月27日、发明名称为“用于光学涂层的保护层”的中国专利申请的分案申请。
发明的背景发明的领域本发明涉及用于透明底物上的光学涂层的保护层。本发明具体涉及临时性的碳保护层的用途。此外,本发明涉及用于各种光学涂层最外层的划痕传播阻滞剂(scratch propagation blocker)(SPB)保护层。
背景技术
的讨论光学涂层沉积在透明底物上以反射或改变底物上入射的某些或全部辐射的传递。例如,镜子的光学涂层是用于反射可见光。发射率低的光学涂层是用于降低红外辐射的传递。光学涂层一般包括厚度分别在小于1nm-大于500nm范围内的两个或多个不同的层。
在运输和处理的过程中,光学涂层经常因刮划和暴露于腐蚀性环境而损坏。自从几十年前引入穿孔市场,基于银的低发射率涂层尤其受到腐蚀问题的困扰。在改善光学涂层的耐久性的尝试中,已经涉及了使用临时性保护层,诸如背涂塑性粘合剂的膜。人们已经通过在玻璃上施加并固化基于聚合物的溶剂以形成其它保护层。
但是,使用粘膜和聚合物膜作为光学涂层上的保护层带来许多问题。向光学涂层施加粘膜和聚合物膜需要昂贵的专业设备。当从光学涂层上撕除粘膜时,粘膜有带走部分光学涂层的危险。即使未带走部分光学涂层,因除去粘膜而作用在光学涂层上的力也会损坏光学涂层。必须将施加于光学涂层的基于溶剂的聚合物膜干燥,并以环境友好的方式除去溶剂。从光学涂层上除去聚合物膜需要专业的洗涤剂,会轻易地损坏光学涂层。
为了免受腐蚀,目前使用的银基低发射率叠层在直接接触中,并且在两侧银层的一侧上使用隔离层或覆盖层。本领域公知各种薄膜层可以对腐蚀性流体,诸如水蒸汽和氧气的移动起隔离的作用。已知金属层由于其物理和化学抑制腐蚀性流体扩散的能力而可以作为特别有效的扩散膜。与介电层,诸如氧化物相比,金属层对于扩散是更为有效的物理隔离层,因为蒸发和喷镀的金属层比氧化物层含有更少的针孔缺陷。通过与扩散通过针孔的流体反应,使所有化学键连的流体分子停止运动,金属层还趋于化学阻断扩散。键连的流体分子随即限制其它流体通过针孔。对于化学阻断而言,反应性更高的金属特别有效。
回火(tempering)极大地减少了与银基低发射率涂层有关的腐蚀问题。回火导致原子能阶重构为较低的能态并使银具有低的腐蚀倾向。回火还改善了光学涂层的硬度和耐划伤性。
但是,在光学涂层被回火之前,涂层仍然特别容易受刮划和腐蚀的损害。甚至在回火之后,光学涂层也不能免于划伤和腐蚀。
光学涂层中的划痕通常是不可见的,直至涂层被加热并回火,而这会导致划痕生长并传播。
碳已经被用作玻璃底物上的保护涂层。例如,U.S.专利No.6,303,226公开了无定形金刚石状的碳(DLC)作为玻璃底物上的保护层的用途。
需要用于保护光学涂层的改进方法和保护层。
发明的概述本发明提供了一种划痕和其它表面缺陷数量减少的透明制品的制备方法。透明制品包括透明底物上的光学涂层。根据本发明,在光学涂层上形成改善光学涂层,尤其是生产过程中的耐久性和耐划伤性的保护层。
保护层可以包括基本上由碳组成的层。在回火之前,在光学涂层上形成碳保护层。在未回火的光学涂层的运输和处理过程中,碳层作为低摩擦的抗划伤保护层。在大气压下加热和回火对碳具有反应性的光学涂层和/或透明底物,消耗了碳保护层,因此消除了碳中的任何划痕或其它表面缺陷。碳保护层转化为含碳气体,留下了相对没有划痕的光学涂层。
保护层还可以包括划痕传播阻滞剂(SPB)材料的薄保护层。在回火过程中,SPB材料抑制了划痕向各种光学涂层的脆性玻璃质最外层中的传播。诸如Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W,及其氧化物和氮化物的SPB材料适合用在氮化硅(例如Si3N4)的最外层上。SPB层可以通过以下方法形成将Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta或W中的至少一种金属、金属低氧化物(sub-oxide)或金属低氮化物(sub-nitride)的扩散隔离层沉积在光学涂层的最外层;随后将扩散隔离层与含氧气氛,诸如空气反应,形成含TiO2、SiO2、ZnO、SnO2、In2O3、ZrO2、Al2O3、Cr2O3、Nb2O5、MoO3、HfO2、Ta2O5和WO3中的至少一种的金属氧化物SPB层。SPB层可以与或不与在SPB层上的碳保护层一起使用。
在生产具有光学涂层的透明制品时使用临时性的碳保护层,明显减少了通过生产工艺引入光学涂层中的划痕的数量和严重程度。由于在回火过程中除去了碳层,碳层不会影响光学涂层的光学性质。尽管SPB层并未在回火过程中除去,并且可以影响光学涂层的光学性质,但是通过抑制划痕的传播,SPB层尤其适用于保护光学涂层的脆性玻璃质最外层免于形成可见的划痕。金属、金属低氧化物或金属低氮化物尤其适用于在回火之前提供腐蚀保护,并且可以通过在含氧气氛中回火而转化为对可见光基本透明的金属氧化物SPB层。
附图的简述参照以下附图详细描述本发明的优选实施方案。


图1A-1C显示了碳保护层沉积在玻璃底物上的光学涂层上并随后除去碳保护层。
图2显示了用光学涂层、划痕传播阻滞剂层和碳保护层涂覆玻璃底物。
图3显示了划痕传播通过Si3N4层。
图4A-4C显示了金属层沉积在玻璃底物上的光学涂层上,而随后金属层转化为金属氧化物划痕传播阻滞剂层。
图5比较了在刮划时具有带或不带碳保护层的相同光学涂层的玻璃底物。
图6比较了在刮划时具有带或不带碳保护层的相同光学涂层的玻璃底物。
优选实施方案的详述本发明提供了一种沉积在透明底物上的光学涂层上,以抑制在光学涂层上形成划痕以及对光学涂层的腐蚀的保护涂层。
透明底物可以是塑料或玻璃。优选透明底物是可以通过加热并淬灭而被回火的玻璃。
在实施方案中,保护涂层包括碳保护层。碳是典型的低摩擦材料。即使研磨剂在最初就划伤了碳,研磨剂通常也会被碳涂覆。用最低的一个摩擦系数表征在碳涂覆的研磨剂和碳之间的随后接触,μ静≈μ动=0.1-0.2。因此,碳涂覆的研磨剂趋向于从碳上滑落,不会进一步损伤碳。碳在许多腐蚀性环境中也是惰性的,并且对于碱和大多数酸表现出良好的耐受性。因此,光学涂层上的碳层能够保护光学涂层在处理过程中免于划伤和环境腐蚀。
图1A-1C阐述了本发明的实施方案,其中在光学涂层上形成临时性碳层,以保护光学涂层在生产过程中免于划伤和环境腐蚀。图1A显示了涂有光学涂层2的玻璃底物1。图1B显示了为了在运输和处理过程中保护光学涂层免于划伤和环境腐蚀,在光学涂层2上沉积碳保护层3。图1C显示了在碳的反应性气氛中,于升高的温度下回火光学涂层2和/或玻璃底物1之后,碳保护层3转化为含碳气体,已经存在于碳保护层3中的任何划痕或其它损伤被消除。
碳保护层是基本上由碳组成的层。术语“基本上由...组成”排除了其它未特别指出的在碳与反应性气氛完全反应以形成含碳气体时作为固体残余物遗留下来的元素和化合物,同时未排除不可避免的杂质。在实施方案中,碳层由碳和不可避免的杂质组成。
碳层可以通过蒸汽沉积法沉积在光学涂层上。用于蒸汽沉积碳的技术和方法是本领域公知的。适合的蒸汽沉积法包括蒸发和等离子沉积法,诸如等离子化学蒸汽沉积、离子注入和喷镀。喷镀可以是DC或RF。含或不含少量其它气体,诸如氢气和氮气的惰性气体,诸如Ar可用于等离子沉积法以形成碳层。惰性气体中存在1-10%氮气有助于石墨碳的沉积。惰性气体中的氮气可用于用氮掺杂碳。
碳层可以包括一个或多个碳相,诸如碳的石墨、金刚石和无定形相。碳层还可以包括金刚石状碳。石墨中的碳具有sp2结合。金刚石中的碳具有sp3结合。无定形碳通常包括sp2和sp3结合,但长程无序。金刚石状的碳还包括sp2和sp3结合,并表现出类似于金刚石的硬度。
碳层通常是1-10nm厚。小于1nm厚的碳层不能提供适当的耐划伤性。大于10nm厚的碳层变得难以在碳的反应性气氛中完全除去。
用于将碳保护层转化为含碳气体的反应性气氛可以包括本领域已知的各种对碳呈反应性的气体。例如,反应性气氛可以包括氢气,其能够将碳转化为甲烷气体。卤素,诸如氟或氯可用于在升高的温度下形成四卤代甲烷气体,诸如CF4或CCl4。反应性气氛中的氧气可用于形成一氧化碳和二氧化碳气体。由于光学涂层和玻璃通常含有各种在氧气中呈惰性的氧化物,碳的反应性气氛优选含有氧气。由于空气(含有O2)廉价易得,更优选反应性气氛是空气。
回火是一种包括将材料加热至升高的温度并随后淬灭的方法。已知回火能够明显增加玻璃以及玻璃上的光学涂层的强度和韧度。玻璃可以通过加热至400-650℃的温度范围,随后淬灭至室温而回火。含Ag层的光学涂层可以通过加热至低于Ag的熔点960℃以下的温度范围,随后淬灭至室温而回火。例如,含银层的低发射率光学涂层可以通过加热至约730℃数分钟,随后淬灭而回火。优选在至少400℃的温度下将玻璃和光学涂层回火。在本发明的实施方案中,玻璃和光学涂层均在保持为升高温度下的烘箱中回火。在其它实施方案中,为了避免必须将整块玻璃加热,仅将光学涂层回火。例如,可以通过火焰灯或高亮度灯将光学涂层加热至足以将光学涂层回火并烧去碳保护层的温度,而不是在烘箱中加热。
因此,在碳的反应性气氛中将被碳保护层覆盖的光学涂层回火,能够使碳形成含碳气体,并离开光学涂层的表面。碳层中的任何划痕随碳层一起消失。优选反应性气氛回火从光学涂层上除去所有的碳保护层。
碳保护层可以保护光学涂层免于在涂层的生产过程中由,例如运输和处理引起的划伤。此外,碳保护层还可以保护光学涂层免于腐蚀性环境,在空气中储存带碳保护层的光学涂层一天或数天或者进行洗涤时会出现所述腐蚀性环境。在紧邻除去碳保护层之后,优选光学涂层中的划痕数目不超过紧邻碳沉积于光学涂层之前光学涂层中的划痕数目的110%。
在本发明的实施方案中,在碳保护层和光学涂层之间可以形成SPB层。优选SPB层具有均一的组成并且完全是均匀的。SPB层由具有抑制回火过程中划痕传播并开裂至光学涂层最外层的性质的材料制成。不同的最外层需要SPB层中材料不同。形成SPB层的材料应当比光学涂层最外层的脆性和玻璃状更低。优选SPB材料的断裂韧性高于最外层的。
图2显示了本发明的实施方案,其中SPB层4夹在碳保护层3和光学涂层2的最外层Si3N4层2a之间。SPB层4和碳保护层3均为光学涂层2提供了划痕保护。尤其是SPB层4抑制了碳保护层3向下并进入Si3N4层2a的传播。
优选氮化硅最外层具有均一的组成并且完全是均匀的。
在回火的条件下,在玻璃底物上的光学涂层中优选 最外层(例如无定形Si3N4)。 在加热至玻璃回火所需的温度时不进行相改变。此外, 的密度在回火之前和之后是相同的,因此回火不会将应力留在氮化硅和其余的光学涂层的界面而引起分层。
还抑制了在光学涂层中形成浑浊。当材料一起混合形成两相体系时,出现浑浊,引起折光指数作为整个层的状态的函数而变化。由于氮化硅的相稳定性防止了混合,带有氮化硅最外层的光学涂层中的浑浊在回火后降低。
由于氮化硅保持了无定形,在光学涂层之间的界面上的原子移动少----于相改变时会产生的原子移动,这使得层之间最初的粘合更好地得以保留。
光学涂层中 最外层的一个问题是氮化硅的共价结合和无定形结构产生了开裂传播特性类似于玻璃的硬质材料。很小的开裂很容易地通过硬的玻璃质材料传播。
图3阐述了开裂能够传播通过具有氮化硅最外层的光学涂层2的可能机理。小划痕最初较浅,并且不可通过用于大多数回火生产线的“肉眼”检查方法检测出来。这是由于划痕并未完全穿过氮化硅最外层。但是,小的开裂通过加热传播通过氮化硅,达到底层,例如Ag。一旦暴露于开裂,Ag就会在其非约束表面上聚结。当Ag聚结时,开裂变得可见,部分产品必须淘汰。
在图2所示的实施方案中,通过在回火之前将SPB层沉积在氮化硅上并将C层沉积在SPB层上,使得回火后带有氮化硅最外层的光学涂层中的开裂最小。可以使用相同的喷镀设备,将SPB/C结合物和光学涂层沉积在玻璃上。
如上所述,碳提供了典型的低摩擦表面,甚至当研磨剂最初划伤碳时,研磨剂变得被碳覆盖,产生摩擦非常低的碳-碳滑动。
如果研磨剂继续刺穿碳保护层,那么研磨剂将与SPB层相遇。但是,大多数由研磨剂形成的划痕或开裂将不会在随回火传播通过SPB层。尽管与碳保护层不同的是,SPB层在回火之后保留下来,SPB中的大多数划痕保持为肉眼不可见。
适合用于形成SPB层的材料包括诸如Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的金属、这些金属的氧化物以及这些金属的氮化物。
此处使用的术语“氧化物”包括化学计量的氧化物、含有多于化学计算量的氧的过氧化物以及含有少于化学计算量的氧的低氧化物。此处使用的术语“金属低氧化物”包括掺有少量,例如0.1-10原子%氧的金属。
此处使用的术语“氮化物”包括化学计量的氮化物、含有多于化学计算量的氮的过氮化物以及含有少于化学计算量的氮的低氮化物。此处使用的术语“金属低氮化物”包括掺有少量,例如0.1-10原子%氮的金属。
适用于形成SPB层的化学计量氧化物包括TiO2、SiO2、ZnO、SnO2、In2O3、ZrO2、Al2O3、Cr2O3、Nb2O5、MoO3、HfO2、Ta2O5、WO3。适用于形成SPB层的化学计量氮化物包括TiN。TiO2在抑制划痕上尤其优异。SPB层可以通过本领域已知的蒸汽沉积技术而形成。
SPB层可以是2-8nm厚。当SPB层是化学计量的氧化物或氮化物时,SPB层优选2-8nm,更优选3-6nm厚。当SPB层是金属时,SPB层优选4-8nm,更优选4-6nm厚。如果化学计量氧化物或氮化物SPB层薄于2nm,或金属层薄于4nm,那么SPB层抑制划痕传播的趋势表现为降低。SPB层厚于8nm的优点较小,因为由SPB层产生的划痕传播的抑制在约8nm的厚度下饱和,并且SPB层对光学涂层的光学特征的影响随SPB层的厚度增加,而这是必须要考虑的。但是,如上所述,作为扩散隔离层使用的金属、金属低氧化物和金属低氮化物(在回火过程中被氧化之后,可以形成基本上是不可见的金属氧化物SPB层)可以厚于2nm。
如上所述,在实施方案中,SPB层可以与SPB层顶部的碳保护层结合。在其它实施方案中,SPB层可以在光学涂层上形成仅有的保护层。SPB层甚至在没有碳保护层的情况下有助于防止处理过程中的划痕和划痕传播。
在本发明的实施方案中,可以通过在回火之前,将用于提供腐蚀保护的扩散隔离层氧化为光学涂层而形成SPB层。扩散隔离层是金属、金属低氧化物或金属低氮化物材料,包括选自Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的金属元素。扩散隔离层在回火光学涂层之前沉积在光学涂层的最外层上。在含氧的气氛中回火光学涂层,将扩散隔离层转化为金属氧化物SPB层。优选扩散隔离层含有Ti、Zr或Al,通过在空气中加热,它们可以分别转化为金属氧化物TiO2、ZrO2或Al2O3的SPB层。优选金属低氧化物含有的氧是最充分氧化的金属化学计量氧化物中所存在氧的约80%或更低。与被大于约80%地充分氧化的反应性沉积膜相比,被约80%或更低地充分氧化的金属低氧化物沉积膜趋于形成更佳的扩散隔离层。
如上所述,已知金属层对于腐蚀性流体的扩散移动是特别有效的隔离层。金属低氧化物和金属低氮化物作为扩散隔离层的作用类似于金属。与相应的充分氧化的金属相比,当喷镀或蒸发时,金属低氧化物和金属低氮化物趋于形成致密的层,并且化学抑制氧和水蒸汽扩散的程度更好。
金属低氧化物和金属低氮化物可以通过本领域已知的蒸汽沉积法形成。例如,金属低氧化物和金属低氮化物可以通过在含有受控量的氧和氮的气氛中蒸汽沉积金属而形成。
金属低氧化物和低氮化物趋于光学吸收和降低光学涂层的可见光传递,直至将其加热并反应为充分氧化的状态。
在金属低氮化物中,氮和金属之间的结合通常不像金属低氧化物中的氧和金属之间的结合那样强。在含氧气氛中加热金属低氮化物,通常将金属低氮化物转化为相应的金属氧化物或者至少转化为基本上透明的金属氧氮化物。
扩散隔离层可以是4-8nm厚,优选4-6nm厚。如果金属的厚度是2nm或更薄,反应性金属层在室温空气中通常充分氧化。更厚的金属层通常氧化为深度2nm,而层的其余部分保持为金属。如果金属暴露于能源,诸如热量或者比空气更具化学反应性的环境,氧化过程可以更深入地进行。在本发明的实施方案中,沉积的扩散隔离层厚于室温下进行完全氧化的厚度。按照这种方式,层保留为金属并在回火之前作为有效的腐蚀隔离层。为了在氧化之前提供上述的耐划痕传播性,优选沉积的扩散隔离层是4nm或更厚。为了保证扩散隔离层在回火过程中充分氧化,扩散隔离层的沉积厚度是8nm或更薄,优选6nm或更薄。
当4-6nm厚的金属、金属低氧化物或金属低氮化物充分氧化时,其趋向于在光学叠层上具有少量的光学效应。由于与金属、金属低氧化物和金属低氮化物相比,金属氧化物对可见光更透明,充分氧化扩散隔离层产生有效的光学不可见的金属氧化物SPB层。
在可回火的低发射率光学涂层上使用回火方法,由扩散隔离层形成金属氧化物SPB层,既保护了涂层在回火之前免于腐蚀,又消除了回火后在低发射率光学涂层上以扩散隔离层作为SPB层有关的许多不希望的光学效应。在进一步的实施方案中,可以将碳层沉积在可回火低发射率光学涂层上的扩散隔离层,作为光学涂层的额外保护。那么,通过在空气中加热而将光学涂层回火,既烧去了碳层,又将扩散隔离层转化为透明的金属氧化物SPB层。
图4A-4C阐述了本发明的实施方案,其中金属氧化物SPB层是通过将金属沉积于光学涂层并随后在含氧气氛中氧化金属以形成氧化物而形成的。图4A显示了提供有光学涂层2的玻璃底物1。图4B显示了沉积在光学涂层2上的金属层5。图4C显示了通过在含氧气氛,诸如空气中加热金属层5,金属层5转化为金属氧化物划痕传播阻滞剂层4。
实施例以下实施例用于进一步阐述本发明,但并不限制所附权利要求中定义的使用范畴。
实施例1图5(1)-5(4)是根据本发明,通过在回火前将临时性碳保护层沉积在光学涂层上,并随后通过在反应性气氛中回火除去碳保护层而得到的显示划痕明显减少的光学显微镜照片。每个样品具有相同的光学涂层。光学涂层包括多层Zn、Ag和NiCr,以及36nm厚的Si最外层。1nm厚的碳保护层沉积在图5(1)和5(2)所示样品的光学涂层上,但图5(3)和5(4)所示样品的光学涂层上未沉积。随后在相同的条件下使用相同的市售砂轮(TABER轮)刮划样品。图5(1)和5(2)显示出代表最严重划痕的碳保护样品的不同区域。图5(1)中的划痕约10-15nm宽。图(1)和5(3)显示了回火之前的划痕样品。图5(2)和5(4)显示了在空气中于730℃下回火4分钟后的划痕样品。在空气中的回火过程中,划痕的宽度大概加倍。图5(2)所示样品上的碳保护层在回火过程中随大部分划痕一起烧去。
图5显示了当碳层被烧去时,回火之前存在于光学涂层上的碳保护层大大降低了在空气中回火之后出现在光学涂层上的划痕数量。
实施例2图6显示了比较9个样品(标号1-9)在回火之后,不同的碳保护层厚度对残留在光学涂层上的划痕的影响。每个样品具有相同的光学涂层。光学涂层包括多层Zn、Ag和NiCr,以及36nm厚的Si最外层。下表1显示了不同厚度的碳保护层沉积在样品上。样品1-2不含碳保护层。
表1

在相同条件下使用相同的市售砂轮(TABER轮)刮划样品。9个样品分别在空气中于730℃下回火4分钟。图6显示了回火后的样品1-9。
如图6所示,在空气中回火后,包括临时性碳保护层的样品3-9的划痕明显少于不含碳保护层的样品1-2。回火后样品3-8的颜色与回火前样品1-2的颜色相同,这表明样品3-8上的碳层被完全除去。回火后在样品9上残留了少量碳。
实施例3
将各种SPB材料和碳的保护层沉积于玻璃上的相同光学涂层。在相同条件下使用相同的市售砂轮(TABER轮)刮划样品。表2显示了各个SPB材料和碳减少划痕损害的相对能力。
表2

在表1中,“损坏%”是垂直于摩擦工具的方向上每单位长度的划痕的大约数目。
表2显示了SPB层甚至在没有碳保护层的情况下有助于防止处理过程中划伤和划痕传播。SPB和C层的结合在抑制划痕方面效果更佳。可以根据需要改变各个SPB层和C层的厚度。
实施例4将不同厚度的Zr层沉积于玻璃底物上的相同银基低发射率光学涂层。Zr涂覆的光学涂层在相对湿度80%的室温空气中保留24小时。随后在空气于730℃将光学涂层回火。发现2nm和3nm厚的Zr层未对银基低发射率涂层提供腐蚀保护。相反,发现4nm和8nm厚的Zr层为银基低发射率涂层提供了基本的腐蚀保护。
通过具体的实施方案描述了本发明,同时并不局限于所列的具体细节,而且还包括各种对本领域技术人员显而易见的变化和变型,所有这些均落入以下权利要求所限定的本发明的范畴。
权利要求
1.一种制备透明制品的方法,所述方法包括在底物上的光学涂层上形成包括基本上由碳组成的层的保护涂层;在反应性气氛中加热保护涂层;将由碳组成的层与反应性气氛反应,形成含碳气体;以及从光学涂层上除去基本上由碳组成的层,以形成透明制品。
2.权利要求1的方法,其中所述形成包括蒸汽沉积保护涂层。
3.权利要求2的方法,其中所述蒸汽沉积包括喷镀。
4.权利要求1的方法,其中在加热之前,基本上由碳组成的层是1-10nm厚。
5.权利要求1的方法,其中用氮掺杂基本上由碳组成的层。
6.权利要求1的方法,其中基本上由碳组成的层是由碳和不可避免的杂质组成的。
7.权利要求1的方法,其中在基本上由碳组成的层中,碳包括至少一种选自金刚石状碳和石墨的形式的碳。
8.权利要求1的方法,其中反应性气氛是含氧气氛。
9.权利要求8的方法,其中含氧气氛是空气。
10.权利要求1的方法,其中含碳气体包括至少一种选自一氧化碳和二氧化碳的化合物。
11.权利要求1的方法,其中所述加热包括将保护涂层的温度升高为至少400℃。
12.权利要求1的方法,其中所述加热使光学涂层回火。
13.权利要求1的方法,其中所述加热使底物回火。
14.权利要求1的方法,其中底物包括玻璃。
15.权利要求14的方法,其中玻璃对可见光是透明的。
16.权利要求1的方法,其中所述反应从光学涂层上除去全部基本上由碳组成的层。
17.权利要求1的方法,其中所述除去之后光学涂层中的划痕数目不多于紧邻所述形成之前光学涂层中划痕数目的110%。
18.权利要求1的方法,其中光学涂层在距底物最远处包括含氮化硅的均匀最外层。
19.权利要求18的方法,其中保护涂层在基本上由碳组成的层和最外层之间还包括划痕传播阻滞剂层;而划痕传播阻滞剂层是包括选自下列的材料的均匀层Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氧化物;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氮化物;及其混合物。
20.权利要求19的方法,其中划痕传播阻滞剂层由不可避免的杂质以及选自下列的材料组成Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氧化物;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氮化物;及其混合物。
21.权利要求19的方法,其中划痕传播阻滞剂层的厚度是2-8nm。
22.一种制备透明制品的方法,所述方法包括提供具有光学涂层的底物,所述光学涂层在距底物最远处包括均匀的最外层;和在最外层上形成划痕传播阻滞剂层,其中划痕传播阻滞剂层是包括选自下列的材料的均匀层Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氧化物;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氮化物;及其混合物。
23.权利要求22的方法,其中最外层包括氮化硅。
24.权利要求22的方法,其中所述形成包括在最外层上蒸汽沉积划痕传播阻滞剂层。
25.权利要求22的方法,其中划痕传播阻滞剂层包括选自TiO2、SiO2、ZnO、SnO2、In2O3、ZrO2、Al2O3、Cr2O3、Nb2O5、MoO3、HfO2、Ta2O5、WO3及其混合物的材料;以及所述形成包括在最外层上沉积含有至少一种选自Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的元素的金属、金属低氧化物或金属低氮化物扩散隔离层;在含氧气氛中加热扩散隔离层;以及将扩散隔离层与氧反应,形成划痕传播阻滞剂层。
26.权利要求25的方法,其中扩散隔离层的厚度是4-6nm。
27.权利要求25的方法,其中含氧气氛是空气。
28.权利要求25的方法,其中所述加热包括将光学涂层的温度升高为至少400℃。
29.权利要求25的方法,其中所述加热使光学涂层回火。
30.权利要求25的方法,其中所述加热使底物回火。
31.权利要求25的方法,还包括在加热扩散隔离层之前,在扩散隔离层上沉积基本上由碳组成的层;以及将基本上由碳组成的层与氧反应,形成含碳气体。
32.权利要求31的方法,其中含碳气体包括至少一种选自一氧化碳和二氧化碳的化合物。
33.权利要求22的方法,其中底物包括玻璃。
34.权利要求33的方法,其中玻璃对于可见光是透明的。
35.一种透明制品,包括底物;在底物上的包括一个或多个层的光学涂层,其中一个或多个层在距底物最远处包括含氮化硅的均匀最外层;和最外层上的保护涂层,其中保护涂层由最外层上的划痕传播阻滞剂层和划痕传播阻滞剂层上的基本上由碳组成的层组成;而划痕传播阻滞剂层是包括选自下列的材料的均匀层Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氧化物;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氮化物及其混合物。
36.权利要求35的透明制品,其中用氮掺杂基本上由碳组成的层。
37.权利要求35的透明制品,其中基本上由碳组成的层是由碳和不可避免的杂质组成的。
38.权利要求35的透明制品,其中在基本上由碳组成的层中,碳包括至少一种选自金刚石状碳和石墨的形式的碳。
39.一种透明制品,包括底物;在底物上的包括一个或多个层的光学涂层,其中一个或多个层在距底物最远处包括含氮化硅的均匀最外层;和最外层上的保护涂层,其中保护涂层由最外层上的划痕传播阻滞剂层组成,而划痕传播阻滞剂层是包括选自下列的材料的均匀层Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氧化物;Ti、Si、Zn、Sn、In、Zr、Al、Cr、Nb、Mo、Hf、Ta和W的氮化物;及其混合物。
40.权利要求39的透明制品,其中光学涂层是回火后的涂层。
全文摘要
为透明底物(1)上的光学涂层提供临时性碳层(3)作为生产过程中抗划伤和腐蚀性环境的保护。当在碳的反应性气氛,诸如空气中,将光学涂层和/或底物回火时,碳层以含碳气体的形式除去。对于带有距底物(1)最远处的脆性玻璃质最外层(2a)的光学涂层而言,通过在最外层(2a)和碳保护层(3)之间的划痕传播阻滞剂层(4)提供了额外的保护。
文档编号C03B25/02GK101092288SQ20071010818
公开日2007年12月26日 申请日期2003年1月27日 优先权日2002年1月25日
发明者K·W·胡卡里, P·A·马施威茨, R·D·丹嫩伯格 申请人:Afg工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1