具有较小偏振模色散的光纤的制作方法

文档序号:1822704阅读:374来源:国知局
专利名称:具有较小偏振模色散的光纤的制作方法
技术领域
本发明涉及制造一种具有掺杂芯部分和一外围光学包层光纤的方法,它包括以下步骤从二氧化硅预制棒的熔融末端拉制光纤,并沿着对其涂覆保护外套的装置移动该光纤。更为具体地讲,本发明涉及一种具有较小偏振模色散的光纤。
“偏振模色散”(PMD)一词是指,一光纤(尤其是单模光纤)所载信号的色散,其结果是光纤芯部分中发生双折射。这个双折射是由光纤內缺陷所引起的,比如其芯部分横截面稍有些不圆,横向应力不对称等等,以及对所载信号的两正交偏振模表现出其折射率的不一致。在没有偏振模色散的理想光纤情况下,该两个模有相同的速率且彼此相互独立。但是,在有偏振模色散的情况下,两个模的相对位相会不断地,且沿着光纤每过一定空间间隔就重复一种特定方式。这种间隔的平均值被称为光纤的拍长Lρ,一般有1米量级的幅值。
开头一段所述的方法可从美国专利US.5,298,047中获知,其中在光纤涂覆步骤之后,移动着的光纤要通过一系列的滑辊。通过以不规则的方式(即可变的频率)前后不断地翻转这些滑辊中的至少一个,使光纤受到一种振荡扭摆作用,该振动扭摆引起预制棒与翻转滑辊之间整个光纤长度上的前后扭曲。未涂覆热光纤的这种扭曲,在其组成材料上施加了一个振荡的轴向自旋,且这种自旋随后会在光纤冷却时被凝固在光纤中。光纤中有意加入的这种呈自旋关系变化的应力,将在所载信号的正交偏振模之间产生连续的模式耦合,从而抑制了两个模之间的明显位相滞后积累,并随之显著地减小了光纤的偏振模色散PMD。
本发明的一个目的是提供另一种能够生产具有较小偏振模色散光纤的方法。尤其本发明的一个目的是,减小偏振模色散的具体装置不必与光纤有机械接触。而且本发明另一个目的是,使所用的另一种方法更便宜,且更便于装配到现有的光纤拉制设备中去。更为具体地讲,本发明的一个目的提供一种光纤,其中显著减少的偏振模色散是借助于一种机构实现的,而不是在光纤中存在着呈自旋关系变化的机械应力。
本发明的这些目的和其他目的,是通过本发明的制造具有掺杂芯部分和一外围光学包层的光纤的方法而实现的,该方法的步骤包括,从二氧化硅预制棒的熔融端拉制光纤,并沿着对其涂覆保护外套的装置移动该光纤,其特征在于在涂覆步骤之前,移动的光纤受到非均匀调制的光化学辐射辐照,从而使光纤芯部分的折射率产生随其纵向位置而变的不规则变化。
本文中,“二氧化硅”一词主要是指非晶体或晶体、合成或天然的SiO2之中的任意—种;本领域的普通技术人员可以理解为这样的二氧化硅通常包含较少量的特定掺杂(比如氟或锗等等),以改善其折射率。本文所用的“光化学辐射”一词应理解为诸如紫外(UV)辐射、X-射线、电子束等,以及较短波长的可见电磁辐射,如绿光或蓝光等这类辐射形式。在本文中,这样的辐射当其强度,波长或粒子能量密度,无论是直接来自于其辐射源还是用附加一个瞬时可调的遮挡或偏移装置,(如光闸)的办法,而发生瞬变时,即视为其被“调制”了。当相邻的两个最大值的瞬时间隔不为常数时,这样的调制被认为是非均匀的,所以沿着光纤芯的基本长度方向上的相应折射率变化也不是等间隔的。
应该理解,本发明的在光化学辐射下曝光,适宜从预制棒开始沿着所拉制光纤的整个长度(一般在100km量级)进行;或者至少沿着一组基本长度(10-100m量级)的分段部分,并可能有夹杂的未辐照光纤部分。
从更为深入的角度来看,本发明提出当在适当能量的电化学辐射下曝光时,光纤芯部分中掺杂物的电子结构可以被改变,其方式是局部地增加其受辐射部分的掺杂芯材料折射率的方式。当这种局部折射率变化沿着光纤芯的长度以非均匀间隔分布时(根据本发明),它们会引起芯內传播的信号其不同的偏振模之间不断发生模式耦合,随之大大地减小偏振模色散。由于本发明的辐射引起了芯部分折射率nco的局部增加,且由于nco总是大于外围光纤包层部分的ncl,所以总能保持光纤芯部分中发生全内反射的基本条件nco>ncl。
作为具体的实例,在整个二氧化硅芯分布有二氧化锗掺杂的情况下,用光化学辐射对基态锗原子进行辐射,能导致部分地产生稳定的锗(1)和锗(2)受激态,因此所得的原子数之比值一锗锗(1)锗(2)取决于所用的光化学辐射具体类型。其结果是,锗掺杂的光纤芯部分折射率增加。在《SPIE联合会学报(Conference Proceedings)》Vo1.1373(1990)中,由Russell等人撰写的题为“纤维光源与放大器”(第126-139页)的文章,对此过程有更为详细的描述。
其电子结构可以用光化学辐照改良的其它掺杂,包括如P(磷)和Al(铝)。
其特殊优点是,产生本发明辐射的装置不必与光纤机械接触,并且可以组装成很紧凑的形式(比如激光束、弧光灯或热离子枪等等)。
前文所述的涂覆装置,可以是适用于光纤制造领域的任意一种类型的。比如,这种装置可以包括一个腔室,移动的光纤被引导通过其中,且一种烃化物反应气体被引入其內,该腔室进一步具有用于使光纤保温的加热装置(如传导或微波加热装置),从而加快光纤表面上固态烃化物层的(气相)沉积速度。由于所用的光化学辐射受到光纤保护层的吸收,所以在涂覆步骤之前做本发明的辐照处理。
在本发明辐照处理的过程中,按规定光纤不必是软的或热的。另一方面,如果光纤在拉制后短时间保持一定热量,将不妨碍本发明的方法, 除非光纤的温度高到足以引起掺杂物受激状态去活(比如受UV辐照的锗掺杂情况下,约700℃时发生)。
根据本发明,当dm<LP时,可以很有效地减小偏振模色散,其中dm是增大的nco其相邻定位的环之间的平均纵向间隔。优选地,dm比1p小几倍;例如,如果1p≌2米,则dm应适宜有约1米的最大值(但不是必需的),而且大约0.3-0.4米的取值更为有利(每个拍长大约五个调制)。当然,所得的dm值取决于光纤移动的线速度Vf和光化学辐射的平均调制时间tr。例如,如果Vf=10米/秒,为了使dm=0.5米tr必需取0.05秒的值。应当注意,“平均值”一词在本文是指,光纤基本长度(如100米)或基本时间间隔(如10秒)内的算术平均值。
尽管原则上不同种类的光化学辐射都适用于本发明的方法,但是采用电磁辐射可以是一个实用的优选种类,因为它可以从便宜的小型源中方便且高密度地产生出来,而且可以容易地用诸如光闸或脉冲电源等进行调制。尤其是,本发明人用随机脉冲强度的激光光源发出的UV或蓝/绿光,在掺锗二氧化硅光纤中已取得了非常满意的减小偏振模色散的效果。在此UV光被理解为有230-260nm范围的波长,而且优选的是大约244 nm的取值,而蓝/绿光应认为是有460-520nm范围的波长,其优选的取值为488或514nm的近似值。
除了这种随机脉冲光化学辐射之外,根据本发明还有其他几种可以获得所需非均匀调制的方法。例如,这些调制可以采取以下任意一种形式
(1)恒定振幅的方波、三角波或正弦波,其频率以随机方式受到调制;(2)不等瞬时间距的交变双脉冲或三脉冲;(3)具有至少两个周期P1和P2的方波函数重叠,其中P1/P2的比值不为整数。
所列的例子不是穷尽,而仅仅是为说明的目的而给出的。
就改变芯掺杂电子结构的辐射机理的统计规律而言,所用光化学辐射选用的强度将取决于tr的值和光纤芯部分中的掺杂的浓度。本领域普通技术人员应能够在给出的生产条件下,将所用的辐射强度调整到特定的参数。在用UV或蓝/绿激光的情况下,本发明人用0.1-1瓦的激光功率已取得了令人满意的结果。
本发明及其带来的优点,将借助于附图和非唯一方式的示例性实施例加以阐述。


图1表示出根据本发明的光纤制造过程;图2表示出根据本发明的一些示例性光纤,并体现出其芯部分的纵向折射率变化。
实施例1图1表示出根据本发明的光纤制造过程。
二氧化硅预制棒这样被制出在二氧化硅基管的内表面上沉积合成二氧化硅的掺杂层(如,用等离子体化学汽相沉积),随后将该管热处理成预制棒。通过在该沉积过程中使用不同的掺杂(诸如F(氟)和Ge(锗)等),于是所得的预制棒其芯部分具有比其外围部分更高的折射率。比如,该棒可按这样的方式制出,它的外部区域(对应于拉制出的光纤光学包层部分)掺入约lat.%的氟和1mol%的二氧化锗,同时在其芯的区域(对应于拉制出的光纤芯部分)掺入约lat.%的氟和5mol%的二氧化锗。如果需要,所得的预制棒可以随后装在二氧化硅护套管中。于是,最终的产品构成了预制棒1。
当然,这种预制棒的制造也可以采用其他各种已知的方法。所用的具体方法,对随后执行根据本发明的光纤制造过程而言,并不十分重要,下文将对此进一步阐述。
用加热装置5对该预制棒1的末端3加热。从该被加热的末端3,以一个线速度Vf拉出光纤7。该光纤包括一个中央的芯部分,该芯部分被一个光学包层所包围着。随后光纤7移动通过涂覆装置9,在其中光纤被涂上一保护层(如一个不透明的聚合物涂层)。
在末端3与涂覆装置9之间的一个位置处,移动的光纤受到非均匀调制的光化学辐射1 5的定位辐照。如本文所述,辐射束15由空间固定上的源11发出,而该源被固定在光闸13的后面。在一个特例中,辐射束15由蓝/绿光构成,源11是强度基本不变的0.2瓦Ar激光束,光闸13以随机的方式快速地开和关(如通过用一个循环工作的伺服装置控制它,该循环又由起随机数字发生器的处理器单元来确定);在此过程中,光纤7受到随机脉冲(或方波)蓝/绿光的辐照。
在辐射束15与光纤7相交的点17处,光纤7芯部分的折射率nco将增加。当然,nco的这种增加,将沿着光纤7的整个轨迹,使之暴露在任何给出的光化学辐射(即脉冲或方波)15中。例如,如果Vf=10米/秒且光闸13按0.005秒的间隔打开,则受光化学辐射曝光的光纤7的长度将为10×0.005米=0.05米=50毫米,于是nco在50毫米的范围内增加了。
假设二氧化锗的掺杂率为5mo1%,而且辐射束的强度为0.2瓦,则通过辐照,折射率nco一般将增加大约0.01%。
实施例2图2表示了根据本发明方法各种可能的变化而生产出来的三段光纤37、47、57。这些光纤包括,分别包括由各自的光学包层373、473、573包围着的各自的芯部分371、471、571。为了清楚起见,光纤的保护外套在图中未表示出来。作为一个具体实例,光学包层部分373、473、573可以由掺氟二氧化硅构成。
每个芯部分371、471、571的折射率nco分别大于对应的光学包层部分373、473、573的折射率ncl。但是,nco不是一个恒定值,而是沿不同光纤37、47、57其纵向位置的函数。除此之外,每个光纤芯部分371、471、571分别包含nco取局部最大值的非均匀间隔段375、475、575(图中阴影处),及夹在其间的局部nco值较小的中间段377、477、577(非阴影区)。非均匀间隔段375、475、575适宜基本沿着相应光纤37、47、57的全长(一般在100公里量级)分布,或者至少沿着它们的几个很基本的长度(10-100米量级)分布。
在光纤37的情况下,分段375都有同样的长度h,但是在长度方向上以变化的间隔分布,即分段377不是恒定的长度。分段375、377的这种分布状态可以在本发明方法的一个实施例中实现,其中的光化学辐射按照方波函数调制,该函数以随机的间隔含有恒定瞬时时段的导通段。
在光纤47的情况下,无论是分段475还是分段477,都是一定的。但是,分段475、477的分布图呈现一定的周期性,因为每相邻的三个一组的分段475之后即会重复。这种周期性可以在本发明方法的一个实施例中获得,其中恒定强度的光化学辐射,经过一个包括连续转动盘的遮挡装置,被投射到移动的光纤上,该连续转动盘带有三个不同方位角的孔径。
在光纤57的情况下,在分段575、577的分布图中没有周期性。这样的分布图可以在本发明方法的一个实施例中实现,其中光化学辐射从随机脉冲源中引出。
如本文所述,所有阴影分段由很陡的边界严格划定,但是,也有逐渐变动的nco,从而得到的分布图看上去基本没有什么不连续的地方(诸如调频正弦波辐射的情况下等)。
权利要求
1.一种制造具有掺杂芯部分和一外围光学包层的光纤的方法,包括以下步骤从二氧化硅预制棒的熔融末端拉制光纤,并沿着对其涂覆保护外套的装置移动该光纤,其特征在于在涂覆步骤之前, 用非均匀调制的光化学辐射辐照移动的光纤,从而使其芯部分的折射率,产生纵向位置函数形式的非均匀变化。
2.根据权利要求1的方法,其特征在于预制棒是这样选择的使拉制出来的光纤芯部分包含掺杂物锗。
3.根据权利要求1或2的方法,其特征在于光化学辐射的类型是从紫外辐射和蓝/绿光之中选出的。
4.根据权利要求1-3的方法,其特征在于光化学辐射是由随机脉冲激光获得的。
5.一种光纤,包括带有掺杂的芯部分和外围的光学包层部分,其特征在于沿其基本整个长度,其芯部分的折射率呈现纵向位置函数形式的显著非均匀变化。
全文摘要
一种制造具有掺杂芯部分和一外围光学包层的光纤的方法,包括以下步骤从二氧化硅预制棒(1)的熔融末端(3)拉制出光纤(7),并沿着对其涂覆保护外套的装置(9)移动该光纤(7),其中,在涂覆步骤之前,用非均匀调制的光化学辐射(15)辐照移动的光纤(7),从而使其芯部分的折射率,产生以纵向位置函数形式的非均匀变化,所得的光纤其偏振模色散大大地减少了。
文档编号C03B37/10GK1147804SQ96190143
公开日1997年4月16日 申请日期1996年1月25日 优先权日1995年2月1日
发明者R·E·M·吉尔曼 申请人:等离子光纤维股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1