一种无资料地区溃堤型山洪灾害分析评价方法与流程

文档序号:12701315阅读:262来源:国知局
一种无资料地区溃堤型山洪灾害分析评价方法与流程
本发明涉及山洪灾害分析评价领域,尤其涉及一种无资料地区溃堤型山洪灾害分析评价方法。
背景技术
:近年来,新疆地区受地形地貌复杂、暴雨、融雪等多种条件的复杂影响,山洪灾害日益突出,不仅对人民群众的生命财产安全构成极大的损害和威胁,还对基础设施造成毁灭性破坏,已经成为当前防灾减灾中的突出问题,是兵团经济、社会可持续发展的主要制约因素之一。目前,山洪灾害评价分析方法多基于水文、气象等数据信息,进行暴雨、洪水计算后,实现溃堤型山洪灾害分析评价。然而,未建水文站的地区无法提供水文数据信息,现有方法在该类地区并不适用。所以需要发明一种无资料地区溃堤型山洪灾害分析评价方法。技术实现要素:本发明的目的在于提供一种无资料地区溃堤型山洪灾害分析评价方法,从而解决现有技术中存在的前述问题。为了实现上述目的,本发明所述无资料地区溃堤型山洪灾害分析评价方法,所述方法包括:S1,获取项目区的基本信息所述基本信息包括:地理位置、社会经济概况、河流水系、地质地貌、土壤类型及分布、气候气象、土地利用类型、历史山洪灾害和山洪灾害防治现状信息;S2,资料评估在工作底图和基本信息的基础上分析获得项目区中任意一个评价对象的地形地貌、河流位置形态和防洪现状;S3,分析评价处理根据评价对象的基础数据,利用水文工具,对评价对象及其周边区域进行小流域水系划分,确定得到的每个小流域的堤防汇流流域的集水面积以及径流成分;S4,设计暴雨计算依据评价对象的基础数据,获取评价对象的暴雨参数计算及暴雨计算,根据分析评价对象所在区域的设计雨型及该评价对象的汇流时间进行分配计算,得到按汇流时间的暴雨时程分配;S5,设计洪水计算应用推理公式法和HEC-HMS模型法设计洪水计算,并通过对比选出更合理的设计洪水计算结果,在评价对象易溃堤河道断面进行水位流量关系计算;S6,防洪现状评价对易溃堤河道防洪现状评价;依据易溃堤河道横断面数据,通过曼宁公式反推易溃堤河道各频率下的流量、水深与水位,与河道蓄水容量进行对比,并考虑对评价对象起保护作用的堤防的设计标准,确定河道防洪现状,进而进行危险区等级划分;S7,预警指标分析根据易溃堤河道的危险区等级建立预警点,通过对防洪堤、退洪渠水流到达分析评价对象的时间分析,确定分析评价对象的预警水位;根据山洪从水位站演进至下游预警对象的时间不应小于30分钟的要求,制定分析评价对象的预警指标。优选地,步骤S2,在工作底图和基本信息的基础上分析获得项目区中评价对象的河流位置形态和地形地貌,具体按照下述步骤实现:将评价对象的DSM数据和DLG数据在GIS软件中叠加,获得工作底图;在工作底图的基础上,结合评价对象的地理概况、气候概况、暴雨区划、年最大24小时暴雨分析、24小时点雨量计算、短历时暴雨分析、时面深关系和设计雨型,通过评价对象的DSM数据,采用GIS软件获得评价对象的坡度图,从坡度图中获取评价对象的地势和坡度;依据评价对象的水文数据、土壤数据和河道数据确定评价对象的河道各参数的取值范围,所述参数包括河道平均干流比降和河道糙率;步骤S2,在工作底图和基本信息的基础上分析获得项目区中评价对象的防洪现状,具体按照下述步骤实现:依据历史山洪资料获取确定评价对象的洪水来源和洪水类型。优选地,步骤S3,根据评价对象的DSM数据和DOM数据,利用SWAT水文工具,对评价对象及其周边区域自动提取小流域地貌特征和进行小流域地形自动分割,得到多个小流域,确定每个小流域的堤防汇流流域的集水面积以及其径流成分,更具体的为:S31,DSM数据预处理对评价对象的DSM数据依次进行一次性填洼处理、真实河道的构建处理、流向计算处理、累积水流计算处理、排水网络确定处理,为小流域边界和沟道的提取做基础准备;S32,小流域和沟道提取首先,利用小流域划分软件一次性提取作业范围内的沟道和小流域边界,对提取的弧段进行平滑处理后,在有水文站、水位站的沟道处添加小流域出口节点;保证小流域及其沟道水流出口位置节点与实际情况相符;其次,参照辅助图层信息,编辑修改沟道和流域边界,得到连续完整的沟道、正确的汇水口和准确的小流域集水单元,即得到小流域的矢量图;所述辅助图层信息包括小流域的遥感信息、河流水系信息、湖泊水库信息、水工设施信息和交通线路信息;S33,计算得到每个小流域集水单元的堤防汇流流域的集水面积以及其径流成分。优选地,步骤S4,具体按照下述步骤实现:S41,设计暴雨参数计算在GIS平台下,将不同时段的点雨量均值图化、不同时段的变差系数图矢量化后,与步骤S3得到的小流域的矢量图层叠加,通过插值得到每个小流域不同时段的暴雨变差系数Cv、偏态系数Cs,通过皮尔逊III型曲线模比系数Kp值表对比,得到每个小流域所对应的Kp值;S42,设计暴雨计算首先,根据获得的设计暴雨参数,求出不同频率、不同时段每个小流域的点雨量;然后,根据山洪灾害评价地区时面深综合曲线,由点雨量乘以点面转换系数,求出每个小流域不同频率、不同时段的设计暴雨面雨量,形成小流域设计暴雨成果表;所述不同频率表示每个小流域的雨量是100年一遇或是50年一遇或是20年一遇或是10年一遇或是5年一遇的雨量;不同时段表示每个小流域的降雨时间段,包括1h、6h和24h;S43,设计暴雨时程分配计算首先,根据S42得到的任意一个小流域24h设计暴雨面雨量,按照该小流域的概化雨型,计算得该小流域的24小时暴雨时程分配,最终得到由每个小流域组成的评价对象的设计暴雨24h时程分配表;设置雨峰所在时段为起始时段,所述起始时段向左、所述起始时段向右均为增加时段,并计算累计时段数,直至所述累计时段数与所计算小流域的汇流时间相差不超过1h,从设计暴雨24h时程分配表获取累计时段数的设计暴雨,即得到按汇流时间的暴雨时程分配。优选地,步骤S5,设计洪水计算,具体按照下述步骤实现:S51,应用推理公式法计算获得洪流流量和汇流历时;具体为使用小流域设计洪水计算方法获得洪流流量和汇流历时;S52,在洪流流量和汇流历时的基础上,应用HEC-HMS模型法计算设计洪水;S54,通过对比选出更合理的设计洪水计算结果,在评价对象易溃堤河道断面进行水位流量关系计算;水位~流量关系分析时,还需考虑评价对象所处河段附近上、下游微地形地貌、滩槽扩宽与束窄、滩地死水区对控制断面有效过流面积的影响;不考虑干流对支流产生的顶托、泥石流、滑坡导致的河床冲淤情况。优选地,步骤S7具体为:S71,确定预警点S72,以预警点所在位置河道断面为分析评价对象,通过对防洪堤、退洪渠水流到达评价对象的时间,确定分析评价对象的临界水位防洪堤、退洪渠水流到达评价对象的时间t采用t=L/V计算,L表示防洪堤、退洪渠与预警点距离,单位m;V表示流速,单位m/s,通过实地测量与经验估算相结合的方式获得流速;若洪水从预警点演进至评价对象的时间小于30min,取堤防高减去30min上涨的水位作为临界水位,若洪水从预警点演进至评价对象的时间大于30min,取堤防高程作为临界水位;S73,因山洪从水位站演进至下游预警对象的时间不应小于30min,结合评价对象的情况,制定分析评价对象的指标;若洪水从预警点演进至评价对象的时间小于30min,取堤防高减去30min上涨的水位作为立即转移的指标,在立即转移的基础上,减去30min的上涨水位作为准备转移的指标;若洪水从预警点演进至评价对象的时间大于30min,取堤防高程作为立即转移的指标,在立即转移的基础上,减去30min的上涨水位作为准备转移的指标。更优选地,步骤S71确定预警点的原则包括:预警点的位置满足设置预警点的目的和要求;预警点满足水位流量关系的稳定;预警点保证各级洪水作业的安全;预警点设置在河岸。本发明的有益效果是:本发明所述方法以实际山洪灾害防治工作中所需要解决的关键技术问题为研究目标,将溃堤型山洪作为主要分析评价对象,提供当前河道防洪现状评价方法及预警指标分析方法。附图说明图1是实施例所述无资料地区溃堤型山洪灾害分析评价方法的流程示意图;图2是应用实例中阿勒泰地区时面深综合曲线;图3是应用实例中新疆阿勒泰地区概化雨型;图4是应用实例中溃堤断面处横断面示意图;图5是应用实例中溃堤断面处水位-流量关系曲线;图6是应用实例中A流域预警点示意图。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。实施例参照图1,本实施例所述无资料地区溃堤型山洪灾害分析评价方法,所述方法包括:S1,获取项目区的基本信息所述基本信息包括:地理位置、社会经济概况、河流水系、地质地貌、土壤类型及分布、气候气象、土地利用类型、历史山洪灾害和山洪灾害防治现状信息;S2,资料评估在工作底图和基本信息的基础上分析获得项目区中任意一个评价对象的河流位置形态、地形地貌和防洪现状;S3,分析评价处理根据评价对象的基础数据,利用水文工具,对评价对象及其周边区域进行小流域水系划分,确定得到的每个小流域的堤防汇流流域的集水面积以及径流成分;S4,设计暴雨计算依据评价对象的基础数据,获取评价对象的暴雨参数计算及暴雨计算,根据分析评价对象所在区域的设计雨型及该评价对象的汇流时间进行分配计算,得到按汇流时间的暴雨时程分配;S5,设计洪水计算应用推理公式法和HEC-HMS模型法进行设计洪水计算,并通过对比选出更合理的设计洪水计算结果,在评价对象易溃堤河道断面进行水位流量关系计算;S6,防洪现状评价首先,对易溃堤河道防洪现状评价;依据易溃堤河道横断面数据,通过曼宁公式反推易溃堤河道各频率下的流量、水深与水位,与河道蓄水容量进行对比,并考虑对评价对象起保护作用的堤防的设计标准,确定河道防洪现状,然后进行危险区等级划分;S7,预警指标分析根据易溃堤河道的危险区等级建立预警点,通过对防洪堤、退洪渠水流到达分析评价对象的时间分析,确定分析评价对象的预警水位;根据山洪从水位站演进至下游预警对象的时间不应小于30分钟的要求,制定分析评价对象的指标。(一)步骤S2,在工作底图和基本信息的基础上分析获得项目区中评价对象的河流位置形态和地形地貌,主要依据工作底图数字正射影像图DOM数据(Digitalorthoimagemap)、数字线划地图DLG数据(Digitlinegraphic)、《新疆维吾尔自治区水文图集》、数字表面模型DSM数据(Digitalsurfacemodel)、水文资料、土壤资料、河道测量资料和历史山洪资料分析河流位置形态、地形地貌和防洪现状。,具体按照下述步骤实现:将评价对象A流域的DSM数据和DLG数据在GIS软件中叠加,获得工作底图,在工作底图的基础上,结合评价对象A流域的地理概况、气候概况、暴雨区划、年最大24小时暴雨分析、24小时点雨量计算、短历时暴雨分析、时面深关系和设计雨型,通过评价对象的DSM数据,采用GIS软件获得评价对象的坡度图,从坡度图中获取评价对象A流域的地势和坡度;依据评价对象的水文数据、土壤数据和河道数据确定评价对象的河道各参数的取值范围,所述参数包括河道平均干流比降和河道糙率;步骤S2,在工作底图和基本信息的基础上分析获得项目区中评价对象的防洪现状,具体按照下述步骤实现:依据历史山洪资料获取确定评价对象的洪水来源和洪水类型。(二)步骤S3,根据评价对象的DSM数据和DOM数据,利用SWAT水文工具,对评价对象及其周边区域自动提取小流域地貌特征和进行小流域地形自动分割,得到多个小流域,确定每个小流域的堤防汇流流域的集水面积以及其径流成分,更具体的为:S31,DSM数据预处理对评价对象的DSM数据依次进行一次性填洼处理、真实河道的构建处理、流向计算处理、累积水流计算处理、排水网络确定处理,为小流域边界和沟道的提取做基础准备;S32,小流域和沟道提取首先,利用小流域划分软件一次性提取作业范围内的沟道和小流域边界,对提取的弧段进行平滑处理后,在有水文站、水位站的沟道处添加小流域出口节点;保证小流域及其沟道水流出口位置节点与实际情况相符;其次,参照辅助图层信息,编辑修改沟道和流域边界,得到连续完整的沟道、正确的汇水口和准确的小流域集水单元,即得到小流域的矢量图;所述辅助图层信息包括小流域的遥感信息、河流水系信息、湖泊水库信息、水工设施信息和交通线路信息;S33,计算得到每个小流域集水单元的堤防汇流流域的集水面积以及其径流成分。SWAT(SoilandWaterAssessmentTool)模型是美国农业部农业研究局开发的基于流域尺度的一个长时段的分布式流域水文模型。模型开发的最初目的是为了预测在大流域复杂多变的土壤类型、土地利用方式和管理措施条件下,土地管理对水分、泥沙和化学物质的长期影响。SWAT模型采用日为时间连续计算,它主要基于SWRRB模型,并吸取了CREAMS、GLEAMS、EPIC和ROTO的主要特征。SWAT具有很强的物理基础,能够利用GIS和RS提供的空间数据信息模拟地表水和地下水的水量和水质,协助水资源管理。基于DSM数据自动提取小流域地貌特征和进行小流域地形自动分割是进行小流域空间模拟的基础技术。基于DSM数据的小流域划分主要包括对洼地的处理、平坦区域的处理、基于D8算法的水流流向确定、流域排水网格的确定、流域边界线的确定、子流域的划分、网格上游汇水面积和伪河道及水库的处理等内容。(三)步骤S4,具体按照下述步骤实现:S41,设计暴雨参数计算在GIS平台下,将不同时段的点雨量均值图化、不同时段的变差系数图矢量化后,与步骤S3得到的小流域的矢量图层叠加,通过插值得到每个小流域不同时段的暴雨变差系数Cv、偏态系数Cs,通过皮尔逊III型曲线模比系数Kp值表对比,得到每个小流域所对应的Kp值;S42,设计暴雨计算首先,根据获得的设计暴雨参数,求出不同频率、不同时段每个小流域的点雨量;然后,根据山洪灾害评价地区时面深综合曲线,由点雨量乘以点面转换系数,求出每个小流域不同频率、不同时段的设计暴雨面雨量,形成小流域设计暴雨成果表;所述不同频率表示每个小流域的雨量是100年一遇或是50年一遇或是20年一遇或是10年一遇或是5年一遇的雨量;不同时段表示每个小流域的降雨时间段,包括1h、6h和24h;S43,设计暴雨时程分配计算首先,根据S42得到的任意一个小流域24h设计暴雨面雨量,按照该小流域的概化雨型,计算得该小流域的24小时暴雨时程分配,最终得到由每个小流域组成的评价对象的设计暴雨24h时程分配表;设置雨峰所在时段为起始时段,所述起始时段向左、所述起始时段向右均为增加时段,并计算累计时段数,直至所述累计时段数与所计算小流域的汇流时间相差不超过1h,从设计暴雨24h时程分配表获取累计时段数的设计暴雨,即得到按汇流时间的暴雨时程分配。(四)步骤S5,设计洪水计算,具体按照下述步骤实现:S51,应用推理公式法计算获得洪流流量和汇流历时;具体为使用小流域设计洪水计算方法获得洪流流量和汇流历时;推理公式法的基本公式包括方程组(1)和方程组(2)所示:公式(1)和公式(2)中,F——小流域集水面积,单位km2;L——小流域最长汇流路径或山洪沟出口断面起沿主河槽至分水岭的最长距离,单位m;t——时间,单位h;J——平均干流比降;n——暴雨衰减指数;Sp——雨力,相当于t=1h的暴雨强度,单位mm/h;m——推理公式中的流域汇流参数;μ——产流期平均损失率;Qmp——洪峰流量,单位m3/s;τ——汇流历时,单位h;tc——产流时间h;对于方程组(1)和方程组(2),只需要确定7个参数:m、μ、F、L、J、n、Sp即可求解;求解方法有图解法和试算法。①、流域汇流参数m计算汇流参数m采用《水利水电工程设计洪水计算规范》(SL44-2006)中《小流域下垫面条件分类表》,根据流域特性、土壤和植被情况,采用类别I中Θ值θ=L/J1/3与m关系选取,见表1所示。表1小流域下垫面条件分类表(类别I)θ值1-1010-3030-9090-400m值1-1.31.3-1.61.6-1.81.8-2.2②、流域产流参数(μ)计算根据《流域暴雨洪水洪峰流量计算》一书的研究成果,产流期的平均损失率μ值与其相应的暴雨强度有下列关系:μ=R×Spr1式中,损失系数R和损失指数r1反映不同下垫面条件,按第二期前期土壤中等湿润取R=1.08,r1=0.75计算而得。③、不同历时降雨强度Rt/t计算:自最大时段净雨开始,向前后相邻时段连续累加得到不同时段的累计雨量,除以相应的历时,得到不同历时降雨强度Rt/t。④、不同历时降雨强度Rt/t与历时t关系分析点绘不同历时降雨强度Rt/t与历时t的关系曲线,得到二者关系图Rt/t~t。⑤、采用试算法或者图解法求解(Qm)及(τ)试算法求解洪峰流量(Qm)和汇流时间(τ)的主要步骤如下:(a)设历时t初值为t1,查第④步计算所得成果Rt/t~t关系图,得历时t1雨强(Rt/t)1;(b)采用此雨强(Rt/t)1,代替公式Qm=0.278×F×(Rt/t)中的雨强(Rt/t)计算得到洪峰流量Qm1;(c)采用上述计算的洪峰流量Qm1,代替公式τ=(0.278×L)/(m×J1/3×Q1/4)中的洪峰流量(Q)计算得到相应的汇流时间τ1;(d)检查t1与τ1是否相等。若t1=τ1,则Q=Qm1,τ=τ1,得到洪峰流量Qm及汇流时间τ1,计算终止;若t1≠τ1,则τ1=τ2查第④步计算所得成果Rt/t~t关系图,得历时t2雨强(Rt/t)2,以此雨强重新开始(b),(c)步骤的计算;以此类推,计算至第i步,得若ti=τi,则Q=Qmi,τ=τi,得到洪峰流量Qm及汇流时间τ。图解法求解洪峰流量Qm和汇流时间τ的主要步骤如下:根据面积大小,设三个整数t,用以上试算法计算相应的Qm及τ值,在方格坐标纸上点绘和两组曲线,两线交点所对应的纵横坐标,即为所求的Qm及τ值。S52,在洪流流量和汇流历时的基础上,应用HEC-HMS模型法计算设计洪水;HEC-HMS水文建模系统是由美国陆军工程师团水文中心(HEC)开发的计算机程序,该程序可以模拟流域降雨—径流及洪水演进过程。结合上述各河段上游集水面积、地形地貌、土壤类别、气候特征等参数,径流计算选用初始常速率损失模型,地表径流模型选用;SCS单位线模型。土壤保护据(SCS)建议了一个参数化的单位线模型,SCS单位线模型的核心是一个无量纲单峰的单位线。该无量纲的单位线将任意时间t的单位线流量Ut表示为一个系数乘以单位线峰值流量UP和单位线峰值时间的分数TP。SCS的研究建议单位线峰值和单位线峰值时间的关系为公式(3):公式(3)中,A——集水区面积,单位km2;C——转换常数,SI单位时为2.08,英尺—英磅单位系统时为484;UP——单位线峰值流量;TP——单位线峰值时间。峰值时间,也被称为涨水时间,与单位净降雨历时的关系为公式(4):公式(4)中,Δt——净降雨历时;tlag——集水区的洪峰延时,其定义为单位线峰值时间与降雨中心位置时间的差。S53,利用马斯京根康吉法计算流域出口至溃堤断面的洪水演进;马斯京根—康吉(Muskingun-Cunge)演进法是基于质量守恒定律和动量守恒定律的演进方法。该方法也常常被称为可变系数法,因为演进参数在每一步时间都根据河道特性和水深被重新计算。该方法能表示洪水波的衰减,并可用于坡度较小的河段。时间间隔选项提供两种选择。程序可以自动选择一个固定的时间间隔,这一间隔在大多数陡升的水文过程中能保持数值计算的稳定性。长度Length为河段的总的长度。坡度slope为整个河段的平均坡度。该马斯京根康吉法基于方程(5):Ot=C1It-1+C2It+C3Qt-1+C4(qLΔx)(5);公式(5)中,Q——下断面流量,单位m3/s;I——上断面流量,单位m3/s;Δt——时间步长,单位h;Δx——距离步长,单位km;qL——侧向入流,单位m3/s;方程(5)中的各个系数公式为:公式(6)至公式(9)中,K——蓄量流量关系曲线的坡度;X——流量比重系数;参数K和X分别符合公式(10):公式(10)和公式(11)中,c——波速,单位m/s;Q0——稳定流量,单位m3/s;B——河宽,单位m;S0——底坡。c、Q和B随时间而变化,因此系数C1、C2、C3、C4也必须是变化的。在HMS中使用Ponce提议的方法,在每一个时间和距离步长Δt和Δx都需重新计算。Δt可选以下值中最小值:(1)控制标准中的用户时间步长;(2)流过河段的运动时间;(3)入流上升到最陡的涨水曲线峰值的时间的1/20,并且舍入到用户时长的倍数或除数。HEC—HMS中按公式(12)计算Δx:Δx=c×Δt(12);Δx的约束条件为:从入流的水文过程线计算为公式(13):公式(13),QB——基流,单位m3/s;Qpeak——入流峰值,单位m3/s。S54,通过对比选出更合理的设计洪水计算结果,在评价对象易溃堤河道断面进行水位流量关系计算;《山洪灾害分析评价技术要求》关于水位~流量关系曲线的获取部分有如下规定:(1)采用水位~流量关系或曼宁公式等方法,进行水位~流量关系分析,将防灾对象河道控制断面设计洪水洪峰流量转换为对应的水位,绘制水位~流量关系曲线。(2)参数确定水位~流量转换中,比降和糙率是两个非常重要的关键参数,二者参数值确定得合理与否,对于设计洪水计算成果具有重要影响。《山洪灾害分析评价方法要求》中推荐了用曼宁公式分析水位~流量关系。在曼宁公式中,比降是指洪水水面比降。但是,在山洪实际发生时,水面比降难以测量,或者有的评价对象直到评价工作开展时也未能获得山洪实际发生的相关资料。因此,关于比降的确定,《山洪灾害分析评价技术要求》中规定了以下原则和方法:(1)如果防灾对象的河道上下游有历史洪水洪痕的沿程分布资料,以洪痕确定水面线,采用洪痕水面线比降作为水位~流量转换中的比降;(2)如果有近年来洪水发生的洪水水面线,采用该水面线比降作为水位~流量转换中的比降;(3)如果有中小洪水发生时的实测水面线,采用该水面线比降作为水位~流量转换中的比降;(4)如果没有水面线信息,可采用防灾对象的河床比降作为水位~流量转换中的比降。为了使所分析的成果尽可能合理,《山洪灾害分析评价技术要求》还明确规定,以上4种确定比降方法中,资料条件允许时,应优先采用第1种方法,然后为第2、3种方法,第4种方法为无资料时采用,并应当通过试算和合理性分析后最后确定。糙率也是设计洪水计算中非常关键的参数,《山洪灾害分析评价技术要求》明确规定,应参照防灾对象所在河流的沟道形态、床面粗糙情况、植被生长状况、弯曲程度以及人工建筑物等因素确定。可见,根据《山洪灾害分析评价技术要求》规定,未涉及糙率随水深而改变的情况,即暗含着控制断面处糙率不随水深而变化这一假定,因此这里的糙率应当理解为过水断面的综合糙率。《山洪灾害分析评价方法指南》提供了通常有基于实测水文资料进行糙率推算、查表法以及糙率公式法3种方法确定河道糙率(郑邦民、槐文信、齐鄂荣编著.洪水水力学.湖北科学技术出版社,2000年):(1)如果有实测水文资料,应采用该资料进行推算,确定水位~流量转换中的糙率;(2)如果无实测水文资料,应根据沟道特征,参照天然或人工河道典型类型和特征情况下的糙率,参考《水工建筑物与堰槽测流规范》(SL537-2011)中表K.0.4中的内容,确定水位~流量转换中的糙率。此外,根据目前掌握的大范围基础资料、技术力量和分析评价的防灾对象情况,以及本申请的主要目的考虑,在水位~流量关系分析中还应注意以下两点:1)水位~流量关系分析时,还需考虑评价对象所处河段附近上、下游微地形地貌、滩槽扩宽与束窄、滩地死水区对控制断面有效过流面积的影响;2)不考虑干流对支流产生的顶托、泥石流、滑坡导致的河床冲淤情况。R=A/P(14);V=(R2/3×J1/2)/n(15);Q=A×V=(A5/3×J1/2)/(P2/3×n)(16);式中:A——过流面积,单位m2;P——湿周,单位m;R——水力半径,单位m;J——河道坡降;n——河道糙率;V——流速,单位m/s;Q——流量,单位m3/s。(五)步骤S7具体为:S71,确定预警点预警点位置的选择好坏对水位预警的准确性十分重要,预警点布设位置的选择主要遵从如下原则:⑴测站的具体位置首先应满足设站的目的和要求。⑵满足水位流量关系稳定性。预警站点的运行是建立在水位流量具有某种关系的基础上,根据这一标准,应选择有利于建立稳定、简单的水位流量关系的地点,以满足关系稳定性标准,这对于取得可靠的观测资料,减轻外业工作量和劳动强度,节约人力物力,具有重要意义。⑶能保证各级洪水作业的安全。溃堤型洪水来源主要是洪水漫过河堤给人民的生命财产带来威胁,因此需在河岸处建立预警点。S72,以预警点所在位置河道断面为分析评价对象,通过对防洪堤、退洪渠水流到达评价对象的时间,确定分析评价对象的临界水位防洪堤、退洪渠水流到达评价对象的时间t采用t=L/V计算,L表示防洪堤、退洪渠与预警点距离,单位m;V表示流速,单位m/s,通过实地测量与经验估算相结合的方式获得流速;若洪水从预警点演进至评价对象的时间小于30min,取堤防高减去30min上涨的水位作为临界水位,若洪水从预警点演进至评价对象的时间大于30min,取堤防高程作为临界水位;S73,因山洪从水位站演进至下游预警对象的时间不应小于30min,结合评价对象的情况,制定分析评价对象的预警指标;若洪水从预警点演进至评价对象的时间小于30min,取堤防高减去30min上涨的水位作为立即转移的指标,在立即转移的基础上,减去30min的上涨水位作为准备转移的指标;若洪水从预警点演进至评价对象的时间大于30min,取堤防高程作为立即转移的指标,在立即转移的基础上,减去30min的上涨水位作为准备转移的指标。应用实例以新疆阿勒泰地区某小流域A为例,此无资料地区溃堤型山洪灾害分析评价方法的具体实施方式如下:1.了解A流域地理位置、社会经济概况、河流水系、地质地貌、土壤类型及分布、气候气象、土地利用类型、历史山洪灾害和山洪灾害防治现状信息。2.资料评估部分,首先将A流域的DLG和DOM数据在GIS软件中叠加,得到工作底图;在《新疆维吾尔自治区水文图集》中收集气象资料;利用NEXTMapWorld10DSM数据对该流域地形情况进行分析,获得坡度图,从坡度图中可以看出,该流域总体地势平坦、坡度缓和,属于《山洪灾害分析评价技术要求》和《山洪灾害分析评价方法指南》中规定的特殊工况;根据《新疆维吾尔自治区水文图集》中对新疆产汇流分区的划分,A流域处在产汇流分区I1区,阿勒泰山南坡,阿勒泰山南坡地处北疆,根据《新疆维吾尔自治区水文图集》,24小时点雨量的CS/CV取3.5;《山洪灾害分析评价方法指南》中提供了美国水土保持局提供的下渗参数,A流域土壤类型以砂壤土为主,损失率范围在3.81~11.43/mm/h;按照《山洪灾害分析评价技术要求》,外业调查人员对A流域可能发生溃堤的断面,做了相应的外业数据采集工作,工作成果包括了相应的3个横断面、一个纵断面;通过在当地走访,获得了A流域曾经发生溃堤的断面及洪水的基本情况;通过分析得,A流域的洪水来源主要是其东边的引水渠和南边的水库。3.分析评价预处理部分,根据DSM、DOM等基础数据,利用SWAT水文工具,对A流域及周边区域进行水系划分,确定集水面积为1988km2。4.设计暴雨计算部分包括设计暴雨参数计算、设计暴雨计算及设计暴雨时程分配计算等内容。4.1暴雨参数计算,如表2:表2A流域设计暴雨参数成果4.2设计暴雨计算,首先,根据获得的设计暴雨参数,求出不同频率、不同时段相应流域的点雨量;接下来,根据《新疆维吾尔自治区水文图集》提供的山洪灾害评价地区时面深综合曲线,得到1h、6h、24h的点面转换系数分别为0.73、0.795、0.918,由点雨量乘以点面转换系数,求出不同频率、不同时段的面雨量,如表3。表3A流域设计暴雨成果表单位:mm标准1005020105频率0.010.020.050.10.2114.0211.498.275.993.93625.7221.2015.4411.347.582439.3132.5123.8317.6111.884.3设计暴雨时程分配计算,《新疆维吾尔自治区水文图集》中提供的A流域所在的新疆阿勒泰地区的概化雨型如图3所示。由4.2节计算得到A流域的24小时的设计暴雨,然后按照概化雨型得到24小时暴雨时程分配,如表4所示。表4A流域设计暴雨24小时时程分配单位:mm表5给出了A流域以时段长为1h的暴雨历时各时段雨量,即设计暴雨时程分配。表5A流域设计暴雨时程分配5.设计洪水计算部分。将推理公式法和利用HMS的两种方法计算结果列于表7,并进行对比,计算相对误差。对表6相对误差分析可知,A流域平均相对误差为2.16%,设计洪峰成果相对误差在允许范围内,HMS水文模型SCS单位线方法所得设计洪峰流量成果较可靠,因此选用HEC-HMS水文建模系统设计洪水计算结果进行后续计算及评价分析。表6设计洪峰流量计算成果单位:m3/s利用马斯京根—春格法演算溃堤断面处的设计洪水成果如表7所示。表7溃堤断面处设计洪水成果单位:m3/s频率p=1%p=2%p=5%p=10%p=20%设计洪水498.1388.1200.2121.254.3断面处横断面示意图如图4,利用曼宁公式得到断面处水位-流量关系曲线如图5。6.防洪现状评价部分A流域的防洪体系主要由其临近的B水库和引水渠构成,根据收集到的资料,B水库的防洪标准为50年一遇。已知溃堤断面处各频率下的设计洪水,根据溃堤断面处的水位流量关系,反推得5种频率洪水水深及其相应的水位,计算结果如表8。表8溃堤断面处水位~流量关系频率流量(m3/s)水深(m)水位(m)P=1%498.13.37615.37P=2%388.12.91614.91P=5%200.21.97613.97P=10%121.21.47613.47P=20%54.30.91612.91经实地测量,预警点1断面处的渠岸高程为615m,通过线性插值,求得水渠的现状防洪能力为60年一遇,结合顶山水库的防洪标准,因此,评价对象一连的现状防洪为50年一遇。7.预警指标分析部分A流域的洪水来源主要是其东边的引水渠,因此需在流域出口与引水渠交点建立预警点,如图6所示。通过对防洪堤、退洪渠水流到达分析评价对象的时间分析,确定各分析评价对象的预警水位。到达时间t采用t=L/V下式计算,通过计算,洪水流到达溃堤断面的时间为9分钟。对于溃堤型山洪灾害,洪水从预警点演进至评价对象的时间小于30分钟,取堤防高减去30分钟上涨的水位作为临界水位,故A流域的临界水位为614.88m。通过采用本发明公开的上述技术方案,得到了如下有益的效果:本发明所述方法以实际山洪灾害防治工作中所需要解决的关键技术问题为研究目标,将溃堤型山洪作为主要分析评价对象,是提供当前河道防洪现状评价方法及预警指标分析方法。以上所述仅是本发明的优选实施方式,应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1