一种真空预压地基分层沉降的自动化监测装置的制作方法

文档序号:29006706发布日期:2022-02-23 19:46阅读:81来源:国知局
一种真空预压地基分层沉降的自动化监测装置的制作方法

1.本实用新型属于地基监测技术领域,尤其是涉及一种真空预压地基分层沉降的自动化监测装置。


背景技术:

2.随着围海造陆工程的大规模推进,大面积吹填软土地基需进行加固处理,真空预压法是目前水运工程软土地基加固采用最有效、最经济的方法。在真空预压过程中,软基会发生沉降,这种沉降表现为浅层土压缩量大、深层土压缩量小,各土层的固结特性及沉降大小不一致的特点。在软基处理施工过程中,通过监测分层沉降及时了解土层内部不同部位的沉降大小和固结压缩情况,对控制工程进度、确保工程质量安全、检验施工方案等方面具有重要意义。
3.目前,对于真空预压区域进行分层沉降监测主要采用电磁式分层沉降仪法,其原理是在不同深度与层位的土层内布置沉降磁环,让分层磁环随所在土层的压缩变形而变化其位置,通过带有磁感应器的探测器的探头,来探出磁环所在的位置,来反映分层土体的沉降。但是,采用电磁式分层沉降仪存在以下问题:
4.(1)受深层土体差异沉降变形影响,沉降管发生弯曲变形,影响监测数据的准确性;
5.(2)需定期复核沉降点管顶标高,并反算出各沉降环的沉降量,测量时需预先制作基准点,但受场地环境施工条件影响,基准点埋设位置距离监测点较远,致使测量人员花费大量时间和体力,且由于测量距离远,连续转点极易产生测量误差,采集数据十分不便;
6.(3)需要钻孔埋设沉降管,费时费力费成本;
7.(4)容易受现场的恶劣天气影响,无法实施测量,影响监测数据的实时性和连续性。
8.因此,为了解决上述技术问题,需要设计一种能够大量节约人力成本、采集数据便捷、监测数据的准确性和精度较高的真空预压地基分层沉降的自动化监测装置。


技术实现要素:

9.本实用新型的目的是提供一种结构简单、操作简单、安装效率高、能够保证监测数据的实时性。监测数据的准确性和精度高的真空预压地基分层沉降的自动化监测装置。
10.本实用新型的技术方案如下:
11.一种真空预压地基分层沉降的自动化监测装置,包括:安装基板、信号发射装置、信号采集终端、用于感应分层沉降的多个感应单元和与感应单元连接用于测量感应单元位移的多个测量单元;
12.多个所述感应单元安装在所述安装基板上,相邻的两个所述感应单元在垂直方向上的间距相同,每个所述感应单元包括滑筒和置于滑筒内的接线环,所述滑筒的外壁固装在安装基板上,所述滑筒的顶部敞口,所述滑筒的一侧开设有滑槽,所述接线环的活动端伸
出滑槽并与滑槽相配合,使接线环在滑槽内上下运动;
13.多个所述测量单元安装在所述安装基板的顶部,每个测量单元各与一所述感应单元对应连接,每个所述测量单元包括外壳、线轴、编码器和拉绳,所述线轴水平安装在外壳内,所述拉绳缠绕在所述线轴上,且该拉绳的活动端与接线环连接,所述编码器安装在所述线轴的一端用于测量线轴上拉绳的位移,所述编码器与所述信号发射装置电连接,接线环带动拉绳产生直线位移,通过编码器将直线位移转换为电信号;
14.所述信号发射装置安装在安装基板的顶部,所述信号发射装置用于采集每个所述测量单元的电信号,并将电信号发送至信号采集终端;
15.所述信号采集终端安装在地基的外部,所述信号采集终端用于接收所述信号发射装置发送的电信号,并处理生成分层沉降的位移量。
16.在上述技术方案中,所述感应单元还包括筒靴和筒帽,所述筒帽安装在所述滑筒的正上方,所述筒靴安装在滑筒的正下方,所述筒帽、滑筒和筒靴位于同一垂直线上。
17.在上述技术方案中,所述感应单元在水平方向上等间距设置,与其对应连接的所述测量单元在水平方向上等间距设置。
18.在上述技术方案中,所述筒帽的顶部开设有供拉绳穿过的通孔,筒帽和筒靴用于在安装基板打设和上拔时,避免接线环受周围土体的影响而发生变形。
19.在上述技术方案中,所述拉绳与接线环的轴心顶端连接。
20.在上述技术方案中,所述安装基板的顶部一侧形成有向外延伸的第一卡板和第二卡板,所述第一卡板位于第二卡板的上方,所述第一卡板与第二卡板平行设置。
21.在上述技术方案中,所述信号发射装置安装在第一卡板上,所述测量单元安装在第二卡板上。
22.在上述技术方案中,所述线轴的两端通过连接板安装在所述外壳的内壁上。
23.在上述技术方案中,所述线轴的内部设有发条,用于保证拉绳的张紧度。
24.在上述技术方案中,相邻的两个所述感应单元在垂直方向上的间距为2m。
25.在上述技术方案中,所述线轴的表面带有螺纹,在拉绳产生位移时带动线轴转动,同时使编码器随线轴的转动而输出电信号。
26.本实用新型具有的优点和积极效果是:
27.1.土层的沉降带动接线环在滑筒内向下运动,带动拉绳产生位移并通过编码器将直线位移转化为电信号,而后发送至信号采集终端实时监测地基土分层沉降量,实现了自动化监测土层沉降量,保证监测数据的连续性和实时性,在本实用新型中首次将位移传感器原理应用在地基分层沉降监测领域中,与传统的电磁式分层沉降仪相比,其施工难度低,采集数据十分便捷。
28.2.根据地基土分层沉降的监测需求调整感应单元的数量和间距,筒帽和筒靴有效保护滑筒和接线环,避免接线环受周围土体的影响而发生变形,有效保证了监测的精确度,滑筒对接线环的移动起到导向和保护作用,保证监测数据的连续性和实时性。
29.3.感应单元和测量单元安装在钢板桩上,依靠打桩机埋设,其安装效率高,提高了现场监测工作的进度,且本实用新型的监测装置的制作成本低,可重复回收利用,降低了监测成本。
附图说明
30.图1是本实用新型的自动化监测装置的平面布置图;
31.图2是图1的a-a剖面图;
32.图3是本实用新型中位移测量单元的结构示意图。
33.图中:
34.1、安装基板
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
2、测量单元
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
3、接线环
35.4、滑筒
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
5、筒靴
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
6、拉绳
36.7、信号发射装置
ꢀꢀꢀꢀꢀꢀꢀꢀ
8、信号采集终端
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
9、第一卡板
37.10、第二卡板
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
11、线轴
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
12、编码器
38.13、外壳
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
14、感应单元
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
15、筒帽
具体实施方式
39.以下结合具体实施例对本实用新型作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本实用新型,并不用于限定本实用新型,决不限制本实用新型的保护范围。
40.实施例1
41.如图所示,本实用新型的一种真空预压地基分层沉降的自动化监测装置,包括:安装基板1、信号发射装置7、信号采集终端8、用于感应分层沉降的多个感应单元14和与感应单元14连接用于测量感应单元14位移的多个测量单元2;
42.多个所述感应单元14安装在所述安装基板1上,相邻的两个所述感应单元14在垂直方向上的间距相同,每个所述感应单元14包括滑筒4和置于滑筒4内的接线环3,所述滑筒4的外壁固装在安装基板1上,所述滑筒4的顶部敞口,所述滑筒4的一侧开设有滑槽,所述接线环3的活动端伸出滑槽并与滑槽相配合,使接线环3在滑槽内上下运动;
43.多个所述测量单元2安装在所述安装基板1的顶部,每个测量单元2各与一所述感应单元14对应连接,每个所述测量单元2包括外壳13、线轴11、编码器12和拉绳6,所述线轴11水平安装在外壳13内,所述拉绳6缠绕在所述线轴11上,且该拉绳6的活动端与接线环3连接,所述编码器12安装在所述线轴11的一端用于测量线轴11上拉绳6的位移,所述编码器12与所述信号发射装置7电连接,接线环3带动拉绳6产生直线位移,通过编码器12将直线位移转换为电信号;
44.所述信号发射装置7安装在安装基板1的顶部,所述信号发射装置7用于采集每个所述测量单元2的电信号,并将电信号发送至信号采集终端8;
45.所述信号采集终端8安装在地基的外部,所述信号采集终端8用于接收所述信号发射装置7发送的电信号,并处理生成分层沉降的位移量。
46.进一步地说,所述感应单元14还包括筒靴5和筒帽15,所述筒帽15安装在所述滑筒4的正上方,所述筒靴5安装在滑筒4的正下方,所述筒帽15、滑筒4和筒靴5位于同一垂直线上。
47.进一步地说,所述感应单元14在水平方向上等间距设置,与其对应连接的所述测量单元在水平方向上等间距设置。
48.进一步地说,所述筒帽15的顶部开设有供拉绳6穿过的通孔,筒帽15和筒靴5用于
在安装基板1打设和上拔时,避免接线环3受周围土体的影响而发生变形。
49.进一步地说,所述拉绳6(采用钢丝拉绳)与接线环3的轴心顶端连接。
50.进一步地说,所述安装基板1(采用钢板桩)的顶部一侧形成有向外延伸的第一卡板9和第二卡板10,所述第一卡板9位于第二卡板10的上方,所述第一卡板9与第二卡板10平行设置。
51.进一步地说,所述信号发射装置7安装在第一卡板9上,所述测量单元2安装在第二卡板10上。
52.进一步地说,所述线轴11的两端通过连接板安装在所述外壳13的内壁上。
53.进一步地说,所述线轴11的内部设有发条,用于保证拉绳6的张紧度。
54.进一步地说,相邻的两个所述感应单元14在垂直方向上的间距为2m。
55.实施例2
56.在实施例1的基础上,多个所述感应单元14根据监测设计要求来确定间隔距离和数量。
57.进一步地说,所述线轴11的表面带有螺纹,在拉绳6产生位移时带动线轴11转动,同时使编码器12随线轴11的转动而输出电信号。
58.实施例3
59.本实用新型的一种真空预压地基分层沉降的自动化监测装置的使用方法,包括以下步骤:
60.(1)根据规范和设计要求的所需监测的地基各土层的深度,确定安装基板1的长度和宽度;
61.(2)按照设计要求利用gps定出多个地基土分层沉降的多个监测点位;
62.(3)按照设计要求确定感应单元14的埋设深度和间隔(通常为2m),而后将第一卡板9、第二卡板10、筒帽15、滑筒4和筒靴5焊接在安装基板1上,并保证筒帽15、滑筒4及筒靴5位于同一垂直线上;
63.(4)将接线环3的轴心顶端与拉绳6轴向连接,而后将接线环3置于滑筒4内,调整拉绳6的长度后,将测量单元2固装在安装基板1的第二卡板10上,完成监测装置的组装;
64.(5)根据设计要求启动打桩机,将安装有监测装置的安装基板1垂直地面打设至设计深度;
65.(6)每个测量单元2均通过导线与信号发射单元电连接,并将信号发射单元安装在安装基板1的第一卡板9上固定;
66.(7)接线环3在地基土分层沉降的作用下沿滑筒4的滑槽向下移动,带动拉绳6产生直线位移,编码器12将直线位移输出一个与拉绳6的直线位移成比例的电信号,信号发送装置将电信号发送至信号采集终端8,使电信号处理生成各土层分层的沉降量,并可利用该沉降量计算出沉降速率。
67.为了易于说明,实施例中使用了诸如“上”、“下”、“左”、“右”等空间相对术语,用于说明图中示出的一个元件或特征相对于另一个元件或特征的关系。应该理解的是,除了图中示出的方位之外,空间术语意在于包括装置在使用或操作中的不同方位。例如,如果图中的装置被倒置,被叙述为位于其他元件或特征“下”的元件将定位在其他元件或特征“上”。因此,示例性术语“下”可以包含上和下方位两者。装置可以以其他方式定位(旋转90度或位
于其他方位),这里所用的空间相对说明可相应地解释。
68.而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件区分开来,而不一定要求或者暗示这些部件之间存在任何这种实际的关系或者顺序。
69.以上对本实用新型做了示例性的描述,应该说明的是,在不脱离本实用新型的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本实用新型的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1