一种高防透复合纤维、织物及其制备方法与流程

文档序号:31524903发布日期:2022-09-14 13:51阅读:51来源:国知局

1.本发明涉及改性功能纤维领域,具体涉及一种高防透复合纤维、织物及其制备方法。


背景技术:

2.功能纤维、差别化纤维和高性能纤维的发展为传统纺织工业的技术创新,向高科技产业的转化创造了有利条件。功能纤维是指除一般纤维所具有的物理机械性能以外,还具有某种特殊功能的新型纤维,是满足某种特殊要求和用途的纤维,即纤维具有某特定的物理和化学性质。常规化学纤维的产量基本能满足社会需求,然而在性能上还有许多不足,不能满足消费者需求,需要对纤维的某些功能加以改进。
3.当前,由于夏季织物浅色轻薄,其视觉遮蔽性能较差,特别是白色面料普遍存在内衣和体肤曝露问题,导致着装者外观不雅,容易造成尴尬,而采用涤棉小帆布等厚重织物或加装里布、衬裤来避免内衣和体肤曝露,会带来穿着舒适性差的问题;另外,在窗帘及其它遮蔽材料领域,同样也需要用防透视效果好的纺织品来进行遮蔽保护。因此,兼具轻薄、色浅的防透纤维织物是人们一项日益增长的需求。
4.光线照射到纺织品后会发生反射、吸收、散射、折射和透射,其中透射的光线到达目标物体后的反射光在纺织品反面经历同样的过程。当前实现纺织品视觉遮蔽效果的研究思路是,尽可能的增大纺织品对可见光的反射、吸收、散射,减少透过纺织品的光量。具体实现方法可以包括纤维截面形状的改变、织物结构参数的设置、添加相关助剂等,但特殊纤维截面的设计方法较为复杂,通过外加添加剂的方法则需要较高的添加量,易造成纤维的力学性能降低,较低的添加量则无法起到理想的遮蔽效果。


技术实现要素:

5.针对上述问题,本发明提供一种高防透复合纤维、织物及其制备方法。
6.本发明的目的采用以下技术方案来实现:一种高防透复合纤维的制备方法,包括以下步骤:(1)将防透功能母粒和高聚物基体干燥后按质量比例(9-20):100混合熔融挤出,熔体经计量后由纺丝组件通过熔融纺丝法制得;其中,所述防透功能母粒由二氧化钛多孔纳米片、分散剂与所述高聚物基体充分混合,经干燥、熔融挤出造粒制得;所述高聚物基体为pet、pbt、ptt或pa;所述二氧化钛多孔纳米片的制备方法包括以下步骤:称取氧化乙烯-氧化丙烯-氧化乙烯嵌段共聚物并加入在乙醇和乙二醇的混合水溶液中,充分混合溶解后,在剧烈搅拌条件下加入可溶性钛盐和六亚甲基四胺,充分混合溶解后与氧化石墨烯纳米片的分散液混合,搅拌回流0.5-1h,将混合溶液体系转入具有聚四氟乙烯内衬的高压反应釜中,在160-170℃下保温反应1-3h,反应完成后冷却至室温,离心
分离沉淀,沉淀依次以去离子水和无水乙醇洗涤,干燥后在空气气氛和400-600℃条件下热处理2-6h,冷却至室温后再依次以去离子水和无水乙醇洗涤,干燥后制得;其中,所述氧化乙烯-氧化丙烯-氧化乙烯嵌段共聚物与所述可溶性钛盐、所述六亚甲基四胺以及氧化石墨烯纳米片的质量比例为(1.5-1.6):1:(2.7-2.8):(0.4-0.5);所述混合水溶液中所述乙醇与所述乙二醇和水的质量比例为1:(3-5):(0.3-0.5)。
7.优选的,所述二氧化钛多孔纳米片与所述分散剂、所述高聚物基体的质量比例为(10-20):(1-2):100。
8.优选的,所述氧化石墨烯纳米片的分散液的制备方法是:将氧化石墨烯纳米片加入到乙二醇溶液中,配制为浓度在0.3-0.5g/l的悬浮液,超声处理1-2h制得。
9.优选的,所述高聚物基体为pa时,所述制备方法还包括以下步骤:(2)在超声条件下,将通过熔融纺丝法制备得到的所述纤维以碱溶液进行漂洗,漂洗完成后以去离子水漂洗至中性,干燥得到枝化纤维;其中,超声功率200-500w,超声漂洗时间1-15min,所述碱溶液的ph值在9-13。
10.优选的,所述制备方法还包括以下步骤:(3)在冰水浴和氮气气氛下,在3,5-二氨基苯甲酸的四氢呋喃溶液中加入三氟醋酸酐,充分混合搅拌后再在常温下搅拌反应2-3h,加入去离子水稀释,继续搅拌反应4-6h,反应完成后以有机溶剂萃取,有机相水洗后脱水干燥,蒸去有机溶剂后干燥,得到产物a;将所述产物a加入到二氯亚砜溶液中,再在100-120℃油浴下搅拌回流4-5h,蒸去未反应的二氯亚砜,加入四氯乙烷稀释,冷却后分离沉淀,以正己烷洗涤后得到产物b;其中,所述3,5-二氨基苯甲酸与所述三氟醋酸酐、所述二氯亚砜的质量比例为10:(38-45):(8.2-8.5);(4)将产物b溶解在n-甲基吡咯烷酮溶液中,将所述枝化纤维浸入,在25-30℃下浸渍0.5-1h,加入去离子水稀释,升温至50-60℃并浸渍0.5-1h,加入水合肼并继续保温浸渍0.5-1h,浸渍完成后取出纤维,以0.01-0.02mol/l的碳酸氢钠溶液洗涤,干燥后得到第一改性纤维;其中,所述产物b与所述水合肼的质量比例为10:(6-6.5);(5)将所述第一改性纤维代替步骤(4)进行浸渍的纤维再次进行步骤(4),干燥后制得。
11.本发明的另一目的在于提供一种高防透复合纤维,所述复合纤维由前述制备方法制备得到。
12.本发明的再一目的在于提供一种高防透织物,所述高防透织物的组成纤维包括前述的高防透复合纤维。
13.本发明的有益效果为:针对现有技术中需要高量添加剂以实现良好视觉遮蔽的问题,本发明在二氧化钛填料的基础上,设计制备了多孔纳米片二氧化钛作为添加剂,具体的,在亲疏水嵌段聚合物的表面活性作用下,以氧化石墨烯纳米片为牺牲剂和模板,可溶性钛盐离子组装在氧化石墨烯纳米片上,再通过氧化气氛下的热处理除去石墨烯并氧化钛盐离子,进而制得二氧化钛多孔纳米片;基于二维纳米片和介孔结构的特点,光线照射到纤维上时,光线容易在片层间、介孔间发生大的反射损耗,极大地增大纤维对可见光的反射、吸收和散射,进而减少透
过纺织品的光量,实现较低的掺量而具有良好视觉遮蔽的效果,兼顾了纤维强度、视觉遮蔽以及遮热性能。为进一步降低填料添加量,本发明在聚酰胺纤维的基础上,通过弱碱溶液超声处理所述纤维,在化学水解和物理剪切的共同作用下对纤维表面进行剥离进而生成大量的纳米纤维分支,使得纤维上下左右之间有相互间隙,进而提供更高的可见光散射,同时,纳米纤维分支间可以形成空气隔离层并破坏空气对流,减少太阳光热量对皮肤的传导;更进一步的,基于剥离生成的纳米纤维分支末端形成的胺基,本发明以3,5-二氨基苯甲酸为接枝体,以三氟乙酰基进行氨基保护,以二氯亚砜进行酰氯化后在纳米纤维分支上进行接枝,再以接枝的二氨基进行二次接枝,在纳米纤维分支上进行分枝改性,进一步增大分枝体积,进而增大可见光散射。
具体实施方式
14.结合以下实施例对本发明作进一步描述。
15.实施例1一种高防透织物,所述织物由高防透复合纤维编织制得,所述高防透复合纤维的制备方法包括以下步骤:将二氧化钛多孔纳米片、乙醇双硬脂酸酰胺与pa6切片按质量比例14:1.2:100混合,经干燥、熔融挤出造粒制得防透功能母粒,将所述防透功能母粒和pa6切片干燥后按质量比例3:20混合熔融挤出,熔体经计量后由纺丝组件通过熔融纺丝法制得;所述二氧化钛多孔纳米片的制备方法包括以下步骤:称取p123并加入在乙醇和乙二醇的混合水溶液中,充分混合溶解后,在剧烈搅拌条件下加入氯化钛和六亚甲基四胺,充分混合溶解后与氧化石墨烯纳米片的分散液混合,搅拌回流0.5h,将混合溶液体系转入具有聚四氟乙烯内衬的高压反应釜中,在160℃下保温反应2h,反应完成后冷却至室温,离心分离沉淀,沉淀依次以去离子水和无水乙醇洗涤,干燥后在空气气氛和450℃条件下热处理3h,冷却至室温后再依次以去离子水和无水乙醇洗涤,干燥后制得;其中,所述p123与所述氯化钛、所述六亚甲基四胺以及氧化石墨烯纳米片的质量比例为1.54:1:2.73:0.45;所述混合水溶液中所述乙醇与所述乙醇和水的质量比例为1:4:0.4;所述氧化石墨烯纳米片的分散液的制备方法是:将氧化石墨烯纳米片(西安齐岳生物科技有限公司)加入到乙二醇溶液中,配制为浓度在0.4g/l的悬浮液,超声处理1-2h制得。
16.实施例2一种高防透织物,所述织物由高防透复合纤维编织制得,所述高防透复合纤维的制备方法包括以下步骤:(1)将二氧化钛多孔纳米片、乙醇双硬脂酸酰胺与pa6切片按质量比例14:1.2:100混合,经干燥、熔融挤出造粒制得防透功能母粒,将所述防透功能母粒和pa6切片干燥后按质量比例3:20混合熔融挤出,熔体经计量后由纺丝组件通过熔融纺丝法制得;所述二氧化钛多孔纳米片的制备方法同实施例1;(2)在超声条件下,将通过熔融纺丝法制备得到的所述纤维以0.01mol/l的氢氧化
钠溶液进行漂洗,漂洗完成后以去离子水漂洗至中性,干燥得到枝化纤维;其中,超声功率350w,超声漂洗时间3min。
17.实施例3一种高防透织物,所述织物由高防透复合纤维编织制得,所述高防透复合纤维的制备方法包括以下步骤:(1)将二氧化钛多孔纳米片、乙醇双硬脂酸酰胺与pa6切片按质量比例14:1.2:100混合,经干燥、熔融挤出造粒制得防透功能母粒,将所述防透功能母粒和pa6切片干燥后按质量比例3:20混合熔融挤出,熔体经计量后由纺丝组件通过熔融纺丝法制得;所述二氧化钛多孔纳米片的制备方法同实施例1;(2)在超声条件下,将通过熔融纺丝法制备得到的所述纤维以0.01mol/l的氢氧化钠溶液进行漂洗,漂洗完成后以去离子水漂洗至中性,干燥得到枝化纤维;其中,超声功率350w,超声漂洗时间3min;(3)在冰水浴和氮气气氛下,在3,5-二氨基苯甲酸的四氢呋喃溶液中加入三氟醋酸酐,充分混合搅拌后再在常温下搅拌反应2h,加入去离子水稀释,继续搅拌反应4h,反应完成后以有机溶剂萃取,有机相水洗后脱水干燥,蒸去有机溶剂后干燥,得到产物a;将所述产物a加入到二氯亚砜溶液中,再在120℃油浴下搅拌回流4h,蒸去未反应的二氯亚砜,加入四氯乙烷稀释,冷却后分离沉淀,以正己烷洗涤后得到产物b;其中,所述3,5-二氨基苯甲酸与所述三氟醋酸酐、所述二氯亚砜的质量比例为10:40:8.3;(4)将产物b溶解在n-甲基吡咯烷酮溶液中,将所述纤维浸入,在常温下浸渍0.5h,加入去离子水稀释,升温至50-60℃并浸渍0.5h,加入水合肼并继续保温浸渍0.5h,浸渍完成后取出纤维,以0.01mol/l的碳酸氢钠溶液洗涤,干燥后得到第一改性纤维;其中,所述产物b与所述水合肼的质量比例为10:6.3;(5)将产物b溶解在n-甲基吡咯烷酮溶液中,将所述第一改性纤维浸入,在常温下浸渍0.5h,加入去离子水稀释,升温至50-60℃并浸渍0.5h,加入水合肼并继续保温浸渍0.5h,浸渍完成后取出纤维,以0.01mol/l的碳酸氢钠溶液洗涤,干燥后制得;其中,所述产物b与所述水合肼的质量比例为10:6.3。
18.实施例4一种防透织物,所述织物由防透复合纤维编织制得,所述防透复合纤维的制备方法包括以下步骤:将二氧化钛纳米粒子(市售)、乙醇双硬脂酸酰胺与pa6切片按质量比例14:1.2:100混合,经干燥、熔融挤出造粒制得防透功能母粒,将所述防透功能母粒和pa6切片干燥后按质量比例3:20混合熔融挤出,熔体经计量后由纺丝组件通过熔融纺丝法制得。
19.实验例实施例1-4所制备的织物为白色,其基本参数参见下表: 组织经(根/10cm)纬(根/10cm)厚度(mm)克重(g/m2)实施例1平纹4303150.19586.163实施例2平纹4163090.19686.037实施例3平纹4073020.19986.532
实施例4平纹4303150.19386.098参考fz/t 01009-2008《织物透光性测定》的方法分别测定实施例1-4所制备的织物的总光量透射比,并测定织物在550nm波长处的透射率,测定结果如下: 实施例1实施例2实施例3实施例4总光通量透射比(%)19.814.08.731.2透射率(%,550nm)18.412.17.429.4最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1