椭圆偏光板的制造方法和使用其的图像显示装置的制作方法

文档序号:2610276阅读:242来源:国知局
专利名称:椭圆偏光板的制造方法和使用其的图像显示装置的制作方法
技术领域
本发明涉及一种椭圆偏光板和使用该椭圆偏光板的图像显示装置。更具体地说,本发明涉及一种以非常高的生产效率制造具有优异的斜向特性并且具有宽频带和宽视角的椭圆偏光板的方法、通过该方法获得的椭圆偏光板和使用该椭圆偏光板的图像显示装置。
背景技术
各自具有组合的偏光膜和相位差板的各种光学膜通常用于各种图像显示装置,例如液晶显示装置和电致发光显示器(EL),从而得到光学补偿。
通常,属于上述光学膜之一的圆偏光板可以通过组合偏光膜和λ/4板来制造。但是,λ/4板具有波长越短、其所提供的相位差值越大的特性,即所谓的“正波长色散特性”,因此,λ/4板通常具有高的正波长色散特性。因此,λ/4板的问题在于其不能在宽的波长范围内显示出所需的光学特性(例如,作为λ/4板的功能)。为避免这一问题,近年来提出了一种相位差板,其具有波长越长、所提供的相位差值越大的波长色散特性,即所谓的“反波长色散特性”,例如聚降冰片烯类膜或改性聚碳酸酯类膜。但是,这样的膜存在成本问题。
目前,将具有正波长色散特性的λ/4板与例如波长越长、所提供的相位差值越大的相位差板或λ/2板相结合,从而校正λ/4板的波长色散特性(例如,参见JP 3174367B)。
在如上所述结合偏光膜、λ/4板和λ/2板的情况下,各光学轴的角度,即,偏光膜的吸收轴与各相位差板的慢轴之间的角度必须进行调整。但是,各自由拉伸膜形成的偏光膜和相位差板的光学轴通常取决于拉伸方向。各个膜必须根据各自光学轴的方向进行切割和层积,从而将这些膜层积为使得其吸收轴和慢轴成所需的角度。具体地说,偏光膜的吸收轴通常与其拉伸方向平行,而相位差板的慢轴也与其拉伸方向平行。因此,为使偏光膜与相位差板以吸收轴与慢轴之间成45°的角度进行层积,必须将上述膜之一以相对于该膜纵向(拉伸方向)45°的方向切割。在膜如上所述进行切割然后粘附的情况下,例如,光学轴之间的角度可以相对于切割膜而变化。这种变化可能会导致产品质量变化的问题以及生产成本高和耗时长的问题。进一步的问题还包括由于切割膜而造成的废品增加和难以制造大型膜的问题。
为解决这些问题,提出了一种通过斜向拉伸偏光膜或相位差板等来调节拉伸方向的方法(例如,参见JP 2003-195037A)。但是,这种方法的问题在于难以调节。
同时,目前偏光膜的吸收轴和各相位差板的慢轴之间的角度均根据产品进行调节,尚未发现优化该角度的广泛适用的方式。

发明内容
为解决上述传统问题而完成本发明,因此本发明的一个目的是提供一种以非常高的生产效率制造具有优异的斜向特性并且具有宽频带和宽视角的椭圆偏光板的方法、通过该方法获得的椭圆偏光板和使用该椭圆偏光板的图像显示装置。
本发明的发明人对偏光片的吸收轴与λ/4板和λ/2板的慢轴之间的关系进行了深入研究,并且发现当吸收轴和各慢轴之间的角度具有特定关系时,可以获得优异的宽频带和宽视角特性,从而完成本发明。
制造本发明的椭圆偏光板的方法包括以下步骤在透明保护膜(T)的表面形成第一双折射层;在透明保护膜(T)的表面层积偏光片;并且通过在第一双折射层的表面层积聚合物膜而形成第二双折射层,其中第一双折射层和偏光片配置在透明保护膜(T)的相反侧;形成第一双折射层的步骤包括以下步骤将含有液晶材料的涂覆液涂覆到经过配向处理的基板上;通过对所涂覆的液晶材料在该液晶材料显示液晶相的温度下进行处理而在基板上形成第一双折射层;并且将基板上形成的第一双折射层转移到透明保护膜(T)的表面;而且,角度α和角度β满足下列表达式(1)所表示的关系2α+40°<β<2α+50°
在这里,α表示偏光片的吸收轴和第一双折射层的慢轴之间形成的角度,并且β表示偏光片的吸收轴和第二双折射层的慢轴之间形成的角度。
在一个优选实施方式中偏光片、透明保护膜(T)、基板上形成的第一双折射层和用于形成第二双折射层的聚合物膜均为连续膜;偏光片、透明保护膜(T)和基板上形成的第一双折射层的长侧被连续地粘附在一起,以便形成依次包括偏光片、透明保护膜(T)、第一双折射层和基板的层积体;将基板从层积体上剥离;并且将剥离掉基板的层积体的长侧和用于形成第二双折射层的聚合物膜的长侧连续地粘附在一起。
在一个优选实施方式中,液晶材料包括液晶单体和液晶聚合物中的至少一种。
在一个优选实施方式中,第一双折射层是λ/2板。
在一个优选实施方式中,第二双折射层为λ/4板。
在一个优选实施方式中,基板是聚对苯二甲酸乙二醇酯膜。
在一个优选实施方式中,聚合物膜是拉伸膜。
本发明的另一个方面提供一种椭圆偏光板。该椭圆偏光板是通过上述制造方法而制造的。
此外,本发明的又一个方面提供一种图像显示装置。该图像显示装置包括上述椭圆偏光板。
如上所述,根据本发明,在对基板的配向处理中,第一双折射层的慢轴可以设定为任意方向,因此可以使用纵向拉伸的连续偏光膜(偏光片)(即,纵向具有吸收轴的膜)。换句话说,在经过了相对于其纵向以预定角度进行的配向处理的基板上形成的连续第一双折射层、连续透明保护膜和连续偏光膜(偏光片)可以被连续地粘附在一起,使得其各自的纵轴为相同方向(通过所谓的辊对辊方式)。因此,可以以非常高的生产效率获得椭圆偏光板。根据本发明的方法,不需要对膜相对于其纵向(拉伸方向)进行斜向切割而层积。结果,光学轴的角度不会由于切割膜而改变,从而不会造成椭圆偏光膜的产品质量的变化。此外,膜的切割不会产生废品,并且可以以低成本获得椭圆偏光板和有助于制造大型偏光板。同时,将基板从依次具有偏光片、透明保护膜、第一双折射层和基板的层积体上剥离。使用在宽度方向进行拉伸并且具有宽度方向的慢轴的聚合物膜作为形成第二双折射层的聚合物膜。因此,剥离掉基板的层积体和聚合物膜的长侧可以被连续地粘附在一起,并且可以以非常高的生产效率获得椭圆偏光板。而且,采用这样的制造方法从而提供膜(层)之间具有优异粘合性的椭圆偏光板。对由此获得的椭圆偏光板进行优化,使其具有角度α和角度β,其中α和β满足表达式2α+40°<β<2α+50°所表示的关系(其中,α表示偏光片的吸收轴和第一双折射层(λ/2板)的慢轴之间形成的角度,并且β表示偏光片的吸收轴和第二双折射层(λ/4板)的慢轴之间形成的角度),从而提供具有宽频带和宽视角的图像显示装置。这种关系是广泛适用的,并且无需通过反复试验来研究每个产品的层积方向。即,这种关系可以用于偏光片、λ/2板和λ/4板的几乎所有组合,从而实现优异的圆偏振特性。结果,圆偏振特性的优化可以被最大限度地普及和促进。


图1是根据本发明的一个优选实施方式的椭圆偏光板的截面示意图;图2是根据本发明的优选实施方式的椭圆偏光板的分解透视图;图3是显示根据本发明制造椭圆偏光板的方法的例子中的一个步骤的轮廓的透视图;图4是显示根据本发明制造椭圆偏光板的方法的例子中的另一个步骤的轮廓的透视图;图5是显示根据本发明制造椭圆偏光板的方法的例子中的又一个步骤的轮廓的示意图;图6是显示根据本发明制造椭圆偏光板的方法的例子中的再一个步骤的轮廓的示意图;图7是显示根据本发明制造椭圆偏光板的方法的例子中的再又一个步骤的轮廓的示意图;图8是显示根据本发明制造椭圆偏光板的方法的实施例中的另一个步骤的示意图;
图9是根据本发明的优选实施方式的用于液晶显示装置的液晶面板的截面示意图。
附图标记说明10 椭圆偏光板11 偏光片12 第一双折射层13 第二双折射层14 第一保护层15 第二保护层20 液晶单元100 液晶面板具体实施方式

A.椭圆偏光板A-1.椭圆偏光板的整体结构图1显示了根据本发明的一个优选实施方式的椭圆偏光板的截面示意图。椭圆偏光板10包括偏光片11、第一双折射层12和第二双折射层13。根据需要,第一保护层(透明保护膜)14配置在偏光片11和第一双折射层12之间,第二保护层15配置在偏光片的第一保护层14的相反侧。
第一双折射层12可用作所谓的λ/2板。在本发明的说明书中,λ/2板指的是具有将具有特定振动方向的线性偏振光转变为振动方向与其垂直的线性偏振光、或将右旋圆偏振光转变为左旋圆偏振光(或将左旋圆偏振光转变为右旋圆偏振光)的功能的板。第二双折射层13可用作所谓的λ/4板。在本发明的说明书中,λ/2板指的是具有将具有特定波长的线性偏振光转变为圆偏振光(或将圆偏振光转变为线性偏振光)的功能的板。
图2是解释构成根据本发明的优选实施方式的椭圆偏光板的各层的光学轴的分解透视图(在图2中,为清楚起见,省略了第二保护层15)。将第一双折射层12层积为使得其慢轴B相对于偏光片11的吸收轴A限定为预定的角度α。将第二双折射层13使得其慢轴C相对于偏光片11的吸收轴A限定为预定的角度β。慢轴是提供最大面内折射率的方向。
在本发明的说明书中,角度α和β的关系用下列表达式(1)表示2α+40°<β<2α+50°...(1)更优选角度α和β之间的关系为2α+42°<β<2α+48°,进一步优选2α+43°<β<2α+47°,更进一步优选β=2α+45°。具有这样的关系的角度α和β提供具有优异的圆偏振特性的偏光板。此外,这种关系是广泛适用的,不需要通过反复试验来研究每个产品的层积方向。即,这种关系可以用于偏光片、λ/2板和λ/4板的几乎所有组合,从而实现优异的圆偏振特性。发现了这样的关系是本发明的一个特征,在与圆偏振特性的优化相关的技术领域是非常有用的成就。
优选角度α为+8°到+38°或者-8°到-38°,更优选+13°到+33°或者-13°到-33°,特别优选+19°到+29°或者-19°到-29°,尤其优选+21°到+27°或-21°到-27°,最优选+23°到+24°或-23°到-24°。因此,在本发明最优选的实施方式中(β=2α+45°),优选角度β为+61°到+121°或-31°到+29°,更优选+71°到+111°或-21°到+19°,特别优选+83°到+103°或-13°到+7°,尤其优选+87°到+99°或-9°到+3°,最优选+91°到+93°或-3°到-1°。考虑到椭圆偏光板的制造过程(下文描述),特别优选角度β基本平行或基本垂直于偏光片的吸收轴。在本发明的说明书中,短语“基本平行”包括成0°±3.0°的角度的情况,优选0°±1.0°,更优选0°±0.5°。短语“基本垂直”包括成90°±3.0°的角度的情况,优选90°±1.0°,更优选90°±0.5°。
优选本发明的椭圆偏光板的总厚度为80到250μm,更优选110到220μm,最优选140到190μm。本发明的椭圆偏光板可以极大地有助于减少液晶显示装置的厚度。后文将详细描述构成本发明的椭圆偏光板的各层。
A-2.第一双折射层如上所述,第一双折射层12可以用作所谓的λ/2板。第一双折射层用作λ/2板,从而适当地调节用作λ/4板的第二双折射层的波长色散特性的相位差(特别是,相位差为超出λ/4的波长范围)。优选波长为590nm时的第一双折射层的面内相位差(Δnd)为180到300nm,更优选210到280nm,最优选230到240nm。面内相位差(Δnd)可以通过方程式Δnd=(nx-ny)×d来确定。在这里,nx和ny如上所述。优选第一双折射层12的折射率分布为nx>ny=nz。在本发明的说明书中,等式“ny=nz”不仅包括ny与nz完全相等的情况,也包括ny与nz基本相等的情况。
第一双折射层的厚度设定为使其最适合用作λ/2板。即,其厚度设定为能够提供所需的面内相位差。具体地说,优选厚度为0.5到5μm,更优选1到4μm,最优选1.5到3μm。
只要能提供上述特性,任意适合的液晶材料可以用作形成第一双折射层的材料。优选具有向列相作为液晶相的液晶材料(向列型液晶)。可以使用的液晶材料的例子包括液晶聚合物和液晶单体。液晶材料的液晶度可通过溶致机制或热致机制获得。而且,优选液晶的配向状态为均匀配向。液晶聚合物或液晶单体可以单独使用或组合使用。
优选用于液晶材料的液晶单体为,例如,聚合性单体和/或交联性单体。如下所述,这是因为液晶材料的配向状态能够通过聚合或交联聚合性单体或交联性单体而固定。例如,液晶材料的配向状态能够通过使液晶单体配向,然后聚合或交联该液晶单体而固定。聚合物通过聚合作用形成,三维网状结构通过交联形成。但是,聚合物和三维网状结构不是液晶性的。因此,所形成的第一双折射层不会因液晶化合物所特有的温度改变而相转变为液晶相、玻璃相或结晶相。因此,第一双折射层是具有优异稳定性并且不受温度改变影响的双折射层。
任意适合的液晶单体可以用作液晶单体。例如,使用JP2002-533742A(WO 00/37585)、EP 358208(US 5211877)、EP 66137(US 4388453)、WO 93/22397、EP 0261712、DE 19504224、DE4408171、GB 2280445等中描述的聚合性液晶原(mesogenic)化合物等。液晶原化合物的具体例子包括购买自BASF集团公司的LC 242(商品名)、购买自Merck公司的E7(商品名)和购买自Wacker-ChemieGmbH公司的LC-Silicone-CC 3767(商品名)。
例如,优选向列型液晶单体作为液晶单体,其具体例子包括下式(1)所表示的单体。液晶单体可以单独使用,或者两种或多种组合使用。
在上式(1)中,A1和A2各自表示聚合性基团,并且可以彼此相同或不同。A1和A2中的一个可以表示氢。每一个X均独立地表示单键、-O-、-S-、-C=N-、-O-CO-、-CO-O-、-O-CO-O-、-CO-NR-、-NR-CO-、-NR-、-O-CO-NR-、-NR-CO-O-、-CH2-O-或-NR-CO-NR-。R表示氢或者具有1至4个碳原子的烷基。M表示液晶原基团。
上式(1)中,多个X可以彼此相同或不同,但是优选相同。
上式(1)所表示的单体中,优选每一个A2均位于A1的邻位。
优选A1和A2各自独立地用下式(2)表示,优选A1和A2表示相同基团。
Z-X-(Sp)n…(2)在上式(2)中,Z表示交联性基团,X与上式(1)中的定义相同。Sp表示由具有1至30个碳原子的取代或非取代的直链或支链烷基所构成的间隔基。n表示0或1。Sp中的碳链可以被醚官能团中的氧、硫醚官能团中的硫、不相邻的亚氨基、具有1至4个碳原子的烷基亚氨基等中断。
在上式(2)中,优选Z表示下式所表示的官能团中的任意一种。在下式中,R的例子包括甲基、乙基、正丙基、异丙基、正丁基、异丁基和叔丁基。
H2C=CH-,HC≡C-, -N=C=O,-N=C=S,-O-C≡N,在上式(2)中,优选Sp表示下式所表示的结构单元的任意一种。在下式中,优选m表示1到3,并且优选p表示1到12。
-(CH2)p-,-(CH2CH2O)mCH2CH2-,-CH2CH2SCH2CH2-,-CH2CH2NHCH2CH2-, 在上式(1)中,优选M用下式(3)表示。在下式(3)中,X与上式(1)中的定义相同。Q表示,例如,取代或非取代的直链或支链的亚烷基或者芳香烃基。例如,Q可以表示具有1至12个碳原子的取代或非取代的直链或支链的亚烷基。
在Q表示芳香烃基的情况下,优选Q表示下式中任意一个所表示的芳香烃基或者其取代类似物。
上式所表示的芳香烃基的取代类似物可以各自在每个芳香环上具有1到4个取代基,或者每个芳香环或芳香基团上具有1到2个取代基。多个取代基可以彼此相同或不同。取代基的例子包括具有1至4个碳原子的烷基;硝基;卤素,例如氟、氯、溴或碘;苯基;以及具有1至4个碳原子的烷氧基。
液晶单体的具体例子包括下式(4)到(19)所表示的单体。
液晶单体显示出液晶度的温度范围根据液晶单体的类型而变化。更具体地说,优选温度范围为40到120°,更优选50到100°,最优选60到90°。
A-3.第二双折射层如上所述,第二双折射层13可用作所谓的λ/4板。根据本发明,用作λ/4板的第二双折射层的波长色散特性通过用作λ/2板的第一双折射层的光学特性进行修正,从而在宽波长范围内显示出圆偏振功能。优选波长为550nm时的第二双折射层的面内相位差(Δnd)为90到180nm,更优选90到150nm,最优选105到135nm。优选第二双折射层的Nz系数(=(nx-nz)/(nx-ny))为1.0到2.2,更优选1.2到2.0,最优选1.4到1.8。而且,优选第二双折射层13的折射率分布为nx>ny>nz。
第二双折射层的厚度被设定为使得第二双折射层最适合用作λ/2板。即,其厚度被设定为提供所需的相位差。具体地说,优选厚度为10到100μm,更优选20到80μm,最优选40到70μm。
第二双折射层通常可以通过对聚合物膜进行拉伸处理而形成。具有所需光学特性(例如折射率分布、面内相位差、厚度方向的相位差和Nz系数)的第二双折射层可以通过适当地选择聚合物的类型、拉伸条件、拉伸方法等获得。
任意适合的聚合物可以用作构成聚合物膜的聚合物。聚合物的具体例子包括聚碳酸酯类聚合物、降冰片烯类聚合物、纤维素类聚合物、聚乙烯醇类聚合物和聚砜类聚合物。
或者,第二双折射层由这样的膜构成该膜由含有聚合性液晶和手性试剂的树脂组合物形成。JP 2003-287623 A中描述了聚合性液晶和手性试剂,其在此引入作为参考。例如,上述树脂组合物被涂覆到任意适合的基板上,并且将其整体加热到该聚合性液晶呈现出液晶状态的温度。因此,聚合性液晶通过手性试剂(具体地说,通过形成胆甾型结构)而配向为扭曲状态。聚合性液晶以这样的状态聚合,从而得到胆甾型结构被固定并配向的膜。调节组合物中的手性试剂的含量,从而改变胆甾型结构的扭转度。结果,可以控制所形成的第二双折射层的慢轴方向。因为慢轴方向能够相对于偏光片的吸收轴设定为除平行和垂直之外的角度,所以这样的膜是非常优选的。
A-4.偏光片根据目的,可以采用任意适合的偏光片作为偏光片11。其例子包括通过在例如聚乙烯醇类膜、部分缩甲醛化的聚乙烯醇类膜或者部分皂化的乙烯/醋酸乙烯酯共聚物类膜之类的亲水性聚合物膜上吸附例如碘或二色性染料等二色性物质,并且对该膜进行单轴拉伸而制备的膜;以及例如聚乙烯醇类膜的脱水产物或聚氯乙烯类膜的脱氯产物之类的聚烯类取向膜。其中,由于高偏振二色性,特别优选通过在聚乙烯醇类膜上吸附例如碘的二色性物质并且对该膜进行单轴拉伸而制备的偏光片。偏光片的厚度没有特别限制,但是通常为大约1到80μm。
通过在聚乙烯醇类膜上吸附碘并且对该膜进行单轴拉伸而制备的偏光片可以如下生产,例如将聚乙烯醇类膜浸入碘的水溶液以进行染色;并且将该膜拉伸到原始长度的3到7倍。根据需要,水溶液可以含有硼酸、硫酸锌、氯化锌等,或者聚乙烯醇类膜可以浸入碘化钾等的水溶液中。而且,根据需要,可以将聚乙烯醇类膜在水中浸润和清洗。
用水清洗聚乙烯醇类膜不仅可以除去膜表面的污物或防粘剂,还可以通过使聚乙烯醇类膜膨胀以防止例如不均匀染色等的不均匀性。可以在用碘对膜进行染色的过程之后、之中或之前对该膜进行拉伸。拉伸可以在硼酸或碘化钾的水溶液中或水浴中进行。
A-5.保护层第一保护层14和第二保护层15各自由能够用作偏光板保护层的任意适合的膜形成。优选该膜为透明保护膜。用作该膜的主要成分的材料的具体例子包括透明树脂,例如纤维素类树脂(例如三乙酰基纤维素(TAC))、聚酯类树脂、聚乙烯醇类树脂、聚碳酸酯类树脂、聚酰胺类树脂、聚酰亚胺类树脂、聚醚砜类树脂、聚砜类树脂、聚苯乙烯类树脂、聚降冰片烯烯类树脂、聚烯烃类树脂、丙烯酸树脂和醋酸纤维素类树脂。其另外的例子包括丙烯酸、氨基甲酸乙酯类、丙烯酸氨基甲酸乙酯类、环氧类或者聚硅氧烷类热固化型树脂或者紫外线固化树脂。其进一步的例子包括玻璃状聚合物,例如聚硅氧烷类聚合物。而且,也可以使用JP 2001-343529 A(WO 01/37007)中描述的聚合物膜。该膜是由含有侧链上具有取代或非取代的酰亚胺基的热塑性树脂、以及侧链上具有取代或非取代的苯基和腈基的热塑性树脂的树脂组合物形成的。其具体例子包括含有异丁烯和N-甲基马来酰亚胺的交替共聚物以及丙烯腈/苯乙烯共聚物的树脂组合物。例如,聚合物膜可以是上述树脂组合物的挤出制品。其中,优选TAC、聚酰亚胺类树脂、聚乙烯醇类树脂和玻璃状聚合物。
优选保护层透明无色。具体地说,优选保护层厚度方向的相位差Rth为-90nm到+90nm,更优选-80nm到+80nm,最优选-70nm到+70nm。
只要能够得到优选的厚度方向的相位差,保护层可以具有任意适合的厚度。具体地说,优选保护层的厚度小于或等于5mm,更优选小于或等于1mm,特别优选1到500μm,最优选5到150μm。
根据需要,位于偏光片表面相反侧的第二保护层的表面(即,偏光板的最外侧部分)可以进行硬膜处理、抗反射处理、防粘处理、防眩处理等。
B.制造椭圆偏光板的方法根据本发明的一个实施方式的制造椭圆偏光板的方法包括以下步骤在透明保护膜(T)的表面形成第一双折射层;在透明保护膜(T)的表面层积偏光片;并且通过在第一双折射层表面层积聚合物膜而形成第二双折射层,其中第一双折射层和偏光片配置在透明保护膜(T)的相反侧,形成第一双折射层的步骤包括以下步骤将含有液晶材料的涂覆液涂覆到经过配向处理的基板上;通过对所涂覆的液晶材料在该液晶材料显示液晶相的温度下进行处理而在基板上形成第一双折射层;并且将在基板上形成的第一双折射层转移到透明保护膜(T)的表面上。这里,椭圆偏光板的角度α和β满足下列表达式(1)所表示的关系2α+40°<β<2α+50°其中,α表示偏光片的吸收轴和第一双折射层的慢轴之间形成的角度,而β表示偏光片的吸收轴和第二双折射层的慢轴之间形成的角度。这样的制造方法提供,例如,如图1所示的椭圆偏光板。
根据目标椭圆偏光板的层积结构,可以适当改变步骤的顺序。例如,层积偏光片的步骤可以在形成或层积双折射层中的任意一层的步骤之后进行。后文将描述各个步骤。
B-1.形成第一双折射层的步骤第一双折射层是在透明保护膜(T)的表面形成的。下面详细描述形成第一双折射层的步骤的具体过程。
首先,将含有液晶材料的涂覆液涂覆到经过配向处理的基板上。
只要能得到合适的本发明的第一双折射层,可以使用任意适合的基板。任意适合的基板可以用作基板。其具体例子包括玻璃基板、金属箔、塑料薄片和塑料膜。注意,在基板上可以配置或不配置配向膜。任意适合的膜可以用作塑料膜。其具体例子包括由例如以下透明聚合物形成的膜聚酯类聚合物,例如聚对苯二甲酸乙二醇酯和聚萘甲酸乙二醇酯;纤维素类聚合物,例如二乙酰基纤维素和三乙酰基纤维素;聚碳酸酯类聚合物;或者丙烯酸聚合物,例如聚甲基丙烯酸甲酯。其另外的具体例子是由例如以下透明聚合物形成的膜苯乙烯类聚合物,例如聚苯乙烯和丙烯腈/苯乙烯共聚物;烯烃类聚合物,例如聚乙烯、聚丙烯、具有环状或降冰片烯结构的聚烯烃,或乙烯/丙烯共聚物;氯乙烯类聚合物;或者酰胺类聚合物,例如尼龙或芳香族聚酰胺。其进一步的具体例子是由例如以下透明聚合物形成的膜酰亚胺类聚合物、砜类聚合物、聚醚砜类聚合物、聚醚醚酮类聚合物、聚苯硫醚类聚合物、乙烯醇类聚合物、偏二氯乙烯类聚合物、乙烯丁缩醛类聚合物、多芳基化物类聚合物、聚氧亚甲基类聚合物、环氧类聚合物或其掺和产物。其中,优选聚对苯二甲酸乙二醇酯(PET)膜。
优选基板的厚度为20到100μm,更优选30到90μm,最优选30到80μm。基板具有处于上述范围内的厚度,因此可以在层积步骤中提供强度以便良好地支撑非常薄的第一双折射层,并提供适当保持的操作性,例如滑动性或辊移动性。
只要能够得到适合的本发明的第一双折射层,可以采用任意适合的配向处理作为基板的配向处理。其例子包括摩擦处理、倾斜淀积方法、拉伸处理、光配向处理、磁场配向处理和电场配向处理。优选摩擦处理。
配向处理的配向方向指的是当层积偏光片时相对于偏光片的吸收轴成预定角度的方向。配向方向基本上与所形成的第一双折射层12的慢轴的方向相同。因此,优选预定角度为+8°到+38°或者-8°到-38°,更优选+13°到+33°或者-13°到-33°,特别优选+19°到+29°或者-19°到-29°,尤其优选+21°到+27°或者-21°到-27°,最优选+23°到+24°或者-23°到-24°。
将含有用于形成第一双折射层的液晶材料的涂覆液涂覆到经过配向处理的基板上,从而在基板上使该液晶材料配向。液晶材料的配向是根据所使用的液晶材料的类型,在该液晶材料显示液晶相的温度下进行处理而进行的。在这样的温度下进行处理,液晶材料转化为液晶态,并且液晶材料根据基板表面的配向方向而配向。因此,在通过涂覆而形成的层上产生双折射,从而形成第一双折射层。
优选含有液晶材料的涂覆液是通过将该液晶材料溶解或分散在合适的溶剂而制备的。
可以溶解或分散液晶材料的任意适合的溶剂均可以用作溶剂。根据液晶材料的类型等适当地选择所使用的溶剂类型。溶剂的具体例子包括卤代烃类,例如氯仿、二氯甲烷(dichloromethane)、四氯化碳、二氯乙烷、四氯乙烷、二氯甲烷(methylene chloride)、三氯乙烯、四氯乙烯、氯苯和邻二氯苯;酚类,例如苯酚、对氯酚、邻氯酚、间甲酚、邻甲酚和对甲酚;芳香烃类,例如苯、甲苯、二甲苯、均三甲苯、甲氧基苯和1,2-二甲氧基苯;酮类溶剂,例如丙酮、甲基乙基酮(MEK)、甲基异丁基酮、环己酮、环戊酮、2-吡咯烷酮和N-甲基-2-吡咯烷酮;酯类溶剂,例如醋酸乙酯、醋酸丁酯和醋酸丙酯;醇类溶剂,例如叔丁醇、甘油、乙二醇、三甘醇、乙二醇一甲醚、二甘醇二甲醚、丙二醇、二丙二醇和2-甲基-2,4-戊二醇;酰胺类溶剂,例如二甲基甲酰胺和二甲基乙酰胺;腈类溶剂,例如乙腈和丁腈;醚类溶剂,例如二乙醚、二丁醚、四氢呋喃和二氧杂环己烷;以及二硫化碳、乙基溶纤剂、丁基溶纤剂和乙基溶纤剂乙酸酯(ethyl cellosolve acetate)。其中,优选甲苯、二甲苯、均三甲苯、MEK、甲基异丁基酮、环己酮、乙基溶纤剂、丁基溶纤剂、醋酸乙酯、醋酸丁酯、醋酸丙酯和乙基溶纤剂乙酸酯。溶剂可以单独使用,或者其中的两种或多种组合使用。
涂覆液中液晶材料的含量根据液晶材料的类型、目标层的厚度等适当地确定。具体地说,优选液晶材料的含量为5到50wt%,更优选10到40wt%,最优选15到30wt%。
根据需要,涂覆液可以进一步含有任意适合的添加剂。添加剂的具体例子包括聚合引发剂和交联剂。当使用液晶单体作为液晶材料时,特别适合使用添加剂。聚合引发剂的具体例子包括过氧化苯甲酰(BPO)和偶氮二异丁腈(AIBN)。交联剂的具体例子包括异氰酸酯(盐)类交联剂、环氧类交联剂和金属螯合物交联剂。添加剂可以单独使用,或者其中的两种或多种联合使用。其他添加剂的具体例子包括抗氧化剂、改性剂、表面活性剂、染料、颜料、防脱色剂和紫外线吸收剂。这些添加剂也可以单独使用,或者其中的两种或多种组合使用。抗氧化剂的例子包括苯酚类化合物、胺类化合物、有机硫类化合物和磷化氢类化合物。改性剂的例子包括二醇类、聚硅氧烷和醇类。表面活性剂用于,例如,使光学膜的表面变光滑。其具体例子包括聚硅氧烷类表面活性剂、丙烯酸表面活性剂和氟类表面活性剂。
涂覆液的涂覆量可以根据涂覆液的浓度、目标层的厚度等适当地确定。在涂覆液中液晶材料的浓度为20wt%的情况下,优选每100cm2基板上的涂覆量为0.03到0.17ml,更优选0.05到0.15ml,最优选0.08到0.12ml。
可以使用任意适合的涂覆方法作为涂覆方法。其具体例子包括辊涂法、旋涂法、缄锭涂法、浸涂法、挤出法、凹版涂法和喷涂法。
接下来,根据基板表面的配向方向使形成第一双折射层的液晶材料配向。根据所使用的液晶材料的类型,通过在该液晶材料显示液晶相的温度下进行处理而使该液晶材料配向。在这样的温度下进行处理使得液晶材料处于液晶态,并且该液晶材料根据基板表面的配向方向而配向。因此,在经过涂覆而形成的层上产生双折射,从而形成第一双折射层。
处理温度可以根据液晶材料的类型而适当地确定。具体地说,优选处理温度为40到120℃,更优选50到100℃,最优选60到90℃。优选处理时间大于或等于30秒,更优选大于或等于1分钟,特别优选大于或等于2分钟,最优选大于或等于4分钟。如果处理时间少于30秒,那么所提供的液晶材料的液晶状态不充分。同时,优选处理时间小于或等于10分钟,更优选小于或等于8分钟,最优选小于或等于7分钟。如果处理时间超过10分钟,那么可能会导致添加剂的升华。
在液晶单体用作液晶材料的情况下,优选对通过涂覆形成的层进一步进行聚合处理或者交联处理。聚合处理使得液晶单体聚合并且固定成为聚合物分子的重复单元。此外,交联处理使得液晶单体形成三维网状结构并且固定成为网状结构的一部分。结果,液晶材料的配向状态被固定。通过液晶单体的聚合或交联所形成的聚合物或者三维结构为“非液晶”。因此,所形成的第一双折射层不会由于液晶分子所特有的温度改变而相转变为液晶相、玻璃相或结晶相。
聚合处理或交联处理的具体过程可以根据所使用的聚合引发剂或交联剂的类型而适当地选择。例如,在使用光聚合引发剂或光交联剂的情况下,可以进行光照射。在使用紫外光聚合引发剂或者紫外线交联剂的情况下,可以进行紫外光照射。光或紫外光的照射时间、照射强度、照射总量等可以根据液晶材料的类型、基板类型、配向处理的类型、第一双折射层的所需特性等适当地设定。
接下来,将在基板上形成的第一双折射层转移到透明保护膜(T)的表面。转移方法没有特别的限制,例如,基板上所支撑的第一双折射层通过粘合剂与透明保护膜(T)粘附在一起。采用这种转移方法,从而以优异的生产效率提供膜(层)之间具有优异粘合性的椭圆偏光板。
粘合剂的典型例子包括固化型粘合剂。固化型粘合剂的典型例子包括光固化型粘合剂,例如紫外光固化型粘合剂;湿固化型粘合剂;以及热固化型粘合剂。热固化型粘合剂的具体例子包括由环氧树脂、异氰酸酯树脂、聚酰亚胺树脂等形成的热固化型树脂类粘合剂。湿固化型粘合剂的具体例子包括异氰酸酯树脂类湿固化型粘合剂。优选湿固化型粘合剂(特别是异氰酸酯树脂类湿固化型粘合剂)。湿固化型粘合剂通过与空气中的水气、吸附在被粘物表面上的水、羧基或羟基等的活性氢基团反应而固化。因此,该粘合剂可以涂覆,然后静置自然固化,并具有优异的可操作性。而且,由于湿固化型粘合剂不需要加热固化,所以第一双折射层和透明保护膜(T)在粘附(粘合)过程中不需要加热。结果,不会发生热收缩,因此即使在本发明的第一双折射层和透明保护膜各自的厚度非常小的情况下,也能够显著地防止层积等过程中开裂的形成。注意,异氰酸酯树脂类粘合剂是聚异氰酸酯粘合剂和聚氨酯树脂粘合剂的通用术语。
例如,可以使用市售的粘合剂作为固化型粘合剂,或者将不同的固化型粘合树脂溶解或分散在溶剂中以制备固化型树脂粘合剂溶液(或分散液)。在制备溶液(或分散液)情况下,优选溶液中固化型树脂的比例为固体含量的0到80wt%,更优选20到65wt%,特别优选25到65wt%,最优选30到50wt%。根据固化型树脂的类型,可以使用任意适合的溶剂作为溶剂,其具体例子包括醋酸乙酯、甲基乙基酮、甲基异丁基酮、甲苯和二甲苯。可以单独使用一种类型的溶剂,或组合使用两种或以上的类型。
根据目的,可以适当地设定粘合剂的涂覆量。例如,优选每单位面积(cm2)第一双折射层或透明保护膜上的涂覆量为0.3到3ml,更优选0.5到2ml,最优选1到2ml。涂覆后,粘合剂中的溶剂根据需要通过自然干燥或加热干燥而蒸发。优选所获得的粘合层的厚度为0.1到20μm,更优选0.5到15μm,最优选1到10μm。优选粘合层的显微硬度为0.1到0.5GPa,更优选0.2到0.5GPa,最优选0.3到0.4GPa。由于已知显微硬度与维氏硬度相互关联,因此显微硬度能够转化成维氏硬度。显微硬度可以通过使用NEC公司生产的薄膜硬度测量仪(例如,商品名,MH 4000或者MHA-400),从压痕深度和压陷负荷计算。
最后,从第一双折射层上剥离基板,从而完成第一双折射层与透明保护膜(T)的层积。
B-2.层积偏光片的步骤偏光片层积在透明保护膜(T)的表面。如上所述,在本发明的制造方法中,偏光片可以在任意的时间点进行层积。例如,偏光片可以预先层积在透明保护膜(T)上、可以在形成第一双折射层之后层积、或者可以在形成第二双折射层之后层积。
任意适合的层积方法(例如粘合)可以用作层积透明保护膜(T)和偏光片的方法。可以使用任意适合的粘合剂或者压敏粘合剂进行粘合。可以根据被粘物(即,透明保护膜和偏光片)的类型适当地选择粘合剂或者压敏粘合剂的类型。粘合剂的具体例子包括丙烯酸、乙烯醇类、聚硅氧烷类、聚酯类、聚氨酯类和聚醚类聚合物粘合剂;异氰酸酯类粘合剂和橡胶类粘合剂。压敏粘合剂的具体例子包括丙烯酸、乙烯醇类、聚硅氧烷类、聚酯类、聚氨酯类、聚醚类、异氰酸酯类和橡胶类压敏粘合剂。
粘合剂或者压敏粘合剂的厚度没有特别限制,但优选10到200nm,更优选30到180nm,最优选50到150nm。
根据本发明的制造方法,第一双折射层的慢轴可以在对基板进行配向处理时设定。因此,可以使用纵向拉伸的连续偏光膜(偏光片)(也就是说,具有纵向吸收轴的膜)。换句话说,相对于其纵向以预定角度进行过配向处理的连续第一双折射层(在基板上形成的第一双折射层)、连续透明保护膜(T)和连续偏光膜(偏光片)可以被连续地粘附在一起,使得其各自的纵向为相同方向。因此,可以以非常高的生产效率获得椭圆偏光板。根据该方法,膜不需要相对于其纵向(拉伸方向)进行斜向切割而层积。结果,光学轴的角度不会由于切割膜而变化,从而导致椭圆偏光板不存在产品质量的变化。而且,不会因切割膜而产生废品,并且可以以低成本获得椭圆偏光板和有助于大型偏光板的生产。偏光片的吸收轴方向基本平行于连续膜的纵向。
B-3.形成第二双折射层的步骤而且,第二双折射层是在第一双折射层的表面形成的。通常,第二双折射层是通过在第一双折射层的表面层积聚合物膜而形成的。优选聚合物膜为拉伸膜。层积方法没有特别限制,并且任意适合的粘合剂或者压敏粘合剂(例如,上述粘合剂或者压敏粘合剂)可以用于层积。
或者,如上所述,将含有聚合性液晶和手性试剂的树脂组合物涂覆到任意适合的基板上,然后将其整体加热到聚合性液晶呈现液晶态的温度。因此,聚合性液晶通过手性试剂(具体地说,通过形成胆甾型结构)以扭曲状态配向。聚合性液晶以这样的状态聚合,从而得到具有固定的胆甾型结构并配向的膜。将膜从基板转移到第一双折射层的表面,从而形成第二双折射层13。
B-4.具体制造过程本发明的制造方法的具体过程的例子参照图3到8描述。在图3到8中,附图标记111、111’、112、112’、113、114、115、116、117、118、118’、119和119’各自表示用于碾压形成各层的膜和/或层积体的辊。
首先,如上所述,制备连续聚合物膜作为偏光片的原料,并且染色、拉伸等。纵向连续拉伸连续聚合物膜。因此,如图3的透视图所示,得到具有纵向(拉伸方向箭头A的方向)吸收轴的连续偏光片11。
同时,如图4A的透视图所示,制备连续基板16,并且使用摩擦辊120对基板表面进行摩擦处理。此时,摩擦方向是与透明保护膜14的纵向不同的方向,例如与其成+23°到+24°或-23°到-24°的角度。接下来,如图4B的透视图所示,如B-1部分所述,在经过摩擦处理的基板16上形成第一双折射层12。第一双折射层12的液晶材料沿着摩擦方向配向,并且其慢轴方向与基板的摩擦方向是基本一致的方向(箭头B的方向)。
接下来,如图5A的示意图所示,透明保护膜(保护层)14、以及第一双折射层12与基板16的层积体121按照箭头的方向传送,并且用粘合剂等(未示出)粘附在一起,使得其各自的纵向为相同方向。在图5A中,附图标记122表示用于将膜粘附在一起的导引辊(同样适用于图6到8)。或者,第二透明保护膜(保护层)15可以粘附到偏光片11的透明保护膜(保护层)14的相反侧。
接下来,如图5B所示,将基板16从层积体123’(包括第二透明保护膜(保护层)15、偏光片11、透明保护膜(保护层)14、第一双折射层12和基板16的层积体)上剥离,该层积体123’是通过使用第二透明保护膜(保护层)15而获得的,从而获得层积体123(包括第二透明保护膜(保护层)15、偏光片11、透明保护膜(保护层)14、第一双折射层12的层积体)。
而且,如图6的示意图所示,制备连续第二双折射层13,将连续第二双折射层13和层积体123(第二透明保护膜(保护层)15、偏光片11、透明保护膜(保护层)14、第一双折射层12的层积体)按照箭头方向传送,并且用粘合剂等(未显示)将其粘附在一起,使得其各自的纵轴为相同方向。
如上所述,第一双折射层12的慢轴方向(角度α)设定为相对于膜的纵向(偏光片11的吸收轴方向)为+23°到+24°或-23°到-24°。此外,表达式β=2α+45°所表示的关系使得角度β为91°到93°或-3°到-1°。即,第二双折射层13的慢轴可以基本垂直于膜的纵向(偏光片11的吸收轴方向)。结果,可以使用在与纵向垂直的方向上横向拉伸的普通拉伸聚合物膜,从而显著地提高生产效率。
在使用含有聚合性液晶和手性试剂的树脂组合物作为第二双折射层13的情况下,可以采用图7A和7B所示的过程。即,如图7A的示意图所示,制备层积体125(通过在基板26上涂覆第二双折射层13形成的层积体)。层积体125和层积体123(包括第二透明保护膜(保护层)15、偏光片11、透明保护膜(保护层)14和第一双折射层12的层积体)按照箭头方向传送,并且用粘合剂等(未显示)将其粘附在一起,使得其各自的纵轴为相同方向。最后,如图7B所示,将基板26从粘附的层积体上剥离。
如上所述,获得本发明的椭圆偏光板10。
下面将描述本发明的制造方法的具体过程的另一个例子。
如上所述和如图3的透视图所示,制造连续偏光片11。而且,如上所述和如图4A和4B的透视图所示,制造具有形成在基板16上的第二双折射层12的层积体121。
接下来,如图8A所示,偏光片11、透明保护膜(保护层)14和第二透明保护膜(保护层)15按照箭头方向传送,并且用粘合剂等(未显示)将其粘附在一起,使得其各自的纵轴为相同方向。结果,获得第二透明保护膜(保护层)15/偏光片11/透明保护膜(保护层)14的层积体126。
然后,如图8B的示意图所示,第二透明保护膜(保护层)15/偏光片11/透明保护膜(保护层)14的层积体126和第一双折射层12/基板16的层积体121按照箭头方向传送,并且用粘合剂等(未显示)将其粘附在一起,使得其各自的纵轴为相同方向。结果,获得第二透明保护膜(保护层)15/偏光片11/透明保护膜(保护层)14/第一双折射层12/基板16的层积体123’。
接下来,如图5B所示,将基板16从层积体123’上剥离,从而获得层积体123(第二透明保护膜(保护层)15/偏光片11/透明保护膜(保护层)14/第一双折射层12的层积体)。
而且,如图6所示,制备连续第二双折射层13,并将连续第二双折射层13和层积体123按照箭头方向传送,并且用粘合剂等(未显示)将其粘附在一起,使得其各自的纵轴为相同方向。
如上所述,第一双折射层12的慢轴方向(角度α)设定为相对于膜的纵向(偏光片11的吸收轴)成+23°到+24°或-23°到-24°。此外,表达式β=2α+45°所表示的关系使得角度β为91°到93°或-3°到-1°。即,第二双折射层13的慢轴可以基本垂直于膜的纵向(偏光片11的吸收轴)。结果,可以使用在与纵向垂直的方向上横向拉伸的普通拉伸聚合物膜,从而显著提高生产效率。
在使用含有聚合性液晶和手性试剂的树脂组合物作为第二双折射层13的情况下,可以采用图7所示的过程。即,如图7A的示意图所示,制备层积体125(通过在基板26上涂覆第二双折射层13形成的层积体)。层积体125和层积体123(包括第二透明保护膜(保护层)15/偏光片11/透明保护膜(保护层)14/第一双折射层12的层积体)按照箭头方向传送,并且用粘合剂等(未显示)将其粘附在一起,使得其各自的纵轴为相同方向。最后,如图7B所示,将基板26从粘附的层积体上剥离。
如上所述,获得本发明的椭圆偏光板10。
B-5.椭圆偏光板的其它组分本发明的椭圆偏光板可以进一步包括另外的光学层。根据目的或者图像显示装置的类型,可以采用任意适合的光学层作为其他光学层。其他光学层的具体例子包括双折射层(相位差膜)、液晶膜、光散射膜和衍射膜。
本发明的椭圆偏光板可以在至少一侧进一步包括胶粘层作为最外层。包括胶粘层作为最外层使得椭圆偏光板与其他部件(例如液晶单元)的层积变得容易,从而可以防止椭圆偏光板从其他部件上剥离下来。任意适合的材料可以用作胶粘层的材料。粘合剂的具体例子包括B-4部分所述的那些。优选使用具有良好的防潮性和耐热性的材料。这是因为这些材料可以防止由于吸潮而造成的起泡或者剥离、由于热膨胀的差异导致的液晶单元的光学特性的退化和变形等。
在实际使用中,胶粘层的表面覆盖有任意适合的隔离物,直到实际使用椭圆偏光板为止,从而可以防止污染。根据需要,隔离物可以使用,例如,聚硅氧烷类、长链烷基类、氟类或者硫化钼释放剂在任意适合的膜上提供释放涂层而在任意适合膜上形成。
本发明的椭圆偏光板的每一层都可以通过用例如水杨酸类化合物、二苯甲酮类化合物、苯并三唑类化合物、丙烯腈类化合物或者镍的络盐类化合物等紫外吸收剂处理等而具有紫外吸收性能。
C.椭圆偏光板的使用本发明的椭圆偏光板适用于多种图像显示装置(例如液晶显示装置和自发光显示装置)。使用椭圆偏光板的图像显示装置的具体例子包括液晶显示装置、EL显示器、等离子体显示器(PD)和场致发射显示器(FED)。用于液晶显示装置的本发明的椭圆偏光板对,例如,视角补偿有用。本发明的椭圆偏光板可用于圆偏振模式的液晶显示器,特别是对均匀配向的TN液晶显示装置、面内切换(IPS)液晶显示装置和垂直配向(VA)液晶显示装置有用。例如,用于EL显示器的本发明的椭圆偏光板对于防止电极反射有效。
D.图像显示装置液晶显示装置作为本发明的图像显示装置的实施例而描述。在这里,还描述用于液晶显示装置的液晶面板。根据目的,除了液晶面板外,可以而采用任意适合的结构用于液晶显示装置的结构。图9是根据本发明的一个优选实施方式的液晶面板的截面示意图。液晶面板100配置有液晶单元20、配置在液晶单元20两侧的相位差板30和30’、以及配置在各相位差板外侧的偏光片10和10’。根据目的和液晶单元的配向模式,任意适合的相位差板可以用作相位差板30和30’。根据目的和液晶单元的配向模式,可以省略相位差板30和30’中的至少一个。偏光板10为如上所述的本发明的椭圆偏光板。偏光板(椭圆偏光板)10被配置为使得双折射层12和13位于偏光片11和液晶单元20之间。偏光板10’是任意适合的偏光板。偏光板10和10’通常被配置为使得各偏光片的吸收轴彼此垂直。如图9所示,优选本发明的椭圆偏光板10配置在本发明的液晶显示装置(液晶面板)的观看侧(上端)。液晶单元20包括一对玻璃基板21和21’、以及配置在基板之间的作为显示介质的液晶层22。一个基板(主动矩阵基板)21’配置有用于控制液晶的电光性能的开关元件(通常为TFT)、以及用于为开关元件提供门信号的扫描线和用于为其提供源信号的信号线(元件和线未显示)。另一个玻璃基板(滤色片基板)21配置有滤色片(未显示)。滤色片也可以配置在主动矩阵基板21′中。基板21和21′之间的距离(单元间隙)通过隔离片(未显示)来控制。例如,将由聚酰亚胺形成的配向层(未显示)配置在与液晶层22相接触的每个基板21和21′的一侧上。
下文中,将通过实施例对本发明进行更详细的描述。但是,本发明不局限于实施例。下面描述实施例中测量性能的方法。
(1)相位差的测量用自动双折射分析仪(王子科学仪器株式会社制造的自动双折射分析仪KOBRA-31 PR)测量样品膜的折射率nx、ny和nz,并且计算面内相位差Δnd和厚度方向的相位差Rth。测量温度为23℃,测量波长为590nm。
(2)厚度的测量使用大塚电子株式会社制造的MCPD-2000通过干涉厚度测量法来测量第一和第二双折射层各自的厚度。各种其它膜各自的厚度用千分尺(dial gauge)测量。
(3)透射率的测量将实施例1获得的相同的椭圆偏光板粘附在一起。使用“DOT-3”(商品名,村上色彩技术研究所制造)测定所粘附的样品的透射率。
(4)对比度的测量同样的椭圆偏光板叠加并且用背光照射。显示白色图像(偏光片的吸收轴彼此平行)和黑色图像(偏光片的吸收轴彼此垂直),使用“EZContrast 160D”(商品名,ELDIM SA公司制造)相对于观看侧的偏光片吸收轴以45°到135°的方向和相对于法线方向从-60°到60°进行扫描。从白色图像的Y值(YW)和黑色图像的Y值(YB)计算斜向对比度“YW/YB”。
(实施例1)I.制备如图1所示的椭圆偏光板I-a.基板的配向处理(制备配向基板)对基板进行配向处理,从而制备配向基板。
基板(1)到(6)使用摩擦布料以下表1所示的摩擦角对聚对苯二甲酸乙二醇酯(PET)膜(厚度为50μm)的表面进行摩擦,从而形成各个配向基板。
表1

I-b.制备第一双折射层(在基板上形成的第一双折射层)将10g显示向列型液晶相的聚合性液晶(Paliocolor LC242,商品名;购买自BASF集团公司)和3g用于聚合性液晶化合物的光聚合引发剂(IRGACURE 907,商品名;购买自汽巴特种化学品公司)溶解于40g甲苯,从而制备涂覆液。使用棒涂覆器,将液晶组合物涂覆到上述制备的配向基板(1)到(6)上,并将其整体在90℃下加热干燥2分钟,从而使液晶配向。使用金属卤化物灯,用1mJ/cm2的光照射由此形成的液晶层,并且使液晶层的配向固化,从而形成各个第一双折射层。
改变液晶涂覆液的涂覆量而调节各第一双折射层的厚度和相位差。表2显示了各个形成的第一双折射层的厚度和面内相位差值(nm)。
表2

I-c.制备第二双折射层在预定温度下单轴拉伸聚碳酸酯膜(厚度为60μm)或降冰片烯类膜(Arton,商品名;JSR株式会社制造;厚度为60μm),从而制备各个第二双折射层。表3显示了所使用的膜的类型(聚碳酸酯膜用PC表示,而降冰片烯类膜用NB表示)、拉伸条件(例如拉伸方向)、角度β(膜的慢轴相对于纵向的角度)和所获得的相位差值。
表3


I-d.制备第二双折射层(II)将显示向列型液晶相的聚合性液晶(Paliocolor LC242,商品名;购买自BASF集团公司)、手性试剂(Paliocolor LC756,商品名;购买自BASF集团公司)和用于聚合性液晶化合物的光聚合引发剂(IRGACURE 907,商品名;购买自汽巴特种化学品公司)以表4所示的各个量溶解于40g甲苯,从而制备液晶涂覆液。同时,将聚对苯二甲酸乙二醇酯挤出(extruded),在140℃下横向拉伸,并且在200℃下重结晶以形成用作基板的膜。使用棒涂布器将液晶涂覆液涂覆到基板膜上,并将其整体在90℃下加热干燥2分钟,从而使液晶配向。使用金属卤化物灯,用1mJ/cm2的光照射由此形成的液晶层,并且使液晶层的配向固化,从而形成各个第二双折射层c1到c3膜。表4还显示的各个c1到c3膜的慢轴相对于偏光片的吸收轴的角度β。c1到c3膜的面内相位差均为120nm,厚度为1.2μm。
表4

I-e.制备椭圆偏光板将聚乙烯醇膜在含碘的水溶液中染色,然后在含有硼酸的水溶液中在不同速率比的辊之间单轴拉伸到6倍长度,从而获得偏光片。
将偏光片、透明保护膜(TAC膜,厚度为40μm)和在基板上形成的第一双折射层按照图5的示意图所示的箭头方向传送,并且使用含有异氰酸酯的湿固化型粘合剂(商品名,M-631N,三井武田化学公司制造)将其粘附在一起,使得其各自的纵轴为相同方向。粘合剂的厚度为5μm。接下来,将基板从所获得的层积体(包括偏光片、透明保护膜(保护层)、第一双折射层和基板的层积体)上剥离,从而获得包括偏光片、透明保护膜(保护层)和第一双折射层的层积体。
随后,如图6的示意图所示,制备连续第二双折射层(a1)到(a7)、以及(b1)和(b2)。将连续第二双折射层和上述获得的层积体按照箭头方向传送,并且使用含有异氰酸酯的湿固化型粘合剂(商品名,M-631N,三井武田化学公司制造)将其粘附在一起,使得其各自的纵轴为相同方向。
同时,如图7A所示,制备各自在连续基板上形成的第二双折射层(c1)到(c3)。将第二双折射层和上述获得的层积体按照箭头方向传送,并且使用含有异氰酸酯的湿固化型粘合剂(商品名,M-631N,三井武田化学公司制造)其粘附在一起,使得其各自的纵轴为相同方向。最后,如图7B所示,将基板从粘附的层积体上剥离。而且,将透明保护膜(TAC40μm)粘附到偏光片的相反侧。
如上所述和如表5所示,获得椭圆偏光板A01到A21。
表5


(实施例2)重叠椭圆偏光板A01以测量对比度。表1显示,椭圆偏光板具有由表达式β=2α+44°所表示的关系。对于该椭圆偏光板,当对比度为10时,在所有方向上最小角度为40°,最大角度为50°,最大与最小角度的差值为10°。在实际使用中,当所有方向上的对比度均为10时,最小角度为40°为优选水平。而且,最大与最小角度之间的差值只有10°,因此椭圆偏光板具有平衡的视觉特性,在实际使用中也为非常优选的水平。
(实施例3)重叠椭圆偏光板A21以测量对比度。表1显示,椭圆偏光板具有由表达式β=2α+44°所表示的关系。对于该椭圆偏光板,当对比度为10时,在所有方向上最小角度为40°,最大角度为60°,最大与最小角度的差值为20°。在实际使用中,当所有方向上的对比度均为10时,最小角度为40°为优选水平。
(比较实施例1)重叠椭圆偏光板A11以测量对比度。表1显示,椭圆偏光板具有由表达式β=2α+64°所表示的关系。对于该椭圆偏光板,当对比度为10时,在所有方向上最小角度为30°,最大角度为50°,最大与最小角度的差值为20°。在实际使用中,当所有方向上的对比度均为10时,最小角度为30°不是合适的水平。
(比较实施例2)重叠椭圆偏光板A13以测量对比度。表1显示,椭圆偏光板具有由表达式β=2α+24°所表示的关系。对于该椭圆偏光板,当对比度为10时,在所有方向上最小角度为30°,最大角度为50°,最大与最小角度的差值为20°。在实际使用中,当所有方向上的对比度均为10时,最小角度为30°不是合适的水平。
实施例1显示,根据本发明的制造方法,通过辊对辊方式,将在经过配向处理以形成相对于纵向的预定角度的连续基板上形成的第一双折射层、连续透明保护膜、连续偏光膜(偏光片)和第二双折射层连续地粘附在一起,使得其各自的纵轴为相同方向,从而以优异的生产效率提供椭圆偏光板。
此外,实施例2和3以及比较实施例1和2的结果显示,本发明通过使偏光片的吸收轴与第一双折射层的慢轴之间形成的角度α和偏光片的吸收轴与第二双折射层的慢轴之间形成的角度β以表达式2α+40°<β<2α+50°所表示的关系进行优化,从而使对比度为10时在所有方向上最小角度为40°,并且可以确保在实际使用中为优选水平。具体地说,实施例2中最大角度和最小角度的差值减少到10°,提供了高度平衡的视觉特性,并且在实际使用中也是非常优选的水平。相反,比较实施例中的角度α和β不满足上述关系,其结果显示,比较实施例中的椭圆偏光板在对比度为10时,在所有方向上的最小角度为30°,在实际使用中不是合适的水平。
工业实用性通过本发明的制造方法获得的椭圆偏光板可以适用于多种图像显示装置(例如,液晶显示装置和自发光显示装置)。
权利要求
1.一种制造椭圆偏光板的方法,该方法包括以下步骤在透明保护膜(T)的表面形成第一双折射层;在透明保护膜(T)的表面层积偏光片;和通过在第一双折射层表面层积聚合物膜而形成第二双折射层,其中所述第一双折射层和偏光片配置在所述透明保护膜(T)的相反侧;形成第一双折射层的步骤包括以下步骤将含有液晶材料的涂覆液涂覆到经过配向处理的基板上;通过对所涂覆的液晶材料在该液晶材料显示液晶相的温度下进行处理而在基板上形成第一双折射层;和将在基板上形成的第一双折射层转移到透明保护膜(T)的表面上;并且角度α和β满足下列表达式(1)所表示的关系2α+40°<β<2α+50°(1)在这里,α表示所述偏光片的慢轴和所述第一双折射层的慢轴之间形成的角度,并且β表示所述偏光片的吸收轴和所述第二双折射层的慢轴之间形成的角度。
2.根据权利要求1所述的方法,其中所述偏光片、透明保护膜(T)、在基板上形成的第一双折射层和用于形成第二双折射层的聚合物膜各自为连续膜;所述偏光片、透明保护膜(T)和在基板上形成的第一双折射层的长侧被连续地粘附在一起以形成层积体,该层积体依次包括所述偏光片、透明保护膜(T)、第一双折射层和基板;将所述基板从所述层积体上剥离;并且将剥离掉所述基板的层积体和所述用于形成第二双折射层的聚合物膜的长侧连续地粘附在一起。
3.根据权利要求1或2所述的方法,其中所述的液晶材料包括液晶单体和液晶聚合物中的至少一种。
4.根据权利要求1到3的任意一项所述的方法,其中所述第一双折射层包括λ/2板。
5.根据权利要求1到4的任意一项所述的方法,其中所述第二双折射层包括λ/4板。
6.根据权利要求1到5的任意一项所述的方法,其中所述基板为聚对苯二甲酸乙二醇酯膜。
7.根据权利要求1到6的任意一项所述的方法,其中所述聚合物膜包括拉伸膜。
8.一种椭圆偏光板,其是通过权利要求1到7的任意一项所述的方法制造的。
9.一种图像显示装置,其包括权利要求8所述的椭圆偏光板。
全文摘要
本发明提供一种以非常高的生产效率制造具有宽频带和宽视角并且具有优异的斜向特性的椭圆偏光板的方法、该椭圆偏光板和使用该椭圆偏光板的图像显示装置。制造本发明的椭圆偏光板的方法包括以下步骤在透明保护膜(T)的表面形成第一双折射层;在透明保护膜(T)的表面层积偏光片;并且通过在第一双折射层表面层积聚合物膜而形成第二双折射层,其中第一双折射层和偏光片配置在透明保护膜(T)的相反侧;形成第一双折射层的步骤包括以下步骤将含有液晶材料的涂覆液涂覆到经过配向处理的基板上;对所涂覆的液晶材料在该液晶材料显示液晶相的温度下进行处理而在基板上形成第一双折射层;并且将在基板上形成的第一双折射层转移到透明保护膜(T)的表面上;并且角度α和β满足预定关系(在这里,α表示偏光片的慢轴和第一双折射层的慢轴之间形成的角度,β表示偏光片的吸收轴和第二双折射层的慢轴之间形成的角度)。
文档编号G09F9/00GK1926451SQ2005800064
公开日2007年3月7日 申请日期2005年12月8日 优先权日2005年2月25日
发明者川本育郎, 梅本清司, 上条卓史, 米泽秀行, 秦和也 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1