一种像素补偿电路的制作方法

文档序号:16587216发布日期:2019-01-14 18:35阅读:187来源:国知局
一种像素补偿电路的制作方法

本发明涉及液晶面板显示领域,尤其涉及一种液晶面板消除显示不均匀的电路设计。



背景技术:

有机发光二极管(organiclightemittingdiode,oled)依驱动方式可分为被动式矩阵驱动(passivematrixoled,pmoled)和主动式矩阵驱动(activematrixoled,amoled)两种。其中,pmoled是当数据未写入时并不发光,只在数据写入期间发光。这种驱动方式结构简单、成本较低、较容易设计,主要适用于中小尺寸的显示器。

最后,am代表activematrix,是相对于passivematrix而言的,是指每个oled像素的驱动方式。在passivematrix中,每个像素的控制是通过一个复杂的电极网络来实现的,从而实现某个像素的充放电,总体来说,passivematrix的控制方式相对速度较慢,控制精度也稍低。而与passivematrix不同,activematrix则是在每个led上都加装了tft和电容层,这样在某一行某一列通电激活相交的那个像素时,像素中的电容层能够在两次刷新之间保持充电状态,从而实现更快速和更精确的像素发光控制。

由于amoled面板上的电压vdd于每个像素间都连接在一起,当驱动发光时,电压vdd上会有电流流过。考虑到vdd金属线本身具有阻抗,会有压降存在,造成每一像素的vdd会出现差异,导致不同像素间存在电流差异。如此一来,流经oled的电流不同,所产生的亮度也不同,进而amoled面板不均匀。另外,由于制程的影响,每一像素中的薄膜晶体管的阈值电压均不相同,即使提供相同数值的电压vdata,其所产生的电流仍然会有差异,这

也将造成面板不均匀。此外,如果采用像素补偿电路对上述电压进行补偿,大部分补偿电路又会受限于扫描时间太短而影响补偿效果。

有鉴于此,如何设计一种用于amoled面板的像素补偿电路,以有效地改进或消除上述面板不均匀等诸多缺陷,是业内相关技术人员亟待解决的一项课题。



技术实现要素:

为此,需要提供一种能够解决液晶面板显示过程中,补偿显示电压使得液晶面板能够显示得更为均匀的方法,

为实现上述目的,发明人提供了一种像素补偿电路,薄膜晶体管t1、t2、t4、t5、t6,所述t5的源端与工作电压vdd连接,控制端与控制信号em连接,漏端与t1的源端连接,所述薄膜晶体管t1的源端与t2的漏端连接,t2的控制端接n级扫描信号,源端接工作电压vdata;t1的控制端还与t4的源端连接,t4的控制端与控制信号em连接,t4的漏端与t6的漏端连接,t6的源端与t1的漏端连接,控制端接n级扫描信号。

具体地,还包括薄膜晶体管t3,所述t3的源端与t1的源端连接,漏端与t1的控制端连接,t3的控制端与n级扫描信号连接。

进一步地,还包括电容,所述电容的一端与t1的控制端连接,另一端与t4的源端连接。

区别于现有技术,上述技术方案本发明藉由五个开关、一个oleddevice构成6t1c架构,从而将该像素补偿电路的运作时序依次划分为复位和阈值电压提取阶段期间、数据储存期间和发光期间,由于第四开关在复位和阈值电压提取期间、数据写入和发光期间均处于关断状态,oled上并不会发光,延长了oled的使用寿命。此外,t1晶体管在发光期间处于开通状态,流经oled的电流第一晶体管的阈值电压无关,该补偿电路能补偿因tft电性退化而造成驱动电流变化,以达到像素补偿和面板亮度均匀的效果。

附图说明

图1为具体实施方式所述的6t1c电路设计原理图;

图2为具体实施方式所述的补偿讯号示意图;

图3为具体实施方式所述的复位阶段示意图;

图4为具体实施方式所述的阈值电压提取阶段示意图;

图5为具体实施方式所述的电路工作时序图;

图6为具体实施方式所述的电路工作时序图;

图7为具体实施方式所述的仿真结果图。

具体实施方式

为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合具体实施例并配合附图详予说明。

图1所示的实施例中,展示了我们的6t1c电路示意图,薄膜晶体管t1、t2、t4、t5、t6,所述t5的源端与工作电压vdd连接,控制端与控制信号em连接,漏端与t1的源端连接,所述薄膜晶体管t1的源端与t2的漏端连接,t2的控制端接n级扫描信号,源端接工作电压vdata;t1的控制端还与t4的源端连接,t4的控制端与控制信号em连接,t4的漏端与t6的漏端连接,t6的源端与t1的漏端连接,控制端接n级扫描信号。具体地又如图1所示,还包括薄膜晶体管t3,所述t3的源端与t1的源端连接,漏端与t1的控制端连接,t3的控制端与n级扫描信号连接。进一步地,还包括电容,所述电容的一端与t1的控制端连接,另一端与t4的源端连接。上述设计方案即为图1所示的补偿电路原理图,总计六个tft晶体管和一个电容,即6t1c设计,晶体管为n型结构。杉树oled补偿电路课有效抑制驱动晶体管阈值电压变化和ovdd阻抗阻抗不均对oled器件发光亮度的影响,具体原理将在下文中说明。

图2是给出了本发明补偿讯号示意图,共计四个阶段,分别为复位阶段t1、阈值电压提取和数据写入阶段t2、维持阶段t3和发光期间t4。更具体地,在复位阶段,主要复位a和b点电压,在补偿阶段主要提取t1tft的vth,在维持阶段,各电位电压不变,最后在发光阶段,在驱动oleddevice时,提取oled的驱动电压(阳极电压)实现对oleddevice补偿。以下为各阶段的具体过程

图3的实施例中展示了t1复位阶段:scan和em讯号全部为高电位,t1~t6tft全部打开,此时c点电位为vdata,a点电位为vdd,b点电位为vref,其中vdd为高电压,保证t1tft能够打开,vref为低电位,保证oleddevice关闭,此阶段完成a、b和c节点电位的复位;此过程时间极短,故对不同讯号间的串扰影响较小。

图4展示了t2阈值电压提取阶段的工作模式:t5和t4tft关闭,其它tft仍正常打开,c和b点电压维持不变,分别为vdata和vref电压,而a点电压发生变化,a点在这个阶段的起始电压为vdd,由于t1tft打开,a点电压会慢慢变低,a点电压会经t3、t1和t6流向vref,当a点和b点电压差vgs(t1)=vth时,t1关闭,此时a点电压变为vref+vth。a点电压与t1tftvth相关,完成t1tftvth提取。

图5scan和em讯号都为低电位,所有的tft都是关闭状态,故各点电位保持不变。

图6scan仍为低,em讯号变成高电位,t2、t5和t4tft打开,其它的tft处于关闭状态,

此时各点电位变化如下:

由于此时oled处于发光阶段,b点电位为oled驱动电压v_oled

b:v_oled

t2tft打开,c点电位由vdata转变为vref

c:vref

a点电位会受到电容c耦合效应,电容c两端在t2和t3阶段的电压分别是vdata(c点)和vth+vref(a点),当到t4阶段时,c点电压变为v_oled,故a点电压变为:

a:2*vref+vth-vdata

上述结果是认为a点电位是受电容100%耦合效应,即a点处电容c外无其它寄生电容。

有饱和区电流公式ioled=1/2*k*(vgs_t4-vth)2可得,oled器件的最终驱动电流为:

ioled=1/2k(2vref-vdata-v_oled)^2(k是与tft的size、mobility等相关的参数),

ioled只有数据讯号与vth_t1和vdd无关;进而补偿t1晶体管的阈值电压飘逸和vdd的ir_drop。

图7给出本发明的仿真结果,与传统的2t1c比较,本发明的补偿电路对tft有很好的补偿效果。

需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1