一种OLED像素补偿电路及OLED像素补偿方法与流程

文档序号:28272253发布日期:2021-12-31 20:00阅读:269来源:国知局
一种OLED像素补偿电路及OLED像素补偿方法与流程
一种oled像素补偿电路及oled像素补偿方法
技术领域
1.本发明涉及显示技术领域,具体涉及了一种oled像素补偿电路及oled像素补偿方法。


背景技术:

2.近年来,有机发光二极管(organic light

emitting diode,oled)由于其自发光、高响应速度、广视角、高对比度、低功耗、轻薄、耐高低温及可柔性等特性,广泛的应用于智能手机、电视、移动可穿戴设备和微显示器上。
3.通常有机发光二极管的发光亮度和电流成正比,而电流是由驱动薄膜晶体管提供的,与驱动薄膜晶体管的特性参数相关。有机发光二极管驱动电流的公式为:i
oled
=1/2
µ
n
c
ox
w/l(vgs

vth)2,其中
µ
n
是和驱动薄膜晶体管的电子迁移率有关的参数,c
ox
、w/l是和薄膜晶体管的沟道大小有关的参数,vgs和电源电压与有机发光二极管驱动电压有关。可知影响有机发光二极管电流大小的参数有薄膜晶体管的电子迁移率、阈值电压vth,有机发光二极管的驱动电压以及电源电压的大小。oled补偿技术的主要目的就是要消除这些因素的影响,最终让所有像素的亮度达到理想值。
4.目前oled 存在一些问题,例如由于低温多晶硅(ltps,low temperature poly

silicon)和金属氧化物(metal oxide)薄膜晶体管的工艺制程的影响,不同位置的薄膜晶体管阈值电压vth的不均匀性,造成有机发光二极管的电流差异和亮度差异,并被人眼感知,即mura现象,而且有机发光二极管本身也会随着点亮之间的增加亮度逐渐衰减。这些问题难以在工艺上克服,所以亟需在设计上通过补偿来解决。


技术实现要素:

5.针对现有技术的不足,本发明提供一种不仅能够有效补偿驱动薄膜晶体管的阈值电压漂移,还能够补偿有机发光二极管电性恶化引起的亮度变化,提高有机发光二极管的显示品质的oled像素补偿电路。
6.本发明的一种oled像素补偿电路,采用以下技术方案:其包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管、第七薄膜晶体管、有机发光二极管以及补偿电容;所述第一薄膜晶体管的漏极接入直流高压电源的传输端,第一薄膜晶体管的栅极接入第一扫描信号传输端,第一薄膜晶体管的源极分别连接所述第二薄膜晶体管的漏极和所述第四薄膜晶体管的漏极;所述第二薄膜晶体管的栅极接入第二扫描信号传输端,第二薄膜晶体管的源极连接a节点;所述第三薄膜晶体管的栅极接入第二扫描信号传输端,第三薄膜晶体管的源极连接b节点;所述第四薄膜晶体管的栅极连接所述a端,第四薄膜晶体管的源极连接c节点;
所述第五薄膜晶体管的栅极接入开关信号传输端,第五薄膜晶体管的漏极连接b节点,第五薄膜晶体管的源极连接有机发光二极管的阳极;所述第六薄膜晶体管的栅极接入第三扫描信号传输端,第六薄膜晶体管的漏极接入参考电压传输端,第六薄膜晶体管的源极连接c节点;所述第七薄膜晶体管的栅极接入开关信号传输端,第七薄膜晶体管的漏极连接c节点,第七薄膜晶体管的源极连接有机发光二极管的阳极;所述补偿电容的两端分别连接a节点和b节点;所述有机发光二极管的阴极接入公共接地电压传输端。
7.进一步,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管、第六薄膜晶体管和第七薄膜晶体管均为n型薄膜晶体管。
8.进一步,所述第一扫描信号、第二扫描信号、第三扫描信号以及所述开关信号均通过外部时序驱动电路提供。
9.一种oled像素补偿方法,应用于以上任意一种oled像素补偿电路,其包括:复位阶段:所述第一扫描信号传输端和第二扫描信号传输端为高电位,所述第三扫描信号传输端和开关信号传输端为低电位,所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管和第四薄膜晶体管打开,所述第五薄膜晶体管、第六薄膜晶体管、第七薄膜晶体管关闭,保证有机发光二极管关闭,此时a点电压为直流高压电源的传输端的电压,b点电压为数据信号传输端的电压,此阶段完成a、b点电位的复位;补偿阶段:第二扫描信号传输端和第三扫描信号传输端为高电位,第一扫描信号传输端和开关信号传输端为低电位,第二薄膜晶体管、第三薄膜晶体管和第四薄膜晶体管和第六薄膜晶体管打开,第一薄膜晶体管、第五薄膜晶体管和第七薄膜晶体管关闭,b点电位不变,仍为数据信号传输端的电压,由于第六薄膜晶体管打开,c点电压为参考电压传输端的电压,a点的起始电压为直流高压电源的传输端的电压,但由于第四薄膜晶体管打开, a点的电压会慢慢降低, a点电压会经第二薄膜晶体管、第四薄膜晶体管和第六薄膜晶体管流向参考电压传输端,当a点和c点电压差等于第四薄膜晶体管的阈值电压时,第四薄膜晶体管关闭,此时a点电压为参考电压传输端电压与阈值电压的和,完成第四薄膜晶体管的阈值电压提取。
10.数据存储阶段:所述第一扫描信号传输端、第二扫描信号传输端、第三扫描信号传输端和开关信号传输端均为低电位,所有的薄膜晶体管均为关闭状态,各点电压保持不变。
11.发光阶段:第二扫描信号传输端和第三扫描信号传输端仍为低电位,第一扫描信号传输端和开关信号传输端为高电位,第一薄膜晶体管、第四薄膜晶体管、第五薄膜晶体管和第七薄膜晶体打开,第二薄膜晶体管、第三薄膜晶体管和第六薄膜晶体管关闭,此时有机发光二极管处于发光阶段,c点电位为有机发光二极管驱动电压,由于第五薄膜晶体管打开,b点电位为有机发光二极管驱动电压,a点电位会受到补偿电容耦合效应,补偿电容两端在所述补偿阶段和数据存储阶段的电压分别为a点和b点的电压,即a点电压为参考电压传输端电压与阈值电压的和,b点的电压为数据信号传输端电压,当发光时,b点电位为有机发光二极管驱动电压,所以a点电压变为:参考电压传输端电压+阈值电压

数据信号传输端电压+有机发光二极管驱动电压,完成有机发光二极管的补偿。
12.本发明的与现有技术相比,本发明的有益效果:本发明的像素补偿电路采用7个薄
膜晶体管,1个补偿电容和1个有机发光二极管构成7t1c架构,像素的驱动时序依次分为复位、补偿、数据存储和发光四个阶段,由于第七薄膜晶体管在复位、补偿和数据存储阶段均属于关闭状态,有机发光二极管并不发光,延长了有机发光二极管的使用寿命。在发光阶段,第七薄膜晶体管属于打开状态,流经有机发光二极管的电流与阈值电压和有机发光二极管的驱动电压无关,因此能同时克服阈值电压漂移和有机发光二极管电性恶化引起的亮度变化,从而达到面板显示均匀的效果。
附图说明
13.此处所说明的附图用来提供对本技术的进一步理解,在附图中:图1为本发明的oled像素补偿电路图;图2为本发明的oled像素补偿电路时序图;图3为复位阶段的oled像素补偿电路图;图4为补偿阶段的oled像素补偿电路图;图5为数据存储阶段的oled像素补偿电路图;图6为发光阶段的oled像素补偿电路图。
具体实施方式
14.参见图1所示,实施例一种oled像素补偿电路,其包括:第一薄膜晶体管t1、第二薄膜晶体管t2、第三薄膜晶体管t3、第四薄膜晶体管t4、第五薄膜晶体管t5、第六薄膜晶体管t6、第七薄膜晶体管t7、有机发光二极管oled以及补偿电容c1;所述第一薄膜晶体管t1的漏极接入直流高压电源的传输端vdd,第一薄膜晶体管t1的栅极接入第一扫描信号传输端scan1,第一薄膜晶体管t1的源极分别连接所述第二薄膜晶体管t2的漏极和所述第四薄膜晶体管t4的漏极;所述第二薄膜晶体管t2的栅极接入第二扫描信号传输端scan2,第二薄膜晶体管t2的源极连接a节点;所述第三薄膜晶体管t3的栅极接入第二扫描信号传输端scan2,第三薄膜晶体管t3的源极连接b节点;所述第四薄膜晶体管t4的栅极连接所述a端,第四薄膜晶体管t4的源极连接c节点;所述第五薄膜晶体管t5的栅极接入开关信号传输端em,第五薄膜晶体管t5的漏极连接b节点,第五薄膜晶体管t5的源极连接有机发光二极管oled的阳极;所述第六薄膜晶体管t6的栅极接入第三扫描信号传输端scan3,第六薄膜晶体管t6的漏极接入参考电压传输端vref,第六薄膜晶体管t6的源极连接c节点;所述第七薄膜晶体管t7的栅极接入开关信号传输端em,第七薄膜晶体管t7的漏极连接c节点,第七薄膜晶体管t7的源极连接有机发光二极管oled的阳极;所述补偿电容c1的两端分别连接a节点和b节点;所述有机发光二极管oled的阴极接入公共接地电压传输端vss。
15.进一步,所述第一薄膜晶体管t1、第二薄膜晶体管t2、第三薄膜晶体管t3、第四薄膜晶体管t4、第五薄膜晶体管t5、第六薄膜晶体管t6和第七薄膜晶体管t7均为n型薄膜晶体
管。
16.进一步,所述第一扫描信号、第二扫描信号、第三扫描信号以及所述开关信号均通过外部时序驱动电路提供。
17.参见图2

图6之一所示,一种oled像素补偿方法,应用于以上任意一种oled像素补偿电路,其包括:复位阶段t1:所述第一扫描信号传输端scan1和第二扫描信号传输端scan2为高电位,所述第三扫描信号传输端scan3和开关信号传输端em为低电位,所述第一薄膜晶体管t1、第二薄膜晶体管t2、第三薄膜晶体管t3和第四薄膜晶体管t4打开,所述第五薄膜晶体管t5、第六薄膜晶体管t6、第七薄膜晶体管t7关闭,保证有机发光二极管oled关闭,此时a点电压为直流高压电源的传输端vdd的电压,b点电压为数据信号传输端vdata的电压,此阶段完成a、b点电位的复位;补偿阶段t2:第二扫描信号传输端scan2和第三扫描信号传输端scan3为高电位,第一扫描信号传输端scan1和开关信号传输端em为低电位,第二薄膜晶体管t2、第三薄膜晶体管t3和第四薄膜晶体管t4和第六薄膜晶体管t6打开,第一薄膜晶体管t1、第五薄膜晶体管t5和第七薄膜晶体管t7关闭,b点电位不变,仍为数据信号传输端vdata的电压,由于第六薄膜晶体管t6打开,c点电压为参考电压传输端vref的电压,a点的起始电压为直流高压电源的传输端vdd的电压,但由于第四薄膜晶体管t4打开,a点的电压会慢慢降低,a点电压会经第二薄膜晶体管t2、第四薄膜晶体管t4和第六薄膜晶体t6管流向参考电压传输端vref,当a点和c点电压差等于第四薄膜晶体管t4的阈值电压vth时,第四薄膜晶体管t4关闭,此时a点电压为参考电压传输端vref电压与阈值电压vth的和,完成第四薄膜晶体管t4的阈值电压vth提取。
18.数据存储阶段t3:所述第一扫描信号传输端scan1、第二扫描信号传输端scan2、第三扫描信号传输端scan3和开关信号传输端em均为低电位,所有的薄膜晶体管均为关闭状态,各点电压保持不变。
19.发光阶段t4:第二扫描信号传输端scan2和第三扫描信号传输端scan3仍为低电位,第一扫描信号传输端scan1和开关信号传输端em为高电位,第一薄膜晶体管t1、第四薄膜晶体管t4、第五薄膜晶体管t5和第七薄膜晶体t7打开,第二薄膜晶体管t2、第三薄膜晶体管t3和第六薄膜晶体管t6关闭,此时有机发光二极管oled处于发光阶段,c点电位为有机发光二极管oled驱动电压v_oled,由于第五薄膜晶体管t5打开,b点电位为有机发光二极管oled驱动电压v_oled,a点电位会受到补偿电容c1耦合效应,补偿电容c1两端在所述补偿阶段t2和数据存储阶段t3的电压分别为a点和b点的电压,即a点电压为参考电压传输端vref电压与阈值电压vth的和,b点的电压为数据信号传输端vdata电压,当发光时,b点电位为有机发光二极管oled驱动电压v_oled,所以a点电压变为:参考电压传输端vref电压+阈值电压vth

数据信号传输端vdata电压+有机发光二极管oled驱动电压v_oled,完成有机发光二极管的补偿。
20.本发明的工作原理:由饱和区电流公式i
oled
=1/2
µ
n
c
ox
w/l(vgs

vth)2可得,有机发光二极管的最终驱动电流为:i
oled
=1/2
µ
n
c
ox
w/l(vref

vdata)2;
其中,为
µ
n 为n型薄膜晶体管的电子迁移率,c
ox
为n型薄晶体管的栅氧层单位面积电容,w/l为n型薄晶体管的宽长比。i
oled
只与参考电压传输端的电压vref和数据信号传输端的电压vdata有关,与第四薄膜晶体管的阈值电压vth和有机发光二极管驱动电压v_oled无关。
21.尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1