光纤布拉格光栅的制作方法

文档序号:2812093阅读:358来源:国知局
专利名称:光纤布拉格光栅的制作方法
技术领域
本发明是关于一种光纤布拉格光栅,尤其是关于一种反射率可于一连续范围内调整的可调光纤布拉格光栅。
背景技术
常规光纤布拉格光栅是通过双紫外光束互相干涉或一紫外光束通过相位光栅罩产生一周期性的紫外光明暗相间条纹,利用该周期性的明暗相间紫外光条纹对光纤进行曝光。该光纤纤芯是由感光材料制成,其吸收紫外光子以后,折射率n将提高。故利用周期性的明暗相间紫外光条纹对光纤纤芯进行曝光处理以后,紫外光亮条纹所照射的区域吸收紫外光,从而折射率提高,未被紫外光亮条纹照射到的区域折射率则不变。当一入射光通过光纤布拉格光栅时,波长满足布拉格条件(λ=2neffΛ,其中,neff为光纤纤芯的有效折射率,Λ为光纤布拉格光栅的折射率变化周期)的入射光被反射,其它波长的光则不受光栅影响而通过。光纤布拉格光栅的反射率由光纤布拉格光栅的长度及被紫外光亮条纹照射到的区域的折射率与没有被紫外光亮条纹照射到的区域的折射率差来决定。
然而,通过上述曝光处理所形成的光纤纤芯的折射率是恒定的,因此此类光纤布拉格光栅的反射率是固定、不可调的,亦即此类光纤布拉格光栅是固定的。且此类光纤布拉格光栅要求光纤纤芯由感光材料制成,从而限定了此类光纤布拉格光栅的纤芯必须是由含硅元素的材料制成。
上述光纤布拉格光栅广泛应用于光分束器、波分复用器、光分插复用器等,其应用于某些光学器件时要求反射率可调,如应用于光分束器要求反射率可调以实现光分束器的分光比可调。当多个光纤布拉格光栅应用于波分复用器或光分插复用器时要求反射率可于0或100%这两种状态可切换,以调整分波或上/下载的光信号波长,而常规的光纤布拉格光栅尚无法实现。

发明内容本发明的目的在于提供一种反射率可于一连续范围内调整的光纤布拉格光栅。
本发明的另一目的在于提供一种原材料丰富的光纤布拉格光栅。
本发明的目的是这样实现的提供一种光纤布拉格光栅,其包括一光纤、一恒温装置及一加热器。其中该光纤的纤芯由折射率随温度变化而变化的材料制成,该恒温装置紧贴于该光纤,以使该光纤保持一预定温度,该加热器进一步包括多个电阻器,其排列于该光纤的外表面,以使该光纤形成周期的“热点”。该“热点”的温度随着通过该加热器的电流的变化而变化,从而控制该光纤纤芯位于“热点”的折射率,进而于一连续范围内调整该光纤布拉格光栅的反射率。
与现有技术相比较,本发明通过调节通过加热器的电流值使该光纤布拉格光栅的反射率可于一连续范围内调整;且本发明使用折射率随温度变化而变化的材料,较常规的光纤布拉格光栅须使用的感光材料丰富。

图1是本发明光纤布拉格光栅的侧视图。
图2是本发明光纤布拉格光栅的俯视图。
图3是沿图1 III-III剖面的剖视图。
图4是本发明光纤布拉格光栅的加热器的电阻器的连接图。
具体实施方式
本发明光纤布拉格光栅1采用折射率随温度变化而变化的材料。此类材料包括含硅元素的原材料及各种光学聚合物等。其中,硅的折射率n随着温度升高而提高。
请参阅图1至图3,本发明光纤布拉格光栅1包括一圆柱状光纤2、一恒温装置3及一加热器4。其中,光纤2的一段的一侧面被加工成一平面(图中未标示),恒温装置3紧贴于该平面,且与该平面具良好的物理接触。恒温装置3具致冷作用,且可保持光纤2与其接触的部分于一预定的温度范围内。
请一并参阅图4,加热器4包括多个电阻器40及多个连接电阻器40的导线42。多个电阻器40通过沉积或光蚀刻的方式均匀地排列于光纤2的外表面,各电阻器40均呈“C”字形,其开口面对恒温装置3,且包围光纤2。各电阻器40可以是非常薄的金属层或其它导电材料。该多个电阻器40通过导线42串联起来,即,一个电阻器40的一端通过一根导线42连接到其前面的相邻的一个电阻器40,而另一端则通过另一根导线42连接到其后面的相邻的另一个电阻器40(如图4所示)。因此,通过所有电阻器40的电流相同。因各电阻器40具有相同电阻值,所以当电流通过电阻器40时将产生相同热量。
当无电流通过加热器4时,光纤2与恒温装置3接触的部分保持与恒温装置3相同温度,因此光纤2的纤芯20各部分的折射率相同,光于光纤2中传输时不会发生布拉格反射,此状态称为“全通过”状态。
然而,给加热器4通以一恒定电流I时,加热器4的各电阻器40也将以恒定的功率产生热量。光纤2位于各电阻器40内的部分温度将升高。因恒温装置3与光纤2的接触面积远大于电阻器40与光纤2的接触面积,且恒温装置3与光纤2之间具很强的热传导能力,故光纤2位于两电阻器40之间的部分仍保持与恒温装置3基本相同的温度。因此光纤2的温度升高部分形成一系列相同的、均匀分布的“热点”。由于光纤2的纤芯20的折射率随着温度的变化而变化,因此光纤2的纤芯20的周期性“热点”的折射率提高,而未被加热区域的折射率不变,形成折射率的周期性变化。折射率的周期性变化构成光纤布拉格光栅。相邻“热点”之间的距离即为光纤布拉格光栅1的周期Λ,光纤布拉格光栅1反射最强的波长由该周期Λ决定。
不同的电流值将该“热点” 加热至不同的温度,而使光纤2的“热点”具不同折射率,而其它部分的折射率不变,且因为光纤布拉格光栅的反射率由光纤2中高低折射率之差及光栅的长度决定,则通过选择恒温装置3的温度及光栅的长度,则可以找到一合适的驱动电流Imax,其能使满足布拉格条件的波长100%反射。以该驱动电流驱动的光纤布拉格光栅的状态称为“全反射”状态。随着驱动电流值的减小将导致满足布拉格条件的入射光部分反射而其余部分通过。
因此,满足布拉格条件的波长,当I=Imax时,本发明的光纤布拉格光栅能实现“全反射”,即100%反射;当I=0时,则“全通过”,即100%通过;当0<I<Imax时,则“部分反射”,即部分通过。因此本发明的光纤布拉格光栅的反射率是可调的。
可以理解,本发明光纤布拉格光栅的电阻器亦可通过导线并联连接,通过控制施加于该多个电阻器的电压而控制“热点”温度达到该光纤布拉格光栅的反射率可调。
权利要求
1.一种光纤布拉格光栅,其特征在于包括一光纤、一恒温装置和一加热器,其中上述光纤的纤芯由折射率随温度变化而变化的材料制成,上述恒温装置与上述光纤具良好的物理接触,上述加热器进一步包括多个电阻器,该多个电阻器排列在上述光纤的外表面。
2.如权利要求1所述的光纤布拉格光栅,其特征在于上述光纤的一段的一侧面被加工成一平面,上述恒温装置紧贴于该平面。
3.如权利要求2所述的光纤布拉格光栅,其特征在于该多个电阻器均呈“C”字形,其开口面对该恒温装置,且包围上述光纤。
4.如权利要求3所述的光纤布拉格光栅,其特征在于该多个电阻器是均匀地排列于上述光纤的外表面。
5.如权利要求4所述的光纤布拉格光栅,其特征在于该加热器进一步包括多根导线以连接该多个电阻器。
6.如权利要求5所述的光纤布拉格光栅,其特征在于该加热器通以电流时,上述光纤位于各该电阻器内的部分的温度将升高,从而形成多个“热点”。
7.如权利要求6所述的光纤布拉格光栅,其特征在于该光纤位于各该电阻器内的部分的折射率将随通过该加热器的电流的变化而变化。
8.一种制造光纤布拉格光栅的方法,其特征在于包括以下步骤(1)提供一光纤,其中该光纤的纤芯由折射率随温度变化而变化的材料制成;(2)提供一恒温装置;(3)将该恒温装置紧贴于该光纤;以及(4)在该光纤的外表面形成一加热器,该加热器包括多个电阻器,该多个电阻器均匀地排列于该光纤的外表面,以使电流通过该多个加热器时形成周期的“热点”。
9.如权利要求8所述的制造光纤布拉格光栅的方法,其特征在于步骤(3)进一步包括将该光纤的一段的一侧面加工成一平面,并将上述恒温装置紧贴于该平面。
10.如权利要求9所述的制造光纤布拉格光栅的方法,其特征在于步骤(4)的该多个电阻器均呈“C”字形,其开口面对该恒温装置,且包围上述光纤。
11.如权利要求10所述的制造光纤布拉格光栅的方法,其特征在于步骤(4)的该多个电阻器是通过沉积或光蚀刻的方式均匀地排列于光纤的外表面。
12.如权利要求11所述的制造光纤布拉格光栅的方法,其特征在于该加热器进一步包括多根导线以连接该多个电阻器。
13.如权利要求8所述的制造光纤布拉格光栅的方法,其特征在于该“热点”的温度随通过该加热器的电流的变化而变化,从而控制该光纤位于各该电阻器内的部分的折射率。
全文摘要
一种光纤布拉格光栅,其包括一光纤、一恒温装置及一加热器。其中该光纤的纤芯由折射率随温度变化而变化的材料制成,该恒温装置紧贴于该光纤,以使该光纤保持一预定温度,该加热器进一步包括多个电阻器,其排列于该光纤的外表面,以使该光纤形成周期的“热点”。该“热点”的温度随着通过该加热器的电流的变化而变化,从而控制该光纤纤芯位于“热点”的折射率,进而于一连续范围内调整该光纤布拉格光栅的反射率。
文档编号G02B6/02GK1466014SQ02128369
公开日2004年1月7日 申请日期2002年8月14日 优先权日2002年6月4日
发明者赵希敏 申请人:鸿富锦精密工业(深圳)有限公司, 鸿海精密工业股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1