在两维和自动体视的三维模式中工作的光学装置和显示器的制作方法

文档序号:2770219阅读:159来源:国知局
专利名称:在两维和自动体视的三维模式中工作的光学装置和显示器的制作方法
技术领域
本发明涉及一种光学装置,这装置可用于,例如,在两维(2D)和自动体视的三维(3D)模式中工作的显示器。
背景技术
GB 2317295和EP 0829744揭示了一种可在2D和3D模式中工作的显示器。各个附图中的

图1图示说明了这种在2D和3D模式中显示器的示例的基本结构。在3D模式中,该显示器包括设置在空间光调制片(SLM)后的,以液晶器件(LCD)2来具体实现的小型扩展的背光1。LCD2具有后起偏振片3和前起偏振片4。在3D模式中,显示器属于前视差阻挡层型,在这种类型中,视差阻挡层由形成在基底6和起偏振片7上的有图形的延迟片5形成。
在同样示于图1的2D模式中,起偏振片7已被移去,使得视差阻挡层实际上是不适用的。
各个附图中的图2示出在3D模式中的工作情况。延迟片5包括诸如8的区域,它把通过那里的光的偏振方向转动90°,而诸如9的区域,它不改变通过那里的光的偏振方向。区域8相当于视差阻挡层的各个狭缝,而区域9相对于在狭缝间的不透明阻挡层。
在图2中,在该图平面中的偏振方向由双箭头表示,而与该图平面垂直的偏振方向由实心圆表示。来自背光1的非偏振光入射在输入起偏振片3上,它基本上挡住了垂直该图平面的偏振分量,并具有通过在该图平面上的偏振分量的透射轴10。LCD2是属于一种类型,这类型的LCD受到了控制以便通过该器件用对应于最大亮度的90°转动来改变这偏振转动。输出起偏振片4的透射轴11垂直于输入起偏振片3的透射轴10,使得输出起偏振片4只透射垂直于该图平面偏振的光。
通过区域9的来自输出起偏振片4的光,它的偏振不被改变。起偏振片7具有与起偏振片4的透射轴11正交的透射轴12,使得通过区域9的光基本上被阻挡,而区域9显得暗的即不透光的。经过区域8的光,它的偏振方法已被转动90°,以致与起偏振器7的透射轴12平行。因此,起偏振片7透射这光,使得有图形的延迟片5和起偏振片7的组合起着视差阻挡层的作用。在该显示器的2D模式中,起偏振片7被移动即被移走,以致离开了从显示器到观察者的光路。这阻挡层结构因此不再是看得见的,而来自区域8和区域9这两处的光都透射到观察者。
附图中的图3在15处示出了在3D模式中的视差阻挡层的形状,以及还示出显示器的象素结构。LCD2包括排成行和列的红(R),绿(G)和蓝(B)色的图片元素(象素)。为观察者用左眼和右眼观看的图像被安排成象素的交错列(LR)并结合延迟片5的狭缝区8以在一平面上用较佳的观看距离形成显示器前面隔开的观看窗口16。理想的是,对各窗口的光透射分布图形应该是在窗口内具有不变的光亮度和在窗口外为零的光亮度的“高顶帽”(tophat)函数。不过,如图3在18处所示,跨越多个窗口有些亮度变化,在每个窗口外面非零亮度的导致在左、右图象之间的交叉干扰。
在图4所示的2D模式工作中,来自延迟片5的“黑片”区中的光是纵向偏振的,而来自“狭缝”区8的光则是横向偏振的。因为这两种偏振,所以在观看平面上,导致不同的亮度分布,而因为这两种分布是正交的,不会起干涉作用,所以相加在一起。在有图形的延迟片5被作为具有各狭缝区8的被定位于与各黑暗区9的光轴不同方位上的光轴的半波片来具体实现的地方,经过黑暗区9的光只遇到单个折射率,这是因为延迟片慢轴的原因,而经过区域8的光则遇到延迟片的快轴和慢轴这两个轴,因此经过不同的光程。当把起偏振片放在该路径上时,对各个偏振作出相同的情况,而该光路能引起干涉。但是,一般来说,在路径间存在着相对的相位差,故振幅(而不是亮度)相加,并不会消除变化。这导致在跨越显示器的2D模式中亮度的变化,而这不合乎需要。
各个附图中的图5示出在GB2236728和EP0887666中揭示的2D/3D的显示器类型的2D模式。图5的显示器在这方面不同于示于图2的显示器,即把起偏振片7配置成使它的透射轴12与起偏振片4的透射轴11成-45°,而不是象在2D模式中把它移去。
图5的下部示出在2D模式中,关于光波前的显示器效果。区域9具有它们的与来自起偏振片4的光的偏振方向对准的慢轴,使得,如在20所示,来自区域9的光具有均匀的波前。经过区域8的光的偏振方向被转过90°并经历区域8的快轴和慢轴这两根轴。这情况示于21。
把起偏振片7定位于使来自区域8和9的光通过。特别是,起偏振片7通过经经历延迟片5慢轴的光的一部分的来自区域9的光。但是,起偏振片7通过已经快轴和慢轴这两根轴的来自区域8的光。所以,起偏振片7透射如在22所示的以及在下文描述的非均匀的波前,这引起在2D模式中的非均匀的窗口发光。

发明内容
根据本发明的第1方面,提供一种光学装置包括用于通过具有第一偏振方向的光的输入起偏振片,用于接收来自该输入偏振片的第一偏振方向的光的偏振修改文件,以及用于分析来自该偏振改变元件的光的输出起偏振片,该偏振改变元件包括至少第一和第二组的区域,这或者第一组的每个区把来自输入起偏振片的光的偏振改变到不同于第一偏振方向的第二偏振方向和这或者第二组的各个区域提供不同于第二偏振方向的第三偏振方向的光,输出起偏振器与偏振改变元件结合,使得各通过这或者第一组的各个区和输出起偏振片的第一光路,以及当各第二光路通过这或者第二组的各个区和输出起偏振片时,基本具有对来自输入起偏振片的光的相同衰减和相位变化。
第一和第二组的区域可以是隔行的并可分别包括第一和第二平行的狭条。第一狭条可具有第一宽度,而第二狭条可具有比第一狭条宽的第二宽度。
第二和第三偏振方向可以是基本正交的。
第三偏振方向可以与第一偏振方向是相同的。
该装置可具有另一个工作模式,在这模式中,把输出起偏振片配置来通过来自第一和第二组中的一个组的区的光,并衰减来自第一和第二组中的另一组的区的光。第一和第二组中一个可以是第一组。在另一个模式中,可把输出起偏振片基本配置来阻挡来自第一和第二组的另一组的光。
偏振改变元件可包括有图形的延迟片,而可把输出起偏振片配置来透射来自区域的第一和第二组的相同比例的光的慢轴和快轴分量。可把输出起偏振片配置来只透射来自区域的第一和第二组的光的慢轴分量。延迟片可包括用光聚合的多聚物。延迟片可在可见光频率提供半波延迟。这或者第一组的各区域的慢轴可被定位于与第一偏振方向成45°的方向上,而这或者第二组的各区域的慢轴可平行于第一偏振方向。输出起偏振片可透射具有定位于与第一偏振方向成45°方向上的偏振方向的光。可重新定位对另一个模式的输出起偏振片,以便透射具有基本与第一偏振方向正交的偏振方向的光。
可把这或者第一组的各个区域的慢轴定位于与第一偏振方向成22.5°的方向上,以及可把这或者第二组的各个区域的慢轴定位于与第一偏振方向成-22.5°的方向上。
这或者第一组的各个区域的慢轴,可以是平行于第一偏振方向,以及这或者第二组的各个区域的慢轴可以定位于与第一偏振方向成45°的方向上。
该装置在输入和输出偏振片之间,可包括另外的偏振改变元件。这另外的元件可以是另外的延迟片。这另外的延迟片可在可见光频率提供半波延迟。这另外的延迟片可能是液晶器件。
这另外的延迟片可能具有定位于与第一偏振方向成22.5°方向上的慢轴。输入起偏振片可透射具有与第一偏振方向平行的偏振方向的光。对另一种模式这另外的延迟片和输出起偏振片可作为一单元绕平行于这或者第一组的各个区的慢轴转动180°。
这另外的延迟片可包括至少一个区,这区的慢轴在基本上与第一和第二光路平行的第一取向和基本上与第一方向垂直的第二取向之间是可为换的。这另外的延迟片可以是弗里德里克斯(Freedericksz)元件。
第一方向可以是用于另一种模式的,第二方向可以是定位于与第一偏振方向成22.5°的方向上,以及输出起偏振片可透射具有与第一偏振方向垂直的偏振方向的光。
对另一种模式,第二方向可以是定位于与第一偏振方向成67.5°的方向上,以及输出起偏振片可透射具有与第一偏振方向垂直的偏振方向的光。
第二方向可能是对另一种模式的,并可定位于与第一偏振方向成22.5°的方向上,以及输出起偏振片可透射具有定位于与第一偏振方向成45°的方向上的光。
这另外的延迟片可包括至少一个区,该区的慢轴在基本与第一和第二光路垂直的第三和第四取向之间是可变换的。第三取向可以是与第一偏振方向垂直的,而第四取向可能是对另一种模式的,且可能定位于与第一偏振方向成67.5°的方向上。
这另外的元件可包括偏振转动片。这转动片可包括至少一个区,这个区提供45°的偏振转动。这转动片可包括扭转向列型液晶器件。
这液晶器件可靠近输入起偏振片的液晶表面,具有平行于第一偏振方向上的对准方向,以及在靠近输出起偏振片的液晶表面处,定位于与第一偏振方向成45°的方向上的对准方向。
这液晶器件可在靠近输入起偏振片的液晶表面处,具有定位于与第一偏振方向成22.5°的方向上的对准方向,以及在靠近输出起偏振片的液晶表面处,定位于与第一偏振方向成112.5°方向上的对准方向。
这液晶器件可在靠近输入起偏振片的液晶表面处,具有定位于与第一偏振方向成12.5方向上的对准方向,以及在靠近输出起偏振片的液晶表面处,定位于与第一偏振方向成102.5°方向上的对准方向。
偏振转动片可能不适用于另一种模式。
根据本发明的第二方面,提供一种包括根据本发明第一方面的装置的显示器。
该显示器可包括诸如液晶空间光调制器的空间光调制器。
该显示器可能具有自体视模式。当在另一种模式时,这器件可形成前或后的视差阻挡层。
在本说明书中,角的正值或者可以是顺时针的,或者可以是逆时针的,但随后的角的负值指的是在相反方向的角度。而且,所有偏振方向的角和延迟片慢轴被表示为“模180°”。因此,每个θ角等价于每个角的(θ+n×180°),此外n是任意整数。但是,在某些装置的场合下,由于它们的结构本性,在(θ+180°)值上还是选θ值为好,这是由于改善的性能的原因。
因此,有可能提供一种适用于显示器的光学装置。例如,在使用时,在也具有2D模式工作的自体视3D显示器中,这种装置基本上减少即抑制了跨越这显示器的在2D模式中的亮度变化。例如,在3D模式中,在该装置作为视差阻挡层工作时,基本上抑制了在2D模式中的微弱亮度的狭条(相当于在3D模式中的阻挡层或狭缝区),使得与已知的显示器类型相比较时,可把这个直观的制品消去或把它降低到对观察者看不到的位置。
通过把这器件转动一周或用全电子设备,各种实施例可在模式的工作中变化。没有需要移去这显示器的部件,所以不需要提供用于可移动部件的任何储备配置或复杂的对准配置。在可转动部件的场合下,可很容易地得到与显示器的对准。并不需要用于可变换的液晶元件的精确电极图形。同样,也不需要对空间光调制器的液晶元件的子象素对准。
可改善明亮和黑暗的消色差性。这导致在3D模式工作中交叉干扰的降低。
附图简述本发明将通过示例,参考附图作进一步的描述,其中图1是一种已知的显示器类型,在3D和2D模式中工作的横截面示意图;图2是说明3D模式工作的图1显示器的横截面图;图3是说明在3D模式工作的图1显示器的横截面示意图;图4示出说明在2D模式中亮度变化的图1显示器的横截面图;图5是示出机制的另一已知类型显示器的示意图说明,从而在2D模式中跨越该显示器发生的亮度变化。
图6是示出作为构成本发明第实施例显示器部件面形成的光学装置的图解;图7图解地示出构成本发明第二实施例的一种光学装置和显示器;图8是说明图7显示器不同的物理配置的横截面示意图;图9是说明图7显示器不同的物理配置的横截面示意图;图10是说明图7显示器不同的物理配置的横截面示意图;图11图解地示出构成本发明第三实施例的一种光学装置和显示器;图12图解地示出图11显示器的2D模式;图13图示地示出构成本发明第四实施例一种光学装置和显示器;图14是说明图11和12显示器不同的物理配置的横截面图;图15是说明图11和12显示器不同的物理配置的横截面图;图16是说明图11和12显示器不同的物理配置的横截面图;图17图示地示出构成本发明第五实施例的一种光学装置和显示器;图18图示地示出构成本发明第六实施例的一种光学装置和显示器;图19图示地示出构成本发明第七实施例的一种光学装置和显示器;图20图示地示出构成本发明第八实施例的一种光学装置和显示器;图21是说明用于生产偏振转动为45°的输入偏振扭转角和延迟的组合图;图22图示地示出构成本发明第九实施例的一种光学装置和显示器;图23图示地示出构成本发明第十实施例的一种光学装置和显示器;图24包括构成配置的第十实施例的一种光学装置和显示器物理配置的横截面视图。
图25图示地示出构成本发明第十二实施例的一种光学装置和显示器;以及图26示出用于开关LCD的电极图形和结合诸如LCD的显示器外形的示例。
在整个各个附图中,相同的数字指的是相同的部件。
具体实施例方式
在下文,通过参考附图的示例来描述本发明。
图6示出一种光学装置,这装置构成本发明的实施例并形成自体视显示器中的一部分,也构成本发明的实施例并具有自体现的3D模式的工作和2D模式的工作。2D模式的工作示于图6,在这模式中,图6的装置和显示器与图5的装置和显示器在输出起偏振片7的透视轴12被定位于与起偏振片4的透射轴11成45°的方向上有不同,这起偏振片4包括形成空间光调制器的液晶显示器(LCD)2的输出起偏振片。
因为液晶显示器通常用它们的输出起偏振片的透射轴11与被这种装置显示的图像垂直成-45°来配置的,这是示于图6和其它附图的取向。因此,在附图中,所有角度都相对于该垂面,从而起偏振片4的透射方向11表示为被定位于-45°的方向上。因此,区域8的慢轴被定位于0°的方向上,而区域9的慢轴则被定位于-45°的方向上。输出起偏振片7的透射轴12被定位于0°的方向上。
如在图6的下部所示,并如参考图5在前面描述的,在起偏振片4的透射轴11方向偏振的光只经历区域9的慢轴,因此具有如在20处所示的均匀波前。经过区域8的光经如在21处所示的区域8的快轴和慢轴这两根轴。经历快轴的光“f”具有在光“s”前面的波前,这光“s”经历了有图形的延迟片5的慢轴。但是,在2D模式中的工作中,输出起偏振片7的透射轴12被定位到只透射来自区域8和9的经历该慢轴的光;经历该快轴的光实际上被输出起偏振片7衰减。因此,如在24处所示,来自显示器整个范围的光基本具有均匀的波前,使得由延迟片5的图形导致的跨越显示器的亮度变化基本上被消除或被降低到对显示器的观看者来说基本上难以察觉不合乎需要的,可看到的制品的水平点。
在示于图6的实施例中,经过区域9的光只经历慢轴。但是,在经过区域8和9中的每个区的光的另外实施例中,光经历快轴和慢轴,可把输出起偏振片7配置到能通过相等比例的来自区域8和9中的每个区的快轴和慢轴分量使得输出光具有均匀的波前。类似地,这样来取回,使得来自区域8和9的光经受相同程度的衰减。因此,对区域8和9的这两区域来说,经过该装置的各光路显示出相同的衰减和相位的性能。
为了操作示于图6的显示器在自体视的3D模式,需要具有定位于45°方向上的透射轴的即,垂直于LCD输出起偏振片4的透射轴11的输出起偏振片。当通过这样的起偏振片观看时,来自各个区域9的光基本上被衰减,使得这些区域显出不透明,而光经过各个区域8透射,它因此实际上形成视差阻挡层的狭缝。为了改变在3D和2D之间的工作,可设置互换的起偏振片7或可配置起偏振片7使之转动。
图7示出构成本发明另实施例的一种光学装置和自体视3D/2D显示器。示于图7的装置与示于图6的装置在下面几个方面有区别在有图形的延迟片5和输出起偏振片7之间配置另一个半波延迟片25以及为了2D模式的工作,把输出起偏振片7的透射轴12字位于-45°的方向上。延迟片25是带有定位于-22.5°方向上的慢轴的均匀片状延迟片。
在26和27处分别示出经过区域8和9的光的偏振方向。经过延迟片25之后,来自区域8和9的偏振分别被转动,如在28和29处所示。和前面的实施例一样,起偏振片7只通过受慢轴影响的光,所以,分别来自狭缝区8和阻挡层区9的输出光30和31在相位,振幅和偏振上是匹配的。
在3D模式的工作中,延迟片25是不必要的,而输出起偏振片7的透射轴12应在45°。这可通过如在图8所示的把延迟片和起偏振片7作为一整体元件32来形成而使用也获得。把起偏振片7和延迟片25形成于非双折射基底33的相对立的侧面上,而把有图形的延迟片5形成于非双折射基底34的侧面上。在图8的右边示出2D的结构,而在左边则示出3D的结构。在3D模式中,把起偏振片7设置在有图形的延迟片5和均匀地延迟片25之间,使得均匀延迟片25基本上无作用并对观看者来说基本上是看不到。在模式间的变换可通过转动带有起偏振器7和延迟片25的基底33绕如由箭头35所示的纵轴转动180°而获得。因此显示器的整体总是“在使用中”,所以无需提供额外的储备。
图9示出一种配置,它在基底33的相同一侧上形成输出起偏振片7和均匀的延迟片25方面与示于图8的配置有不同。这种配置为延迟片25提供增强的防护并降低为带有防护镀膜的基底两侧的“硬镀膜”的需要。按需要可设置抗反射镀膜,且较佳的是,用基本上非双折射的,为了避免不会合乎需要地改变装置的光学效果。
图10到12示出另一种装置和显示器,其中延迟片25作为用于在2D和3D模式的工作之间变换的可电变换的半波延迟片来具体实现的。延迟片25在一个起着具有定位于22.5°方向上(如用于3D自体视模式的图11所示)的慢轴的半波延迟片作用的状态和一个提供基本上是零延迟(如用于2D模式的图12所示)的状态之间是可变换的。例如,在2D模式中,可把慢转转换到与延迟片25的平面垂直并基本上与通过装置和显示器的光路平行。可变换延迟片25可由诸如具有反平行对准的弗里德里克斯结构的向列型液晶器件的液晶器件来具体实现。这类装置在Jianra Shi“对-阶弗里德里克斯渡算的判据”一文中揭示,刊于《液晶》,2002.Vol.29.No.1。在这种装置中,当把电压跨接到液晶层时,液晶指示器,从而慢光轴基本保持在与该装置的平面垂直的状态以呈现出均匀的折射率,从而对经过装置,在正常方向通过的光没有双折射性。
可把液晶器件构筑成在任何一个状态中是均匀的,在这场合下,整个显示器作为一个单元在2D和3D模式之间是可转换的。或者,可把合适地做成图形的电极设置在液晶器件之内,使得显示器的不同范围彼此被独立地构筑成用于2D或3D的工作。
如图11和12所示,延迟片5的区域8和9的慢轴分别被定位于-22.5和-67.5°的方向上,所以是关于起偏振片4的透射轴11被对称地定位的。起偏振片7的透射轴12与透射11正交。
在图11所示的3D模式中,延迟片25被构筑成使它的慢轴处于+22.5°处。因此把偏振26和27转换成偏振28和29。起偏振片7基本上衰减了来自区域9的偏振29,并以最小的衰减通过了来自狭缝区8的偏振28。因此,这光学装置基本起了视差阻挡层的作用。
如图12所示,在2D模式中,延迟片25实际上是不适用的,使得分别来自区域8和9的偏振26和27,如在28和29处所示的未经改变就分别被通过。因此,起偏振片7通过来自区域8和9的、对如在30和31处所示的相位,振幅和偏振匹配的光。
在3D模式中,延迟片5和25可基本上具有匹配的色散。因此,正交的起偏振片4和7的存在与色散匹配的延迟片一起导致经过区域9的光的整个可见光谱中良好的消光,在3D模式中造成良好的交叉干扰性能。延迟片5和25匹配的色散在整个狭缝区8导致明亮的更为消色差的性能。
图13示出一种后视差阻挡层显示器,在这显示器中,后视差阻挡层由如示于图11和12中的视差阻挡层的相同类型的光学装置形成。但是,在示于图13的配置中,LCD的后起偏振片成为光学装置的输出起偏振片7且输入起偏振片4与LCD是不同的。此外,在经过该装置的光透射方向中,把变换液晶延迟片25设置在有图形的延迟片5的前面。使得在3D模式中,有效地限定后视差阻挡层的有图形的延迟片5要靠近如图14所示的显示器LCD2,以便减少在阻挡层和显示象素之间的距离。减少这个距离使得在显示器前面的最佳观看距离得以减少,例如,使得能在诸如移动电话和个人数字式辅助器的手持设备中可看到显示。
后视差阻挡层型的显示器更适用于具有透射和反射模式这两种模式工作的透反射显示器中。通过把视差阻挡层设置在显示器LCD2的后面,经过前视差阻挡层两次的光在反射模式中的衰减基本上被消除掉,而这可获得较高的反射模式。
如图14所示,在开关LCD25中,有图形的延迟片和显示器LCD2是作为个别的器件来制作的,但随后却把它们组合在一起以形成完整的显示器。因此,开关LCD25具有玻璃基底40和41,把有图形的延迟片5形成在玻璃基底42上,而显示器LCD2则具有玻璃基底43和44。
如图15所示,通过把有图形的延迟片形成在开关LCD25的基底41上可省略基底42。所以,可提供一种减少了厚度的显示器,这对在需要相当薄的装置的应用是有利的。
图16示出通过消除基底41并共用在开关LCD25和显示器LCD2之间的基底44来进一步减少厚度。如果是这样,可把延迟片5和起偏振片7作为内在的部件有效地形成在LCD25之内。所以,这些部件,尤其是偏振片7,必须是属于能经得住后继的温度和化学加工过程的一种类型以形成用于器件25的透明电极和对准薄层。适用于这内在应用的示例在EP 0887692和Bobrov等人的“感胶离子的薄膜起偏振器”Proc.SID 2000中揭示。
图17示出一种后视差阻挡层配置,它与图13所示的配置在下面几个方面有不同区域8和9的慢轴被定位于0°和-45°的方向上,液晶延迟片25在3D模式中具有定位于22.5方向上的慢轴,以及起偏振片4具有定位于0°的透射轴11。这结构在示于图17的2D模式中,提供更为消色差的输出,所以在彩色重视中减少误差。
图18示出显示器另一种后视差阻挡层类型的2D模式,在这类型中,2D模式随着液晶延迟片25的断开而形成。这种配置在希望主要使用2D模式和功能是重要的场合下受到欢迎,例如,由电池供电的装置中。
在图18的显示器中,区域8和9的轴分别被定位于90°和45°的方向上。在2D模式中,随着液晶延迟片25断开,延迟片的慢轴被定位于22.5°的方向上。起偏振片4的透射轴11与起偏振片7的透射轴12正交并被定位于45°的方向上。当接通液晶延迟片25时,延迟基本上被消除,而该显示器起着在自体视3D模式的作用。
图19示出另一种后视差阻挡层显示器,在这显示器中,液晶延迟片25起着把来自起偏振片4的光的偏振方向产生45°转动的偏振转动器的作用。延迟片25是据转向列型器件,它在扭转向列型液晶层表面,在分别靠近起偏振片4和延迟片25的对准方向50和51之间具有相关的夹角。
对准方向50是作为平行于透射轴11来示出的并在对准方向50和51之间有45°的扭转。但是,可把LCD 25定位于对透射轴成任意角的方向上,并从那里通过的光将产生偏振方向45°的转动。
在2D模式中,器件25提供45°的偏振转动。对在自体视3D模式的工作,把电压跨接到扭转向列型液晶层的两端,以及把液晶指示器对准到与该装置的平面垂直并且不提供偏振转动。
在图20所示的显示器与在图19所示的显示器在器件25的扭转是90°方面有不同。这种装置是“自补偿”的并可以是在较低的电压下工作。通过合适选择角度和延迟,这种装置可获得45°的转动。这类装置在我们的英国专利申请第0215057.1号中揭示(与本申请同日提交,题为“偏振转动器,视差阻挡层,显示器和光学调制器”并具有参考号码P52138GB)。
对入射到扭转向列型液晶上的线性偏振光,只要正确选择扭转(φ),延迟(Δn·d)和来自偏振片的输入指示器的取入(θ),可用任意的装置扭转角度获得带有任何选定值的偏振方位角的线性偏振。对相对于入射偏振的线性偏振光的转动45°,通过考虑用于经过转换向列型结构传播的线性偏振光的斯托克斯参数可推导出下列方程tan(φ1+α2)1+α2]]>α=Δn·dφπλ]]>此处λ是入射光的波长。这些方程可用数值解以给出如图21图示说明的一组解。
图22示出一种配置,它在已把角度和延迟作了改变以使整个可见光谱的性能达到最佳这方面与示于图20的配置有不同。当把电压加到器件25的液晶层时,这器件在系统上没有光学效果。所以为了在需要改变偏振使得通过有图形的延迟片5的狭缝和阻挡层区域产生的亮度和彩色基本上是相同的这个状态中,可使延迟和取向最佳化。
图23示出一种具有可变换的延迟片25的前视差阻挡层显示器,在这延迟片中,在3D模式中的22.5°取向(示于图23的底部左侧)和在2D模式中的45°取向(示于图23的底部右侧)之间的慢轴被变换。这种可变换的延迟片可采用在平面上的变换型液晶器件来具体实施,例如,铁电液晶(FLC),(例如,如在Clark N.A.and Lagarwell S.T.,1980,Appl.Phys,Lett.,36,899所揭示的),反铁磁液晶(AFLC),或双稳态扭转向列型(BTN)器件(例如,如在D.W.Berremanand W.R.Heffner.J.Appl.Phys.,52,3032,1981所揭示的)(例如,如在Chandani等人,1989,Jpn.J.Appl.Phys.,28,L1261所揭示的)。起偏振片4和7以及有图形的延迟片5如图12所示的来配置。
图24示出一种类似于示图9的显示器一类的显示器,但这显示器中,3D和2D模式类似图10的电可变换的显示器。所以,图24的显示器被认为是图10显示器的“机械模拟”,在该显示器中,变换液晶延迟片被,例如,固定的片状延迟片替代。
图25示出一种配置,它在起偏振片7的透射轴12平行于起偏振片4的透射轴11这方面与图12的配置有不同。来自区域8和9的光,在相位,振幅和偏振上是匹配的。
在本领域的技术人员将容易地知道,其它的电变换实施例也具有机械模拟。在变换的扭转向列型配置的场合下,可采用扭转固定的延迟片结构。例如,这种结构可通过把手性(chiral)掺杂剂加到液晶聚合物或反性的mesogen材料以产生合乎需要的螺旋结构、继之使聚合后使用。
与在本文前描述的液晶模式相反,平面外变换(OPS)型式也是可能的。OPS模式可以或是均质对准,同转义(homotropically)对准,或是混合对准(HAN)。可通过采用同转义对准和负电介质各向异性液晶材料来获得任何均质对准正电介质向列型LCD的逆操作。所以,通过从一种对准到另一种对准,可在2D模式和3D模式之间改变显示器的无动力状态。可把HAN用来替代均质对准的向列型LCD,只要简单地把厚度变大一倍(假定扭转是0°),并从均质对准度为同转义对准。也可采用顶点双稳态向列型(ZBN)模式,并且有真正的双稳态优点,因此,具有非常低的功耗,因为只是从一个状态变换到另一个状态时需要功率。在一种状态中,ZBN LCD采取HAN的结构,在另一状态中,则采取同转义对准LCD。
在本文前描述的所有光学装置可用作前或后视差阻挡层。此外,如上所述,显示器的不同区域可同时在2D和3D模式中工作。例如,图26示出在开关LCD25示例的基底上的电极图形55和56以使不同的区域在没的模式中同时工作。图26还示出具有在2D模式中工作的上、下区域以显示主题内容,而在3D模式中工作的中间区域以显示图像的显示器的外形。在这种配置中,对不同区域的亮度要匹配是合乎需要的,例如通过调节在软件中使用的灰色标度。
在本说明书中,角度的正值或者是顺时针的或者是逆时针的,然后负值相对于在相反方向的角。此外,偏振方向和延迟片慢轴的所有角度都用“模180°来表示。因此,每个角度θ等价于每个角度(θ+n.180°),此外u是任意整数,但是,在某些装置的情况下,因为它们结构的本性,θ值因为改良的性能宁可取在(θ+180°)上的值。
因此有可能提供适于供显示器使用的光学装置。在使用时,例如,在也有2D模式工作的自体视3D显示器中,这种装置在2D模式中,基本上减少即抑制了在跨越显示器光亮度中的变化。例如,在3D模式中,该装置作为视差阻挡层工作的情况下,暗淡亮度的狭条(相当于在3D模式中的阻挡层或狭缝区)基本上在2D模式中被抑制,使得,与已知的显示器类型作比较时,可把这可见的产物消除掉或减少到不为观看者看到的程度。
通过转动这装置一圈或用全电子方法可使各种实施例在模式工作中变化。没有显示器的部分需被移走,所以,无需为可移动的部件提供任何储备配置或复杂的对准配置。在可转动的部件的场合下,可非常容易地获得与显示器的对准。不需要用于可变换液晶元件的精细分辨率的电极图形。类似地,不需要液晶元件的空间光调制器的子象素对准。
可改善明亮和黑暗状态的消色差性。这会导致减少在3D模式工作中的交叉干扰。
工业上的可应用性因此有可能提供一种适于供显示器用的光学装置。在使用时,例如在也有2D模式工作的自体视3D显示器中,这种装置基本上减少即抑制了在2D模式中,在跨越显示器光亮度中的变化。例如,在3D模式中,该装置作为视差阻挡层工作的情况下,暗淡亮度的狭条(相当于在3D模式中的阻挡层或狭缝区)基本上在2D模式中被抑制,使得,与已知的显示器类型作比较时,可把这可见到的产物消除掉或减少到不为观看者看到的程度。
权利要求
1.一种光学装置,包括输入起偏振片(4),用于通过具有第一偏振方向(11)的光,偏振改变元件(5),用于接收来自输入起偏振片(4)的第一偏振方向的光,以及输出起偏振片(7),用于分析来自偏振改变元件(5)的光,其中偏振改变元件(5)包括至少第一和第二组区域(8,9),这或者第一组的各区(8)把来自输入起偏振片(4)的光的偏振改变到与第一偏振方向不同的第二偏振方向,以及这或者第二组的各区(9)供给不同于第二偏振方向的第三偏振方向的光,其特征在于,输出起偏振片(7)与偏振改变元件(5)结合,使得经过这或者第一组的各区(8)和输出起偏振片(7)的各第一光路,对来自输出起偏振片(4)的光与经过这或者第二组的各区(9)和输出起偏振片(7)的各第二光路基本具有相同的衰减和相位变化。
2.如权利要求1所述的装置,其特征在于,所述第一和第二组的各个区域(8,9)是交错的并分别包括第一和第二平行的狭条。
3.如权利要求2所述的装置,其特征在于,所述第一狭条(8)具有第一宽度,而第二狭条(9)则具有大于第一宽度的第二宽度。
4.如权利要求前面的任一项所述装置,其特征在于,所述第二和第三偏振方向基本上是正交的。
5.如前面权利要求的任一项所述装置,其特征在于,所述第三偏振方向与第一偏振方向是相同的。
6.如前面权利要求的任一项所述的装置,其特征在于,所述具有在二者之中任其一的模式的工作,在这模式中,输出起偏振片(7)被设置来通过来自第一和第二组中的一组的区域(8)的光,并衰减来自第一和第二组中的另一组的区域(9)的光。
7.如权利要求6所述的装置,其特征在于,所述第一和第二组中的一组是第一组。
8.如权利要求6或7所述的装置,其特征在于,所述输出起偏振器(7)被设置在二者之中任选其一的模式中,基本阻止来自第一和第二组的其它一组(9)的光。
9.如权利要求前面的任一项所述的装置,其特征在于,所述偏振修改文件(5)包括有图形的延迟片,和输出起偏振片7被设置来透射相同比例的来自区域(8,9)的第一和第二组的光的慢轴和快轴分量。
10.如权利要求9所述的装置,其特征在于,所述输出起偏振片(7)被设置只透射来自区域(8,9)的第一和第二组的光的慢轴分量。
11.如权利要求9或10所述的装置,其特征在于,所述延迟片(5)包括用光聚合的多聚物。
12.如权利要求9到11中的任一项所述的装置,其特征在于,所述延迟片(5)在可见光频率提供半波延迟。
13.如权利要求12所述的装置,其特征在于,所述这或者第一组的各区(8)的慢轴被定位于与第一偏振方向成45°的方向上,和这或者第二组的各区(9)的慢轴平行于第一偏振方向。
14.如权利要求13所述的装置,其特征在于,所述输出起偏振片(7)透射具有定位于与第一偏振方向成45°方向上的偏振方向的光。
15.如权利要求14所述的装置,当从属于权利要求8时,其特征在于,所述输出起偏振片(7)为二者之中任选其一的模式可被重新定位,以便透射具有与第一偏振方向基本正交的偏振方向的光。
16.如权利要求12所述的装置,其特征在于,所述这或者第一组的各个区(8)的慢轴定位于与第一偏振方向成22.5°的方向上,和这或者第二组的各个区(9)的慢轴定位于与第一偏振方向成-22.5°的方向上。
17.如权利要求12所述的装置,其特征在于,所述这或者第一组的各个区(8)的慢轴与第一偏振方向平行,和这或者第二组的各区(9)的慢轴定位于与第一偏振方向成45°的方向上。
18.如权利要求前面的任一项所述的装置,其特征在于,在输入和输出起偏振片之间包括另一个偏振改变元件(25)。
19.如权利要求18所述的装置,其特征在于,所述另一个元件(25)是另一个延迟片。
20.如权利要求19所述的装置,其特征在于,所述另一个延迟片(25)在可见光频率提供半波延迟。
21.如权利要求20所述的装置,其特征在于,所述另一个延迟片(25)是液晶器件。
22.如权利要求20或21所述的装置,当从属于权利要求13时,其特征在于,所述另一个延迟片(25)具有定位于与第一偏振方向成22.5°方向上的慢轴。
23.如权利要求22所述的装置,其特征在于,所述输出起偏振器(7)透射具有平行于第一偏振方向的偏振方向的光。
24.如权利要求23所述的装置,当从属于权利要求8时,其特征在于,所述另一个延迟片(25)和输出起偏振片(7)作为一个单元,对在二者之中任选其一的模式,可绕平行于这或者第一组的各个区(8)的慢轴的一根转轴180°。
25.如权利要求21所述的装置,其特征在于,所述另一个延迟片(25)包括至少一个区,这个区的慢轴在基本平行于第一和第二光路的第一取向和基本垂直于该第一取向的第二取向之间是变换的。
26.如权利要求25所述的装置,其特征在于,所述另一个延迟片(25)是弗里德里克斯(Freedericksz)元件。
27.如权利要求25或26所述的装置,当从属于权利要求13和8时,其特征在于,所述第一取向是对在二者之中任意其一模式的,而第二取向则定位于与第一偏振方向成22.5°的方向上,和输出起偏振片(7)透射具有垂直于该第一偏振方向的偏振方向的光。
28.如权利要求25或26所述的装置,当从属于权利要求16和18时,其特征在于,所述第二取向是对在二者之中任选其一模式的,并定位于与第一偏振方向成67.5°的方向上,和输出起偏振片(7)透射具有垂直于该第一偏振方向的偏振方向的光。
29.如权利要求25或26所述的装置,当从属于权利要求17和18时,其特征在于,所述第二取向是对在二者之中任选其一模式的,并定位于与第一偏振方向成22.5°的方向,和输出起偏振片(7)透射具有定位于与第一偏振方向成45°方向上的偏振方向的光。
30.如权利要求20或21所述的装置,其特征在于,所述另一延迟片(25)包括至少一个区,这个区的慢轴在基本垂直于第一和第二光路的第三和第四取向之间是可变换。
31.如权利要求30所述的装置,当从属于权利要求16和8时,其特征在于,所述第三取向垂直于第一偏振方向,而第四取向则是对在二者之中任选其一的模式的,且定位于与第一偏振方向成67.5°的方向上。
32.如权利要求18所述的装置,其特征在于,所述另一元件(25)是偏振转动器。
33.如权利要求32所述的装置,当从属于权利要求13时,其特征在于,所述转动器(25)包括至少一个提供45°偏振转动的区域。
34.如权利要求33所述的装置,其特征在于,所述转动器(25)包括转向列型液晶器件。
35.如权利要求34所述的装置,其特征在于,所述液晶器件(25)在靠近输入起偏振片(4)的液晶表面处,具有平行于第一偏振方向的对准方向(50),以及在靠近输出起偏振片(7)的液晶表面处,定位于与第一偏振方向成45°方向上的对准方向(51)。
36.如权利要求34所述的装置,其特征在于,所述液晶器件(25)具有在靠近输入起偏振片(4)的液晶表面处,定位于与第一偏振方向上的对准方向(50),和在靠近输出起偏振片(7)的液晶表面处,定位于与第一偏振方向成12.5°方向上的对准方向(51)。
37.如权利要求34所述的装置,其特征在于,所述液晶器件(25)具有在靠近输入起偏振片(4)的液晶表面片,定位于与第一偏振方向成12.5°方向上的对准方向(5),和在靠近输出起偏振片7)的液晶表面处,定位于与第一偏振方向成102.5°方向上的对准方向(51)。
38.如权利要求32到37中的任何一项所述的装置,当从属于权利要求8时,其特征在于,所述该偏振转动器(25)对在二者中任选其一的模式是不适用的。
39.一种由包括根据前面权利要求中任何一项权利要求来体现其特征的显示器。
40.如权利要求39所述的显示器,其特征在于,其包括空间光调制器(2)。
41.如权利要求40所述的显示器,其特征在于,其中调制器(2)是液晶空间光调制器。
42.如权利要求39到41中的任一项,其特征在于,其具有自体视模式。
43.如权利要求42所述的显示器,当从属于权利要求8时,其特征在于,所述器件(25),当处于在二者之中任选其一模式中时,形成前或后视差阻挡层。
全文摘要
一种光学装置包括输入起偏振片4,有图形的延迟片5和输出起偏振片12。延迟片5具有区域8和9,至少其中的一个区改变来自输入起偏振片4的光的偏振。输出起偏振片7具有透射轴12,使得通过延迟片5的区域8和9并通过输出起偏振片7的光在振幅,相位和偏振上是匹配的。这样一种装置可被用作带有LCD2的可变换的视差阻挡层以提供一种显示器,这种显示器在自体视3D模式和2D模式之间是可变换的,而其2D模式在整个显示器上具有更为均匀的亮度。
文档编号G02B5/30GK1678941SQ03820640
公开日2005年10月5日 申请日期2003年6月19日 优先权日2002年6月28日
发明者A·M·S·佳科布斯, M·D·提林, D·J·蒙特哥玛利 申请人:夏普株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1