增强发光强度、均匀性及微生物吸附的空心发光光纤的制作方法

文档序号:2804083阅读:417来源:国知局
专利名称:增强发光强度、均匀性及微生物吸附的空心发光光纤的制作方法
技术领域
本发明涉及一种发光光纤,尤其涉及一种增强发光强度、均匀性及微生物吸附的空心发光光纤。
背景技术
化石能源价格不断攀升,能源短缺日益成为困扰社会发展的首要问题。同时化石燃料的过量开采对自然环境造成了严重破坏,积极开发环境友好和符合经济发展的可再生能源,特别是大力发展生物质能有效地缓解能源短缺压力,成为进入二十一世纪以来全世界关注的热点。在多种可再生能源中,氢能具有能量密度高,热转化效率高,燃烧产物不含温室性气体的清洁能源特点,被誉为“最有前景的能源”。
氢气的制取方法主要有化学转化化石燃料法,电解水法及生物制氢法。其中,生物制氢是一种环境友好、操作简单、低成本及低能耗的绿色能源生产技术。生物制氢过程可以分为:(I)暗发酵制氢;(2)光发酵制氢;(3)光暗发酵耦合制氢。光发酵细菌产氢过程具有不放氧、产氢纯度高、对太阳光谱的响应范围宽以及可与多种生物组建形成良好微生态体系等特点。与光生物制氢技术相关的生物反应器主要有悬浮液(序批式)培养与固定化细胞培养两种类型。细胞固定化技术可提高反应器内生物量持有量,能改善单位反应器的比产氢速率和运行稳定性;可重复连续使用、提高反应生物的纯度;可使工程连续化,装置小型化,产物分离提取容易等。固定化生物反应器主要有生物膜反应器、包埋细胞颗粒填充床反应器及絮凝颗粒生物反应器等。生物膜反应器具有传质阻力小,有机物降解效率高,微生物活性高,无包埋颗粒中存在的包埋剂化学毒性,也不存在絮凝颗粒反应器中悬浮固体容易堵塞反应器等优点。但是,生物膜制氢反应器的性能仍受生物膜载体表面的物理化学性质及反应器内光强分布的影响。
研究表明载体表面性质,如表面亲水性、成分、电荷性和粗糙度将直接影响到微生物吸附、生物膜 生长、生物膜与载体的紧密度及微生物细胞活性等,最终影响光合细菌产氢量及产氢稳定性。为提高生物膜量及活性,研究者们就填料表面性质对细菌吸附和生物膜生长过程的影响进行了大量的研究。Bayoudh等研究发现假单胞菌和葡萄球菌在载体表面的吸附量与细菌的亲水性和载体表面的亲水性有关,且越亲水细菌容易吸附在越亲水的表面。Lorite等研究了表面成分对细胞吸附特性的影响,认为载体表面的官能团可能比表面粗超度、亲水性对细菌的吸附影响更大。Sheng等通过观察细菌同不锈钢之间的粘附力发现溶液中离子强度越大细菌与不锈钢之间的粘附力越大,原因是带负电荷的细菌与带正电荷的不锈钢表面产生了较大的静电吸引力。Mei等研究指出增加材料表面的粗糙度有利于细菌的吸附;同时,Ginsburg等也发现单位质量下表面积越大的活性碳纤维所能固定的微生物量越多,且Katsikogianni等指出细菌会优先吸附到和细菌尺寸相近的不规则体表面。同样,我们前期研究也发现,载体表面的官能团将影响到Photosynthetic bacteria (PSB)的前期吸附能力,表面粗糙度将影响生物膜生长及生物膜与载体之间的紧密度,表面物质成分将影响生物膜活性。
此外,由于光生物膜反应器为密闭系统,受光面积有限,且反应器内底物(培养基)会对光产生较大的衰减,导致反应器内远离光源的区域为暗区,光能利用效率低,反应器的产氢性能受光限制。为提高光能的传输效率和利用效率,法国研究者早在1980年提出利用光纤传输收集到的太阳光。在此基础之上,研究者Matsunaga, An and Kim, Lee and Kim,Chen, Zhang等将光纤运用于光生物反应器。因为,光束在光纤中传播时,会在光纤表面产生散射、折射和反射,从而将外部光源引入反应器内,有利于改善反应器内光照强度分布的不均性;同时可以减少底物对光传输过程中的损耗,提高光能的利用效率。但是,这些研究主要是针对光合细菌悬浮培养反应器,不利于实现连续产氢。为了提高细胞浓度和实现固液分离,进一步提高反应的性能,Yamada等用细胞固定化方法将光合细菌固定到光纤表面获得了产氢增强的效果。同样,我们也采用具有高导光性能的弥散光纤构造了生物膜制氢反应器;研究发现:在弥散光纤表面得到了均匀致密的光合细菌生物膜,反应器的产氢速率比采用光纤为光源的悬浮生长生物制氢反应器提高了 50%。但是,由于光纤表面十分光滑,且为圆柱状;因此,反应器挂膜时间长,微生物吸附量有限,细菌同光纤之间的粘附力较弱,反应器运行不稳定等缺点。为增强光纤对细菌的吸附能力,我们进一步提出了增加光纤表面粗糙度的方法来提高反应器的性能。但遗憾的是,这种增加粗糙度的方法是在光纤表面套上一层不锈钢丝网,丝网会对光纤表面的光束产生吸收和遮掩,降低了光能利用效率,同时丝网会部分腐 蚀,不利于反应器的长时间运行。此外,导光光纤表面发出的光以倏逝波的形式呈现,倏逝波的透射深度为光源波长量级,且能量随深度的增大而呈指数形式衰减,因此,随着生物膜厚度的增加,外层生物膜将受到光限制,从而降低生物膜活性。因此,研究一种新型的发光光纤用于提高细菌吸附能力,增加光纤与生物膜之间的吸附强度,提高生物膜活性十分必要。发明内容
针对现有技术中存在的上述不足,本发明提供了一种增强发光强度、均匀性及微生物吸附的空心发光光纤。
为了解决上述技术问题,本发明采用了如下技术方案: 增强发光强度、均勻性及微生物吸附的空心发光光纤,该空心发光光纤从内向外由光纤纤芯、光纤包层和光纤涂敷层三层组成;所述光纤纤芯为折射率A的空气,光纤包层为折射率/ 的石英,光纤涂敷层为GeO2-SiO2-壳聚糖-培养基杂化材料,GeO2颗粒的折射率为n3,且折射率满足n1 < n2 < n3; 所述光纤涂敷层的制作包括如下步骤: 1)制备3-三氯锗丙酸溶液:首先,将二氧化锗、次亚磷酸钠和浓盐酸按物质的摩尔量1:1.2:52.5的比例混合,在70°C下旋转蒸馏回流3h,并补加5_6倍二氧化锗物质的摩尔量的浓盐酸旋转蒸馏回流6-7h ;冷却,滤掉不溶物并用盐酸洗涤不容物2次;然后,在50°C超声波搅拌下,向滤液中缓慢加入和二氧化锗质量相同的丙烯酸反应lh,得到白色的晶体,该晶体为3-三氯锗丙酸粗产物;其次,将过滤得到粗产物,用正己烷重结晶2次得白色针状晶体3-三氯锗丙酸;最后,将纯化了的3-三氯锗丙酸用无水乙醇配制成0.5mol/L的3-三氯锗丙酸溶液; 2)制备GeO2-SiO2溶胶:首先,将0.5mol/L的3-三氯锗丙酸溶液,正硅酸乙酯溶液和无水乙醇按体积比1:5.2:21.6的比例混合;然后,在40°C下缓慢滴加8_12ml的0.45 mo 1-Γ1氨水溶液,超声搅拌6 h后,存放7天,即获得GeO2-SiO2溶胶; 3)制备质量百分比为1%_1.5%的壳聚糖溶胶:首先,利用无水乙醇、蒸馏水和冰醋酸配制成PH范围在4-4.5的母体溶液;然后,向IOOmL母体溶液中添加1_1.5g的壳聚糖,在25°C下,超声搅拌6h,即获得1%-1.5%的壳聚糖溶胶; 4)制备高浓度的生物培养基纯液:首先,向100-300ml的蒸馏水中添加0.0OlOg七钥酸铵、0.0OlOg七水硫酸锌锌矾、0.0lOg氯化钙、0.0417g硫酸亚铁、0.2g硫酸镁、0.2g氯化钠、0.5g谷氨酸纳、0.554g磷酸二氢钾、1.006g磷酸氢二钾、1.667g尿素、Ig酵母膏、IOg葡萄糖和Iml生长因子溶液,该生长因子溶液由1.(^/1生物素、1.(^/1盐酸硫胺素、1.(^/ L核黄素、1.0g/L烟酸和1.0 g/L盐酸吡哆醇组成,在温度低于40°C下,超声搅拌6h至完全溶解;然后,采用0.45 μ m的滤纸过滤3次,即得到高浓度的生物培养基纯液; 5)GeO2-SiO2-壳聚糖-培养基溶胶的制备:首先,将GeO2-SiO2溶胶、壳聚糖溶胶和生物培养基纯液按质量之比1:9.4:0.5的比例混合,在25°C超声加搅拌15min ;然后向该混合溶液中加入质量百分比为1%的硅烷偶联剂,搅拌30 min,使其交联反应充分,存放I天,SP获得GeO2-SiO2-壳聚糖-培养基溶胶; 6)光纤涂敷层的制备:首先,将获得的GeO2-SiO2-壳聚糖-培养基溶胶利用镀膜提拉机,制备出光纤入射端膜层厚度薄,光纤尾端膜层厚度厚的梯度型膜层;然后,将梯度型膜层在80-90°C干燥6-8h,即获得光纤涂敷层。
作为本发明的一种优选方案,所述光纤涂敷层的外表面为粗糙面。
作为本发明的另一种优选方案,该空心发光光纤的尾端为半球状。
与现有技术相比,本发明具有如下优点: 1、该发光光纤的折射率由光纤纤芯到外层阶跃增大,提高光纤外层与周围环境(菌悬液或生物膜)界面上的光强为相同直径实芯光纤的3-5倍。同时,外层具有粗糙结构且含有固体培养基和带正电基团的壳聚糖可增强对细菌的吸附能力、生物膜与光纤之间的紧密度以及生物膜活性。
2、该光纤能长时间用于pH大于2小于8的弱酸弱碱环境,能用于生物反应器的导光部件和细胞固定化领域,如将该光纤运用于光生物制氢反应器内,能提高相同表面积实芯光纤吸附的生物量2.5-4 倍。


图1为增强发光强度、均匀性及微生物吸附的空心发光光纤的结构示意图; 图2a为光纤表面发光强度低,光传播路程长的光传播途径的示意图; 图2b为光纤表面发光强度较图2a强,光传播路程长较图2a短的光传播途径的示意图; 图2c为光纤表面发光强度较图2b强,光传播路程长较图2b短的光传播途径的示意图; 图2d为光纤表面发光强度强,光传播路程短的光传播途径的示意图; 图3为本发明光纤表面发光强度,与不镀膜的空心光纤和传统侧面实心发光光纤沿光纤长度的变化情况图;图4为光纤长度为9cm处,本发明光纤表面径向发光强度,与不镀膜的空心光纤和传统侧面实心发光光纤沿光纤长度的变化情况图; 图5为光纤表面吸附的生物膜干重和生物膜厚度的变化关系图。
附图中:I一光纤涂敷层;2—凹孔;3 — GeO2颗粒;4一光纤尾端;5—光纤入射端;6—光纤纤芯;7—光纤包层。
具体实施方式
下面结合附图和具体实施方式
对本发明作进一步详细地描述。
如图1所示,增强发光强度、均匀性及微生物吸附的空心发光光纤,该空心发光光纤从内向外由光纤纤芯6、光纤包层7和光纤涂敷层I三层组成。光纤纤芯为折射率Z7l的空气,光纤包层为折射率/ 的石英,光纤涂敷层为GeO2-SiO2-壳聚糖-培养基杂化材料,GeO2颗粒3的折射率为/ 3,且折射率满足& <η2<ηζ。
光纤涂敷层的制作包括如下步骤: 1)制备3-三氯锗丙酸溶液:首先,将二氧化锗、次亚磷酸钠和浓盐酸按物质的摩尔量1:1.2:52.5的比例混合,在70°C下旋转蒸馏回流3h,并补加5_6倍二氧化锗物质的摩尔量的浓盐酸旋转蒸馏回流6-7h ;冷却,滤掉不溶物并用盐酸洗涤不容物2次;然后,在50°C超声波搅拌下,向滤液中缓慢加入和二氧化锗质量相同的丙烯酸反应lh,得到白色的晶体,该晶体为3-三氯锗丙酸粗产物;其次,将过滤得到粗产物,用正己烷重结晶2次得白色针状晶体3-三氯锗丙酸;最后,将纯化了的3-三氯锗丙酸用无水乙醇配制成0.5mol/L的3-三氯锗丙酸溶液; 2)制备GeO2-SiO2溶胶:首先,将0.5mol/L的3-三氯锗丙酸溶液,正硅酸乙酯溶液和无水乙醇按体积比1:5.2:21.6的比例混合;然后,在40°C下缓慢滴加8_12ml的0.45 mo 1-Γ1氨水溶液,超声搅拌6 h后,存放7天,即获得GeO2-SiO2溶胶; 3)制备质量百分比为1%_1.5%的壳聚糖溶胶:首先,利用无水乙醇、蒸馏水和冰醋酸配制成PH范围在4-4.5的母体溶液;然后,向IOOmL母体溶液中添加1_1.5g的壳聚糖,在25°C下,超声搅拌6h,即获得1%-1.5%的壳聚糖溶胶; 4)制备高浓度的生物培养基纯液:首先,向100-300ml的蒸馏水中添加0.0OlOg七钥酸铵、0.0OlOg七水硫酸锌锌矾、0.0lOg氯化钙、0.0417g硫酸亚铁、0.2g硫酸镁、0.2g氯化钠、0.5g谷氨酸纳、0.554g磷酸二氢钾、1.006g磷酸氢二钾、1.667g尿素、Ig酵母膏、IOg葡萄糖和Iml生长因子溶液·,该生长因子溶液由1.(^/1生物素、1.(^/1盐酸硫胺素、1.(^/ L核黄素、1.0g/L烟酸和1.0 g/L盐酸吡哆醇组成,在温度低于40°C下,超声搅拌6h至完全溶解;然后,采用0.45 μ m的滤纸过滤3次,即得到高浓度的生物培养基纯液; 5)GeO2-SiO2-壳聚糖-培养基溶胶的制备:首先,将GeO2-SiO2溶胶、壳聚糖溶胶和生物培养基纯液按质量之比1:9.4:0.5的比例混合,在25°C超声加搅拌15min ;然后向该混合溶液中加入质量百分比为1%的硅烷偶联剂,搅拌30 min,使其交联反应充分,存放I天,SP获得GeO2-SiO2-壳聚糖-培养基溶胶; 6)光纤涂敷层的制备:首先,将获得的GeO2-SiO2-壳聚糖-培养基溶胶利用镀膜提拉机,制备出光纤入射端膜层厚度薄,光纤尾端膜层厚度厚的梯度型膜层;然后,将梯度型膜层在80-90°C干燥6-8h,即获得光纤涂敷层。
为了增强光纤表面的发光强度,该空心发光光纤的尾端为半球状,光纤涂敷层的外表面为粗糙面,本实施例中,在光纤涂敷层的外表面上设置许多凹孔2。
下面详细介绍一下光束在空心光纤中的传播路径: 光束在空心光纤内传播的路径如图2a、图2b、图2c和2d所示,入射光Ji (I)由光纤输入端5入射到光纤后(i=l, 2, 3, 4),首先传输到达光纤纤芯6与光纤包层7的分界面,在该界面上发生第一次反射和折射,反射光Ji (3)沿光纤继续向前传播,折射光Ji (2)进入光纤包层。然后,折射光Λ (2)传输到达光纤包层7与光纤涂敷层I的分界面,在该界面上发生第二次反射和折射,反射光Ji (5)沿光纤继续向前传播,折射光Ji (4)传输进入光纤涂敷层。最后,折射光Ji (4)在光纤涂敷层I与外界环境介质界面发生反射和折射,反射光Ii (7)沿光纤继续向前传播,折射光Ji (6)进入外界环境介质,为外界环境介质提供光能。此外,反射光Ji (3)传播到达光纤纤芯6与光纤包层7的分界面时,在该界面上发生反射和折射,反射光(10)沿光纤继续向前传播,折射光Zi (11)传输进入光纤包层。反射光Ii (10)传播到达光纤尾端4与外界环境介质界面发生反射和折射。折射光Ji (12)进入外界环境介质,为外界环境介质提供光能。反射光Zi (13)沿光纤反向传输,这种反向传输的特性,可以增大光纤表面的发光强度。
其中,图2a,图2b、2c和图2d的区别是:图2a中,折射光I1(2)传输到达光纤包层7与涂敷层I的分界面时,光纤涂敷层的折射率^ (光纤涂敷层局部区域的组成成分为壳聚糖/非GeO2)小于光纤包层的折射率/ 2,此时,折射光J1 (2)在该界面主要发生反射,折射光J1 (4)的能量低,从而为外界环境介质提供光源的折射光Ii (6)也低;此外,反射光Ii (7)入射到光纤涂敷层7与光纤纤芯的分界面时,同样光纤涂敷层的折射率4 (光纤涂敷层的局部区域的组成成分为壳聚糖/非GeO2)小于光纤包层的折射率/ 2,反射光J1 (8)的能量低。根据上述两点,图2a中的光束J1在局部光纤表面发光强度低,但是沿光纤传播的路程长。
图2b中,折射光J2 (2)传输到达光纤包层7与光纤涂敷层I的分界面时,光纤涂敷层的折射率< (光纤涂敷层的局部区域的组成成分为壳聚糖/非GeO2)小于光纤包层的折射率/ 2,此时,折射光Z2 (2)在该界面主要发生反射,折射光/2 (4)的能量低,从而为外界环境介质提供光源的折射光Z2 (6)也低;但是,反射光/2 (7)入射到光纤涂敷层7与光纤纤芯的分界面时,光纤 涂敷层的折射率《3 (光纤涂敷层的局部区域的组成成分为GeO2)大于光纤包层的折射率/ 2,反射光Λ (8)的能量高。根据上述两点,图2b中的光束J2在局部光纤表面发光强度比J1高,因为,光衰减较快,所以沿光纤传播的路程变短。
图2c中,折射光J3(2)传输到达光纤包层7与光纤涂敷层I的分界面时,光纤涂敷层的折射率 4 (光纤涂敷层的局部区域的组成成分GeO2)大于光纤包层的折射率/ 2,此时,折射光/3(2)在该界面主要发生折射,折射光/3(4)的能量高,从而为外界环境介质提供光源的折射光/3(6)也高;但是,反射光J3 (7)入射到光纤涂敷层7与光纤纤芯的分界面时,光纤涂敷层的折射率A (光纤涂敷层的局部区域的组成成分为壳聚糖/非GeO2)小于光纤包层的折射率/ 2,反射光/3(8)的能量低。根据上述两点,图2c中的光速J3在局部光纤表面发光强度比Z2高,因为,光衰减较快,所以沿光纤传播的路程进一步缩短。
图2d中,折射光J4 (2)传输到达光纤包层7与光纤涂敷层I的分界面时,光纤涂敷层的射率(光纤涂敷层的部区域的组成成分GeO2)大于光纤包层的折射率/ 2,此时,折射光Z4 (2)在该界面主要发生折射,折射光J4 (4)的能量高,从而为外界环境介质提供光源的折射光Z4 (6)也高;同时,反射光J4 (7)入射到光纤涂敷层7与光纤纤芯的分界面时,光纤涂敷层的折射率A (光纤涂敷层的局部区域的组成成分为GeO2)大于光纤包层的折射率/ 2,反射光/4 (8)的能量高。根据上述两点,图2d中的光束J4在局部光纤表面发光强度比h高,因为,光衰减较快,且沿光纤传播的路程短。
在图2a,图2b、2c和图2d中,光束在空心光纤中的传播路径(虚线表示入射光束在当地分界面发生反射和折射时,反射光或折射光的光强小于50%入射光的光强,例如,
权利要求
1.增强发光强度、均匀性及微生物吸附的空心发光光纤,其特征在于:该空心发光光纤从内向外由光纤纤芯、光纤包层和光纤涂敷层三层组成;所述光纤纤芯为折射率A的空气,光纤包层为折射率/ 的石英,光纤涂敷层为GeO2-SiO2-壳聚糖-培养基杂化材料,GeO2颗粒的折射率为/ 3,且折射率满足A </ 2 </ 3 ; 所述光纤涂敷层的制作包括如下步骤: 1)制备3-三氯锗丙酸溶液:首先,将二氧化锗、次亚磷酸钠和浓盐酸按物质的摩尔量1:1.2:52.5的比例混合,在70°C下旋转蒸馏回流3h,并补加5_6倍二氧化锗物质的摩尔量的浓盐酸旋转蒸馏回流6-7h ;冷却,滤掉不溶物并用盐酸洗涤不容物2次;然后,在50°C超声波搅拌下,向滤液中缓慢加入和二氧化锗质量相同的丙烯酸反应lh,得到白色的晶体,该晶体为3-三氯锗丙酸粗产物;其次,将过滤得到粗产物,用正己烷重结晶2次得白色针状晶体3-三氯锗丙酸;最后,将纯化了的3-三氯锗丙酸用无水乙醇配制成0.5mol/L的3-三氯锗丙酸溶液; 2)制备GeO2-SiO2溶胶:首先,将0.5mol/L的3-三氯锗丙酸溶液,正硅酸乙酯溶液和无水乙醇按体积比1:5.2:21.6的比例混合;然后,在40°C下缓慢滴加8_12ml的0.45 mo 1-Γ1氨水溶液,超声搅拌6 h后,存放7天,即获得GeO2-SiO2溶胶; 3)制备质量百分比为1%_1.5%的壳聚糖溶胶:首先,利用无水乙醇、蒸馏水和冰醋酸配制成PH范围在4-4.5的母体溶液;然后,向IOOmL母体溶液中添加1_1.5g的壳聚糖,在25°C下,超声搅拌6h,即获得1%-1.5%的壳聚糖溶胶; 4)制备高浓度的生物培养基纯液:首先,向100-300ml的蒸馏水中添加0.0OlOg七钥酸铵、0.0OlOg七水硫酸锌锌矾、0.0lOg氯化钙、0.0417g硫酸亚铁、0.2g硫酸镁、0.2g氯化钠、0.5g谷氨酸纳、0.554g磷酸二氢钾、1.006g磷酸氢二钾、1.667g尿素、Ig酵母膏、IOg葡萄糖和Iml生长因子溶液,该生长因子溶液由1.(^/1生物素、1.(^/1盐酸硫胺素、1.(^/ L核黄素、1.0g/L烟酸和1.0 g/L盐酸吡哆醇组成,在温度低于40°C下,超声搅拌6h至完全溶解;然后,采用0.45 μ m的滤纸过滤3次,即得到高浓度的生物培养基纯液; 5)GeO2-SiO2-壳聚糖-培养基溶胶的制备:首先,将GeO2-SiO2溶胶、壳聚糖溶胶和生物培养基纯液按质量之比1:9.4:0.5的比例混合,在25°C超声加搅拌15min ;然后向该混合溶液中加入质量百分比为1% 的硅烷偶联剂,搅拌30min,使其交联反应充分,存放I天,即获得GeO2-SiO2-壳聚糖-培养基溶胶; 6)光纤涂敷层的制备:首先,将获得的GeO2-SiO2-壳聚糖-培养基溶胶利用镀膜提拉机,制备出光纤入射端膜层厚度薄,光纤尾端膜层厚度厚的梯度型膜层;然后,将梯度型膜层在80-90°C干燥6-8h,即获得光纤涂敷层。
2.根据权利要求1所述的增强发光强度、均匀性及微生物吸附的空心发光光纤,其特征在于:所述光纤涂敷层的外表面为粗糙面。
3.根据权利要求1所述的增强发光强度、均匀性及微生物吸附的空心发光光纤,其特征在于:该空心发光光纤的尾端为半球状。
全文摘要
本发明公开了一种增强发光强度、均匀性及微生物吸附的空心发光光纤,该空心发光光纤从内向外由光纤纤芯、光纤包层和光纤涂敷层三层组成;光纤纤芯为折射率n1的空气,光纤包层为折射率n2的石英,光纤涂敷层为GeO2-SiO2-壳聚糖-培养基杂化材料,GeO2颗粒的折射率为n3,且折射率满足n1<n2<n3。该发光光纤的折射率由光纤纤芯到外层阶跃增大,提高光纤外层与周围环境(菌悬液或生物膜)界面上的光强为相同直径实芯光纤的3-5倍。同时,外层具有粗糙结构且含有固体培养基和带正电基团的壳聚糖可增强对细菌的吸附能力、生物膜与光纤之间的紧密度以及生物膜活性。
文档编号G02B6/032GK103246012SQ201310191878
公开日2013年8月14日 申请日期2013年5月22日 优先权日2013年5月22日
发明者廖强, 钟年丙, 王永忠, 陈蓉, 朱恂, 丁玉栋, 王宏, 李俊, 叶丁丁 申请人:重庆大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1