场发射显示器的制作方法

文档序号:2971201阅读:214来源:国知局
专利名称:场发射显示器的制作方法
技术领域
本发明涉及一种场发射显示器(field emission display),特别涉及一种包括由碳基材料制成的电子发射源的场发射显示器。
背景技术
在现代场发射显示器中(FED),采用厚膜工艺例如丝网印刷,以利用在低电压驱动条件(10-100V)下发射电子的碳基材料来形成平板结构的电子发射源(即发射体)。
适合形成发射体的碳基材料包括石墨、金刚石、类金刚石碳和碳纳米管。所有以上材料中,碳纳米管最有希望用做发射体,因为它们的非常微小的尖端的曲率半径约十几到几十纳米,且因为碳纳米管可以在一个约1-10V/μm的低电场条件下发射电子。
美国专利号6,062,931和6,097,138披露了有关使用CNT技术的FED领域的冷阴极电极场发射显示器。
当FED使用一种具有阴极电极、阳极电极和栅极电极的三极管结构时,阴极电极、绝缘层和栅极电极以所述顺序形成在背板(rear substrate)上,在栅极电极和绝缘层中形成孔以暴露阴极电极,然后发射体形成于阴极电极的暴露表面上。同时,阳极电极和荧光层形成于面板(front substrate)上。
然而,对于这样的一种结构,当提供发射体材料到通过孔暴露的阴极电极的表面时,发射体材料会在阴极电极和栅极电极之间延伸从而在这两个元件之间形成短路。进一步,对于传统三极管结构,当从发射体发射的电子形成电子束并朝向荧光层行进时,电子束的偏转力由于施加于栅极电极上的正电压的影响而增加,以至于电子束发散。
为了消除这个问题,参考图26,这里披露了一种FED,其栅极电极3首先形成于背板1上,然后在绝缘层5形成于栅极电极3之上后,阴极电极7和发射体9形成于绝缘层5之上。阴极电极7和栅极电极3之间由于发射体材料而形成的短路可以通过这种结构避免。再者,由于发射体9形成得较晚(即在背板1的最外层上),所以发射体9可以容易地形成在阴极电极7上。
在图26的FED中,典型地,发射体9沿着阴极电极7的一条长边形成,栅极电极3的感应电场围绕着发射体9以实现场发射。然而由于阴极电极7普遍制造成具有较大的宽度以保证良好的电导率,所以电场的引发场发射的显著影响仅限于发射体9的边缘。
结果,与使用传统三极管结构的FED比较,因为场发射区域受到限制,所以围绕发射体9的电场强度明显低,且电子发射所需的驱动电压和功耗高。同样,由于这个小的场发射区域,所发射的电子数量较少,以至于限制了屏幕亮度的增加。
进一步,在图26的FED中,如果阴极电极7之间的距离超过了一个预定的值(例如,超过栅极电极间距的1/3),则近邻效应(neighboring effect),即发射体9附近电场强度的变化,由于施加于栅极电极3上的数据电压和相邻栅极电极3的数据电压而发生。
对于形成一个像素的特定发射体9,近邻效应指这种现象,其中如果数据电压施加于一个毗邻像素的栅极电极3上,则围绕这个像素的发射体9的电场显著加强以至于发射电流增加,并且如果一个数据电压没有施加于毗邻像素的栅极电极3上,则围绕这个像素的发射体9的电场削弱从而电子发射减少。
因此,如果数据电压被施加到一个特定的栅极电极3,则电子发射不仅从相应于这个栅极电极3的发射体9发生,而且从附近发射体9发生,以至于围绕所需荧光层11的荧光层11均被照射,从而降低了色纯。另外,尽管当屏幕上显示白色时亮度可以被保持,但如果显示彩色时,这些区域将会变暗,以至于画面上会出现不均匀的亮度。
可以通过减小阴极电极7之间的距离来最小化以上问题。发明者测定,当栅极电极3的间距为320μm时,如果阴极电极7之间的距离设置为约20μm,则近邻效应消失。
然而,如果阴极电极7的距离被设置的过于接近,则施加于阴极电极7上的数据电压被邻近的阴极电极7切断,以至于相应的发射体9的电场增加不能够被实现。因此,通过栅极电极3控制场发射是不可能的,从而使得矩阵驱动无法实现。
此外,在如上所述的FED中,电场集中在发射体9的边缘,因此电子发射发生仅从发射体9的边缘发生。这种边缘发射的特点是,通过从发射体9发射的电子形成的电子束不能在朝向相应荧光层11的方向上垂直地传播,而是通过以预定弧形的抛物线传播而行进。因此,从发射体9发射的电子束不仅着落在所需像素的荧光层11上,还着落在附近像素的荧光层11上也照亮之。结果,色纯降低,且不能够获得准确的图像。
在传统的FED中,图像的亮度与从发射体9中发射的电子数和施加于阳极13上的电压成比例。由于考虑到荧光层11的寿命时,荧光层11的每单位面积上的阳极电流密度被限定在一个预定的值,所以当一个更高的电压被施加到阳极13时图像亮度增加。
然而,对于发射体9与阳极电极13相对且其间具有较大距离的传统结构,如果一个过高的电压被施加到阳极电极13以增加亮度,则阴极电极7和阳极电极13之间的电场增加,这就有可能产生电弧放电。这造成发射体9的损毁或加热,从而屏幕照明均匀性变差,且发射体的寿命降低。

发明内容
在一个实施例中,本发明是一种场发射显示器,其中发射体周围的电场增强,且作用于发射体的电场强度增加,使得显示器的驱动电压可以减小,发射体的电子发射数量可以增加。
在另一个实施例中,本发明是一种场发射显示器,其中,由施加在附近像素的栅极电极上的数据电压引起的每个像素的电场变化被阻止,从而使得近邻效应现象不会发生。
在另一个实施例中,本发明是一种场发射显示器,其中,电子束的分散被减到最小,从而发射体发射的电子束有选择地仅照亮那些所需像素的荧光层,从而提高画面质量。
在另一个实施例中,本发明是一种场发射显示器,其中,一个高电压被施加于阳极电极,同时减少了阴极电极和阳极电极之间起弧的可能性,从而提高屏幕亮度。
在一个实施例中,本发明是一种场发射显示器,其包括彼此相对的第一基板和第二基板,并且其间具有一预定的间隙;至少一栅极电极形成于第一基板上;绝缘层形成于第一基板的表面之上并覆盖栅极电极;阴极电极形成于绝缘层上,并包括暴露出相应于像素区域的绝缘层的电场增强区(field enhancing section);电子发射源,形成于临近电场增强区的至少一边的阴极电极上;一发光组件(illumination assembly),形成于与第一基板相对的第二基板的表面上,发光组件通过电子发射源发射的电子实现图像的显示。
电子发射源由碳基材料制成,例如碳纳米管、石墨、金刚石、类金刚石碳和C60(富勒烯(Fullerene)),或者是这些碳基材料的混合物。
进一步,电场增强区是四边形的,且电子发射源形成于临近平行于栅极电极的电场增强区的至少一边。
进一步,每一个电场增强区形成于阴极电极中并暴露出相应于每个像素区域的绝缘层,其包括一个主电场增强区和一个辅电场增强区。主电场增强区和辅电场增强区是四边形的,电子发射源临近主电场增强区的最靠近辅电场增强区的一边形成。
场发射显示器还包括,位于电场增强区中并连接到栅极电极的反电极(counter electrode)。反电极通过经由形成于绝缘层中的通孔接触栅极电极而与栅极电极连接。在电场增强区中,反电极和阴极电极保持一个预定的距离。
电子发射源可以形成于阴极电极的上表面上并延伸超过阴极电极的侧表面。此外,场发射源可以形成于绝缘层上,阴极电极可以形成于电子发射源上并覆盖电子发射源的一部分。
场发射显示器还包括位于阴极电极之间并连接栅极电极的反电极。在这种情况下,场发射源形成于电场增强区和反电极之间的阴极电极上。此外,其上具有发射体的阴极电极的长边和电场增强区之间的距离小于其上没有发射体的阴极电极的相对的长边和电场增强区之间的距离。
场发射显示器还包括在阴极电极方向上形成于反电极和阴极电极之间的推斥电极(pushing electrode)。推斥电极接收一个0V或者负的电压的施加,以向电子发射源发射的电子束提供排斥力。
电子发射源临近平行于阴极电极的电场增强区的至少一边形成,电子发射源被放置在一个距离阴极电极的长边一个预定距离的位置。因此,环绕场增强区的没有形成电子发射源的三面的阴极电极区用来提供排斥力到电子发射源发射的电子上。


合并到说明书中并构成说明书的一部分的附图示出了本发明的各种实施例,并与说明一起,用来阐述本发明的原理,其中图1是依据本发明第一个实施例的场发射显示器的局部分解透视图;图2是在装配状态从A方向观察的图1的场发射显示器的局部剖面图;图3是依据本发明第二实施例的场发射显示器的背板的局部平面图;图4是在装配状态从A方向观察的图3所示的场发射显示器的局部剖面图;图5是依据本发明第三实施例的场发射显示器的背板的局部平面图;图6是在装配状态从A方向观察的图5所示的场发射显示器的局部剖面图;图7是显示发射体的一个改进例子的场发射显示器的局部剖视图;图8是依据本发明第四实施例的场发射显示器的局部分解透视图;图9是在装配状态从A方向观察的图8的场发射显示器的局部剖面图;图10是依据本发明第五实施例的场发射显示器的背板的局部平面图;图11是在装配状态从A方向观察的图10的场发射显示器的局部剖面图;图12是依据本发明第六实施例的场发射显示器的背板的局部平面图;图13是在装配状态从A方向观察的图12的场发射显示器的局部剖面图;图14是依据本发明第七实施例的场发射显示器的背板的局部平面图;图15是在装配状态从A方向观察的图14的场发射显示器的局部剖面图;图16是依据本发明第八实施例的场发射显示器的局部分解透视图;图17是在装配状态从A方向观察的图16的场发射显示器的局部剖面图;图18是图16的背板的局部平面图;图19是图18的沿线I-I的局部剖视图;图20是图18的沿线II-II的局部剖视图;图21是显示作为阴极-栅极电压差(Vcg)的函数的阳极电流(Ia)的曲线图;图22是显示传统场发射显示器中发射体周围形成的等势线的分布的示意图;图23是显示在依据本发明第四实施例的场发射显示器中发射体周围形成的等势线的分布的示意图;图24是显示在依据本发明第五实施例的场发射显示器中发射体周围形成的等势线的分布的示意图;图25是作为包括传统场发射显示器和依据本发明第四和第五实施例的场发射显示器的各种场发射显示器的离开发射体端部的距离的函数的电场强度的曲线图;以及图26是传统场发射显示器的局部分解透视图。
具体实施例方式
参照附图,现在将对本发明的实施例进行详细描述。将要理解,本发明的结构不但对场发射显示器,而且对于相似的平板显示器例如真空荧光显示器,都十分有用。
图1是依据本发明的第一个实施例的场发射显示器的局部分解透视图,图2是装配状态下从A方向观察的图1的场发射显示器局部剖面图。
如图中所示,场发射显示器(FED)包括一个预定尺寸的第一基板2(下文中称为背板(rear substrate))和一个预定尺寸的第二基板4(下文中称为面板(front substrate))。面板4设置来与背板2相对且两者之间有一预定间隙。背板2上有一个能通过形成一个电场来发射电子的结构,面板4上有能通过所发射电子的相互作用来获得预定图像的结构。
更详细地,至少一个栅极电极6,特别地,多个栅极电极6沿一个方向(例如,图中的X轴方向)于背板2上形成条纹图形。此外,一个绝缘层8形成于背板2的整个表面之上并覆盖栅极电极6。阴极电极10沿与栅极电极6的长轴方向垂直的方向(例如,图中的Y轴方向)在绝缘层8上形成条纹图形。
当像素区域被确定在阴极电极10和栅极电极6的交点的位置的情况下,电场增强区12相应于每个像素区在阴极电极10中形成,使得绝缘层8被暴露。电子发射源由碳基材料制成,即发射体14被安置在阴极电极10上,邻近电场增强区12的一边。
电场增强区12是一些简单的区域,阴极电极10的导电材料在该些区域中的部分被去除。这使得电场增强区12完全形成于阴极电极10之中,被阴极电极10包围。优选的是,电场增强区12是四边形。此外,发射体14位于阴极电极10上,邻近电场增强区12的一边,平行于栅极6。即,优选的是,发射体14在形状上大体上为矩形,且一个长边平行于栅极电极6。
发射体14由碳基材料,例如碳纳米管、石墨、金刚石、类金刚石碳和C60(Fullerene),或者是这些碳基材料的混合物制成。在本发明中使用碳纳米管。
阳极电极16形成于相对于背板2的面板4的表面上,该电极上施加约1-5KV的高压,荧光层18由R、G和B荧光体制成。
阳极电极16可以是由例如ITO(氧化铟锡)制成的透明电极,在这种情况下,阳极电极16形成于面板4的与背板2相对的表面上,荧光层18形成于阳极电极16之上。阳极电极16也可以由金属薄膜,例如铝薄膜制成,在这种情况下,荧光层18形成于与背板2相对的面板4的表面上,阳极电极16形成于荧光层18上。
如上构成的面板4和背板2彼此相对放置,并在两者之间插入隔离物20,以使面板4和背板2之间保持一个预定的间隙。相互相对的面板4和背板2的边缘和表面设置密封剂(未显示)。面板4和背板2之间的空间(即间隙)被抽空,于是这些元件被完全密封从而完成FED。
对于如上结构,如果在阴极电极10和栅极电极6之间施加预定的直流或交流电压,且几百到几千伏的高电压施加到阳极电极16上,则栅极电极6的电场通过绝缘层8的被电场增强区12暴露的区域在发射体14的周围起作用,从而由阴极电极10和栅极电极6之间的电势差在发射体14的区域中形成电场。通过这些电场,从发射体14的临近电场增强区12的边缘发射电子。发射的电子形成电子束,着落在相应像素的荧光层18上以照亮荧光层18,从而实现预定图像的显示。
发射体14的所有边,除了其临近电场增强区12的长边外,被阴极电极10包围。因此,当施加一预定的电压到发射体14中的一个所处的阴极电极10上时,此阴极电压用以阻挡电场因施加到邻近像素的阴极电极10或者邻近像素的栅极电极6上的电压而进入此发射体14的区域。
因此,近邻效应现象减弱,在该现象中,特定发射体14附近的电场强度由于施加到附近像素的栅极电极6上的电压而改变。因此,这防止了非所需像素的发光,从而提高了色纯和亮度均匀性。
图3是依据本发明的第二实施例的场发射显示器的背板的局部平面图,图4是在装配状态从A方向观察的图3的场发射显示器的局部剖面图。
如图所示,主电场增强区12A和辅电场增强区12B在对应每个像素区的区域中并沿着阴极电极10(附图中Y轴的方向)成对形成于阴极电极10中。发射体14被安置在阴极电极10上,邻近主电场增强区12A的一条边。即,对每一对主电场增强区12A和辅电场增强区12B,发射体14被安置在主电场增强区12A的边中最邻近与其配对的辅电场增强区12B的一条边附近。
主电场增强区12A和辅电场增强区12B通过去除阴极电极10的部分导电材料而形成以暴露绝缘层8。因此,在预定驱动电压施加到每一个阴极电极10和栅极电极6上时,在发射体14周围栅极电极6的电场更容易建立,并覆盖较大的范围。因此,当与第一个实施例的FED比较,第二个实施例的FED驱动电压可以减小。
在第二个实施例中,优选的是,在沿着相同的阴极电极10,辅电场增强区12B与附近像素的主电场增强区12A之间有一个距离D1,且这个距离D1大于每一对主电场增强区12A和辅电场增强区12B之间的距离D2。如果满足后面的条件,可以实现各个像素的平稳驱动,且由于施加到附近像素的电极上的电压而产生的像素的电场变化将被最小化。
图5是依据本发明的第三实施例的场发射显示器的背板的局部平面图,图6是在装配状态从A方向观察的图5的场发射显示器的局部剖面图。
使用第二实施例的基本结构,FED还包括形成于主电场增强区12中的反电极22。反电极22连接栅极电极6。即,穿过绝缘层8于每一个主电场增强区12A中形成通孔8a,且于每一个主电场增强区12A中形成一个反电极22,覆盖并穿过相应的通孔8a以连接相应的栅极电极。
当一个预定的驱动电压施加于栅极电极6以在栅极电极6和发射体14之间形成电场来发射电子时,反电极22用来吸引发射体14周边的栅极电极6的电压,使得施加到发射体14上的电场更强。因此电子更好地从发射体14发射。
优选地,反电极22以比主电场增强区12小的尺寸形成,以保持和阴极电极10的预定距离,从而避免在制造过程中阴极电极10和发射体14之间形成短路。
进一步包括反电极22的第三实施例也可以通过采用第一实施例的基本结构并在主电场增强区12中添加反电极22来实现。
在第一、第二和第三实施例中,发射体14仅形成于阴极电极10的上表面上。然而,发射体14也可以形成于阴极电极10的上表面上并向下延伸到阴极电极10的相邻侧壁(side wall)上,进入第一实施例的电场增强区12、或第二和第三实施例的电场增强区12A。图7显示了这样的结构,它使用了第三实施例的基本结构,并包括发射体14,该发射体14形成于阴极电极10的上表面上,并在阴极电极10的相邻侧壁上向下延伸进入主电场增强区12A。
图8是依据本发明的第四个实施例的场发射显示器的局部分解透视图,图9是在装配状态从A方向观察的图8的场发射显示器的局部剖面图。
如图所示,暴露绝缘层8的电场增强区12在每个像素区中形成于阴极电极10内,反电极24形成于阴极电极10之间并与栅极电极6连接。发射体14沿着阴极电极10的一条长边形成,该边靠近反电极24。对于这种结构,每一个发射体14形成于一个电场增强区12和一个反电极24之间。
因此,随着预定的驱动电压施加到栅极电极6上,栅极电极6的电场沿着发射体14的一边集中穿过绝缘层8的由电场增强区12暴露的区域,同时通过反电极24沿发射体14的另一边集中。在发射体14附近形成的电场发射区因此增大,且电子不是从发射体14的一边而是从其两边发射,从而增加电子发射量。
优选的是,阴极电极10的带有发射体14的长边和电场增强区12之间的距离D3小于阴极电极10的没有安置发射体14的相对的长边和电场增强区12之间的距离D4。
这样的结构被使用,是因为距离D3越小,通过电场增强区12对发射体14上的电场的影响越大,从而增加施加到发射体14上的电场的强度。此外,由于阴极电极10的导电性会由于电场增强区12减弱,所以阴极电极10的导电性通过加大距离D4而得以确保。
图10是依据本发明的第五实施例的场发射显示器的背板的局部平面图,图11是在装配状态从A方向观察的图10的场发射显示器的局部剖面图。
第五实施例采用了第四实施例的基本结构并增加了一个附加元件。具体地,在第五实施例中,第四实施例的位于阴极电极10之间的反电极被作为主反电极24A,辅助反电极24B形成于电场增强区12中。辅助反电极24B连接栅极电极6。
与主反电极24A一样,辅助反电极24B穿过形成于绝缘层8上的通孔8a与栅极电极6连接。优选地,辅助反电极24B的尺寸比电场增强区12的尺寸小,以保持距离阴极电极10一预定距离。这防止了在制造过程中在阴极电极10和发射体14之间形成短路。
因此,第五实施例引入了一种结构,其中,一个主反电极24A和一个辅助反电极24B形成于每一个发射体14的相对侧。因此,当预定的驱动电压施加到栅极电极6上时,栅极电极6的电场通过主反电极24A和辅助反电极24B沿发射体14的相对边同时集中。这增加了发射体14周围的电场发射区,并增加了施加到发射体14上的电场强度。
本发明也可以使用一种结构,其中,上述实施例的基本结构得以采用,且发射体14的一部分形成于阴极电极10之下,使得发射体14的对应于阳极电极16的相对区域减小。这样的结构变化允许更高的电压施加到阳极电极16上,并将电弧导致的对发射体14的损害几率减至最小。
图12是依据本发明的第六实施例的场发射显示器的背板的局部平面图,图13是在装配状态从A方向观察的图12的场发射显示器的局部剖面图。作为一个例子,第六实施例的结构基于第三实施例的结构。
如图所示,长边沿着X轴方向的矩形发射体14在绝缘层8上形成于每个像素区中。阴极电极10形成于绝缘层8之上,覆盖每一个发射体14的全部或者一部分。在阴极电极10形成得覆盖发射体14的一部分的情况下,即使当施加一个高电压到阳极电极16时,在阴极电极10和阳极电极16之间产生电弧,电弧电流也不会直接影响发射体14,而是流到阴极电极10。从而避免了由于电弧对发射体14造成的危害,并可以施加一个更高的电压到阳极电极16。
在发明人进行的实验中,当阴极电极10和阳极电极16之间的距离为1mm的情况下,可以施加约5KV的高压到阳极电极16上。因此,假定在FED中保持足够的真空状态,则可以在不损伤发射体14的情况下实现高的画面亮度。
在包括相对电极以在发射体周围形成更高强度的电场的以上实施例中,部分从发射体发射的电子束会被施加到反电极上的一(+)电势吸引,以向反电极行进并被扩散。这在第四和第五实施例中尤其有问题,其中,发射体14的边平行于阴极电极10,使得电子在基本垂直于阴极电极10的方向发射。
因此,在下面所述的第七和第八实施例中,使用聚焦电子束的结构,即施加一个排斥力到扩散且向反电极行进的电子束上。
图14是依据本发明的第七实施例的场发射显示器的背板的局部平面图,图15是在装配状态从A方向观察的图14的场发射显示器局部剖面图。
如图所示,第七实施例使用第四实施例的基本结构并进一步包括沿着阴极电极10(图中的X轴方向)形成于反电极24和阴极电极10之间的推斥电极26。即,X轴方向上的反电极24的每一行对应于一个阴极电极10和沿着阴极电极10的长边形成的发射体14。
推斥电极26不是形成于那些相应的反电极24和阴极电极10之间,而是形成于反电极24的在X轴方向上的行和反电极24的相对侧的阴极电极10之间。优选地,推斥电极26的一端连接到线路28,从而接收一外部电压以聚焦电子束。
因此,当电子通过阴极电极10和栅极电极6之间的电势差而自发射体14发射时,如果向推斥电极26施加0V或者负电压,推斥电极26的(-)电势提供一个排斥力到漫射且向反电极24行进的电子束上,以在这些电子束上施加一个推斥力。从而,电子束向所需像素的荧光层18聚焦。
图16是依据本发明的第八个实施例的场发射显示器的局部分解透视图,图17是在装配状态从A方向观察的图16的场发射显示器的局部剖面图。在第八实施例中,阴极电极本身被用作推斥电极,而不是安装附加的推斥电极。
参考附图,电场增强区12在对应于每一个像素区的区域内形成于阴极电极10中。发射体14形成在阴极电极10上,在阴极电极的临近电场增强区12的边中沿着阴极电极10(图中的X轴方向)的一条边的区域上。设置发射体14,使得在发射体14和阴极电极10的最靠近发射体14的长边之间形成距离D5。此外,反电极22被安置在电场增强区12中,与栅极电极6接触。
利用此结构,围绕电场增强区12的除了附近形成有发射体14的边之外的所有边的阴极电极10的区域用以提供一个推斥力,以将从发射体14发射的电子束的漫射减小到最小。阴极电极10的这种聚焦功能可以通过施加一个(-)扫描电压到阴极电极10上,并施加一个(+)数据电压到栅极电极6上而有效实现。
图18是图16的背板的局部平视图,图19是图18的沿线I-I的局部剖视图,图20是图18的沿线II-II的局部剖视图。
首先参照图18,为了说明阴极电极10的聚焦功能,阴极电极10的区域标记如下。第一区30A指阴极电极10的临近电场增强区12的相对于发射体14形成侧的那条边的区域。第二区30B和第三区30C指临近电场增强区12的沿Y轴方向形成的边的阴极电极10的区域。
此外,将说明当-100V的扫描电压施加到下部阴极电极10(附图中),且70V的数据电压施加到中心栅极电极6上(附图中)以导通一个由这个阴极电极10和栅极电极6的交点形成的像素的情况。在这种情况下,2kV被施加到阳极电极16,0V施加到其他的阴极电极10和栅极电极6以关闭其他的像素。
参看图19,如果如上面所述那样导通这个单独的像素,尽管大部分从发射体14发射的电子束被施加到阳极电极16上的(+)电压所吸引而朝向相应像素的荧光层18行进,但是,一些电子束还被施加到反电极22上的(+)电势吸引而朝向反电极22漫射。然而,施加到第一区30A的(-)电势提供了一个排斥力给朝向反电极22漫射的电子束。这个排斥力推动这些电子束,使得他们朝向对应像素的荧光层18聚焦。
进一步,参看附图20,发射体14发射的一些电子束也会沿着X轴方向漫射。然而,施加到阴极电极10的第二和第三区30B和30C上的(-)电势提供一个排斥力到那些电子束上,以使他们朝向对应像素的荧光层18聚焦。
在如上所述的结构中,增加第一区30A的宽度可以改进电子束的聚焦,并且对于阴极电极10的由于电场增强区12而减弱的导电性得以充分保持。因此,优选的是,电场增强区12得以形成,使得相比于电场增强区12的其它边到阴极电极10的相对的长边的距离,附近形成有发射体14的边设置得更靠近阴极电极10的相应的长边。
在本发明的第一到第八实施例中,第一个优点是,每一个像素的发射体之间的所发射电子的偏转被有效限制,从而最小化近邻效应。因此,同极性驱动(same polarity driving)可以实现,其中,施加(+)扫描电压到栅极电极上,且施加(+)数据电压到阴极电极上。当发射体被阴极电极包围,就像第一、第二、第三、第六和第八实施例那样时,这尤其是确实的。应当注意,施加(-)扫描电压到阴极电极上且施加(+)数据电压到栅极电极上的常规驱动方式在本发明中也可以被使用。
发明人制造了一个具有第三实施例结构的FED,并在改变施加到阴极电极和栅极电极上的电压的同时对从发射体发射电子的情形进行了测定。这样的测定通过检测荧光层的发光来进行。这个实验的结果如下面表1所示。使用逐行模式(ling-sequential mode),100V被施加到选定的栅极电极上,0V施加到些没有被选定的栅极电极上。此外,在导通状态时,0V被施加到阴极电极上,在截止状态时,50V被施加到阴极电极上。[表1]

从表1可以清楚地看到,在施加了100V电压的栅极电极和施加了0V电压的阴极电极的交点处,电子从像素中的发射体发射出来。栅极电极和阴极电极上所加电压的其余三种组合没有导致电子发射。这种FED中的灰度可以使用传统脉冲宽度调制方法实现。
图21是显示作为阴极-栅极电压差(Vcg)的函数的阳极电流(Ia)的曲线图。Vt表示电子开始发射的阈值电压,Von表示满足像素显示所需电平的像素显示电压。此外,曲线图中的虚线表示每个像素的I-V曲线,实线表示实际运行中发生的I-V曲线。
在传统的FED中,阴极电极中形成的电场受到相邻阴极电极的距离和电极几何结构的影响。因此,如果制造一个大的显示装置,由于制造公差累积,在相同的电压情况下,像素之间的发射电流之差可以变得非常大。因此,作为阴极-栅极电压Vcg的函数的阳极电流Ia具有如图所示的差异。
因此,为了最小化每个像素的非一致性显示特性,由于阈值电压Vt必须和具有高特性曲线的像素匹配,且像素的显示电压Von必须与具有低特性曲线的像素匹配,所以在简单矩阵驱动中,驱动电压电平必须反映实线的I-V曲线。在这种情况下,一个像素的实线I-V曲线的方程(1)在实验上得以满足,在实际的实线I-V曲线的驱动中方程(2)被满足。
(1)Von=2Vt(2)Von>2Vt在上面的情况下,在传统FED中,(-)扫描电压施加到阴极电极上,(+)数据电压施加到栅极上,同时满足下面的方程(3)。
(3)Von=Vscan(扫描电压)+Vdata(数据电压)在一个或多个阴极电极或栅极电极被控制关闭的第三种情况中,发射体周围的电场将不能形成,且当1或2由于近邻效应被控制关闭时电场发射产生。这导致了对比度的减小。
然而,在本发明的FED中,栅极电极被用作扫描电极,阴极电极被用作数据电极,正电压施加到阴极电极和数据极二者上。因此,对比度的降低(甚至在具有非均匀电场特性的大显示装置中)被阻止。
例如,当像素显示电压Von是120V且阈值电压Vt是50V时,如果120V作为扫描电压施加到栅极上(被选择时为120V且不被选择时为0V),70V作为数据电压施加到阴极电极上(导通状态为0V且截止状态为70V),则在表1的三个不发光条件下,截止状态被准确保持。
作为本发明的第二个优点,电场发射区增大,使得施加到发射体上的电场强度增加,电子发射效果提高。在第四和第五实施例的结构中尤其是这样。
图22是显示传统的不包括电场增强区和反电极(见图26)的场发射显示器(比较例)中发射体周围形成的等势线的分布的示意图。此外,图23和24分别是显示依据本发明的第四个和第五个实施例的场发射显示器中发射体周围形成的等势线分布的示意图。实验所用的驱动条件如下面表2所示,为了更好地说明等势线,图23和图24中没有示出发射体下面的阴极电极。[表2]

对于图22中所示的比较例,等势线围绕所有的阴极电极7。此外,由于阴极电极7的宽度大,所以导致电子放电的等势线密集的区域,即场发射区域(图中圆圈所指区域),得以分布并限制在阴极电极7的角落处(即发射体9周围)。
然而,对于图23所示的第四实施例的结构和图24所示的第五实施例的结构,围绕发射体14等势线更加密集地分布。此外,在第五实施例的结构中,辅助反电极24B在阴极电极10的方向上提供一个推移力到等势线,从而实现更高效的电子发射。
图25是显示包括传统场发射显示器和依据本发明的第四和第五实施例的场发射显示器的各种场发射显示器的,作为到发射体端部的距离的函数的电场强度的曲线图。在这个曲线图中,水平轴表示电场测量的位置。在达0.2μm的范围内改变从发射体到阴极电极内的距离的同时,测量电场。
在曲线图中,实验1和实验3分别是第四实施例的距离D3设置为50μm和20μm时的情形。此外,实验2和实验4分别是第五实施例的距离D3设置为50μm和20μm时的情形。在比较例和实施例中阴极电极的宽度是250μm。
如曲线图所示,在实验1到4的情形中,电场强度在所有测量位置上超过比较例。如果把实验1到实验4其自身进行比较,更强的电场随着阴极电极的距离D3的减少而形成于发射体周围。此外,当距离D3确定不变时,辅助反电极形成于电场增强区的第五实施例的结构造成一个电场,该电场比不包括辅助反电极的第四实施例的结构所形成的要强。
如图表所示,在实验1到实验4中,电场强度超过所有比较例上所有测试位置。如果把实验1到实验4进行比较,一个更强的电场随着阴极电极的距离D3的减少而形成于发射体周围。进一步,当距离D3确定不变,辅助反电极形成于电场增强区的第五实施例的结构造成一个电场,该电场比不包括辅助反电极的第四实施例的结构所形成的要强。
在下面的表3中,上面实验的结果用数字表示。在表中,电场发射的长度表示超出截止电场的电场区域的长度。可以假设电场发射区域的长度与电场发射区的宽度成比例。此外,平均电场是一个通过将电场强度除以电场发射区的长度而得到的值,以此值为单位的k是比例常数。[表3]

(在上面的表3中,括号中的数值表示基于比较例的值的百分数。)尽管本发明的实施例已经在上文中进行了详细说明,但是应当清晰理解的是,对本领域技术人员而言显然的对此处所教导的基本发明概念的各种变化和/或更改仍在本发明的由所附权力要求所定义的精神和范围内。
权利要求
1.一种场发射显示器,包括彼此相对的第一基板和第二基板,其间具有一预定的间隙;形成于第一基板上的至少一个栅极电极;绝缘层,形成于第一基板的表面上,覆盖栅极电极;阴极电极,形成于绝缘层上,并包括暴露相应于像素区域的绝缘层的电场增强区;电子发射源,形成于阴极电极上,临近电场增强区的至少一条边;以及发光组件,形成于第二基板的与第一基板相对的表面上,发光组件通过电子发射源发射的电子实现图像的显示。
2.如权利要求1所述的场发射显示器,其中,电子发射源由碳基材料制成,该材料自碳纳米管、石墨、金刚石、类金刚石碳和C60,以及这些碳基材料的混合物构成的组中选出。
3.如权利要求1所述的场发射显示器,其中,电场增强区是四边形的,且电子发射源临近电场增强区的平行于栅极电极的至少一条边形成。
4.如权利要求1所述的场发射显示器,其中,形成于阴极电极中、并露出相应于每个像素区域的绝缘层的每个电场增强区包括沿着阴极电极形成的主电场增强区和辅电场增强区。
5.如权利要求4所述的场发射显示器,其中,主电场增强区和辅电场增强区是四边形的,电子发射源临近主电场增强区的最靠近辅电场增强区的一边形成。
6.如权利要求4所述的场发射显示器,其中,每个辅电场增强区与相应于相邻像素的主电场增强区之间的距离大于每个辅电场增强区与相应于相同像素的主电场增强区之间的距离。
7.如权利要求1所述的场发射显示器,还包括位于电场增强区中并且连接到栅极电极的反电极。
8.如权利要求7所述的场发射显示器,其中,反电极通过经由形成于绝缘层中的通孔来接触栅极电极而与栅极电极相连。
9.如权利要求7所述的场发射显示器,其中,在电场增强区中,反电极和阴极电极之间保持一个预定的距离。
10.如权利要求4所述的场发射显示器,还包括位于主电场增强区中并且连接到栅极电极的反电极。
11.如权利要求1所述的场发射显示器,其中,电子发射源形成于阴极电极的上表面上并延伸到阴极电极的侧表面上。
12.如权利要求1所述的场发射显示器,其中,场发射源形成于绝缘层上,且阴极电极形成于电子发射源上覆盖电子发射源的一部分。
13.如权利要求1所述的场发射显示器,还包括位于阴极电极之间并和栅极电极相连的反电极。
14.如权利要求13所述的场发射显示器,其中,场发射源形成于电场增强区和反电极之间的阴极电极上。
15.如权利要求14所述的场发射显示器,其中,阴极电极的其上设置有发射体的长边与电场增强区之间的距离小于阴极电极的其上没有设置发射体的相对的长边和电场增强区之间的距离。
16.如权利要求14所述的场发射显示器,还包括位于电场增强区中并且和栅极电极相连的辅助反电极。
17.如权利要求14所述的场发射显示器,还包括在阴极电极的长轴方向上形成于反电极和阴极电极之间的推斥电极。
18.如权利要求17所述的场发射显示器,其中,推斥电极接收0V或者负电压的施加,以提供排斥力给电子发射源发射的电子束。
19.如权利要求1所述的场发射显示器,其中,电场增强区是四边形的,电子发射源临近电场增强区的平行于栅极电极的长轴方向的一边形成,电子发射源的位置距阴极电极的长边一预定距离。
20.如权利要求19所述的场发射显示器,其中,电场增强区的附近设置有电子发射源的一边形成得比电场增强区的相对的一边更靠近阴极电极的长边。
21.如权利要求19所述的场发射显示器,还包括位于电场增强区中并且和栅极电极相连的反电极。
22.如权利要求1所述的场发射显示器,其中,发光组件包括被施以加速电子所需的高电压的阳极电极,以及当电子落着到荧光层上时而被激发以发射可见光的R、G和B荧光层。
23.一种场发射显示器,包括彼此相对的第一基板和第二基板,其间具有一预定间隙;至少一个栅极电极,形成于第一基板上;绝缘层,形成于第一基板的表面之上并覆盖栅极电极;阴极电极,形成于绝缘层上,并包括暴露相应于像素区域的绝缘层的电场增强区;电子发射源,临近电场增强区的平行于栅极电极的至少一条边地形成于阴极电极上;以及发光组件,形成于第二基板的与第一基板相对的表面上,发光组件通过电子发射源发射的电子实现图像的显示。
24.如权利要求23所述的场发射显示器,还包括位于电场增强区中并且连接到栅极电极的反电极。
25.如权利要求23所述的场发射显示器,还包括位于距电子发射源预定距离处,并形成得暴露出绝缘层的辅电场增强区。
26.一种场发射显示器,包括彼此相对的第一基板和第二基板,其间具有一预定的间隙;至少一个栅极电极,形成于第一基板上;绝缘层,形成于第一基板的表面之上,覆盖栅极电极;阴极电极,形成于绝缘层上,并包括暴露相应于像素区域的绝缘层的电场增强区;电子发射源,形成于阴极电极上,临近电场增强区的平行于阴极电极的至少一条边;以及发光组件,形成于第二基板的与第一基板相对的表面上,发光组件通过电子发射源发射的电子实现图像的显示。
27.如权利要求26所述的场发射显示器,还包括位于阴极电极之间并且连接到栅极电极的反电极。
28.如权利要求27所述的场发射显示器,其中,电子发射源被安置于电场增强区和反电极之间的阴极电极上。
29.如权利要求28所述的场发射显示器,还包括位于电场增强区中并和栅极电极相连的辅助反电极。
30.如权利要求27所述的场发射显示器,还包括在阴极电极的长轴方向上形成于反电极和阴极电极之间的推斥电极。
31.如权利要求26所述的场发射显示器,其中,电子发射源被安置在距离阴极电极的长边预定距离处,并且在除最接近电场增强区的一条边之外的所有边上均被阴极电极所包围。
全文摘要
本发明公开了一种场发射显示器,其包括彼此相对的第一基板和第二基板,其间具有一预定间隙。该场发射显示器还包括至少一个形成于第一基板上的栅极电极;形成于第一基板上并覆盖栅极电极的绝缘层;阴极电极,其形成于绝缘层上并包括暴露相应于像素区域的绝缘层的电场增强区;电子发射源,形成于阴极电极上,临近电场增强区的至少一边;以及形成于第二基板上的发光组件,发光组件通过电子发射源发射的电子实现图像显示。
文档编号H01J1/304GK1457080SQ0314299
公开日2003年11月19日 申请日期2003年4月12日 优先权日2002年4月12日
发明者李天珪, 李相祚, 崔龙洙, 安商爀, 李炳坤, 韩豪洙 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1