整体叶盘单/双面激光冲击强化光路系统的制作方法

文档序号:3018835阅读:135来源:国知局
专利名称:整体叶盘单/双面激光冲击强化光路系统的制作方法
技术领域
本实用新型属于整体叶盘激光冲击强化加工领域,具体涉及一种应用在航空发动机中的整体叶盘单/双面激光冲击强化光路系统。
背景技术
叶片是航空发动机中能量转换的主要部件,同时也是最为核心和关键的零件之一,被誉为“心脏中的心脏”。20世纪80年代中期,为了减少航空发动机中的零件数量、减轻整体重量和提高发动机的气动效率、推重比及可靠性,在发动机设计中采用了超宽弦、弯掠叶片和窄流道等先进气动布局设计的整体叶盘结构。发动机叶片经常会由于高频疲劳而发生断裂,直接影响到发动机的使用安全性和寿命。盘片分离结构中遇到上述情况只需更换受损叶片,而由于整体叶盘的叶片不可拆卸,若因个别叶片受损而报废整个叶盘会带来极大的浪费,并且使得发动机的可维护性降低,因此整体叶盘的表面强化技术尤为重要。单个叶片的传统强化技术是喷丸强化,喷丸强化对表面不规则部件实施困难,容易引起薄壁件的变形,对表面粗糙度和尺寸可能产生影响。激光冲击强化技术是利用强激光束产生的等离子冲击波,可在深度大于Imm的叶片表面产生压缩表面残余应力,提高叶片的抗损伤裕度及疲劳性能,与冷挤压、喷丸等金属材料表面强化手段相比,具有非接触、无热影响区、可控性强以及强化效果显著等突出优点。用于激光冲击强化的激光器主要是YAG激光器和钕玻璃激光器,YAG激光器的单脉冲能量大小有限,钕玻璃激光器的单脉冲能量虽然比较大,但重复频率较低,从而使得激光冲击强化的效率较低。本发明设计的单/双面激光冲击强化光路系统,通过光路快速切换、光斑形状快速选择,可以大大提高激光冲击强化的效率。

实用新型内容本实用新型的目的在于提供一种整体叶盘单/双面冲击强化光路系统,该光路系统能够有效的实现航空发动机整体叶盘的单/双面冲击强化。本发明根据航空发动机整体叶盘的结构形式,针对航空发动机的进气边、排气边、叶尖、叶背和叶盆等结构形式,以及叶片间距狭窄等特点,发明了可以自动和手动切换的四套光路,完全实现了叶片边缘激光冲击强化加工的需要。本实用新型的目的是通过以下技术方案来实现的:一种整体叶盘单/双面激光冲击强化光路系统,该光路系统包括:安装在光学平台上的光路一与光路二切换滑台、光路三与光路四切换滑台以及出光口滑台;安装在激光器内部用于光路切换的数控滑台;安装在光学平台上的光路三转台和光路一转台;安装在光学平台上的光路三与光路四校验滑台和光路一与光路二校验滑台;安装在光学平台上的光路二反射镜、光路四反射镜、反射镜A和反射镜B ;安装在光学平台上的光路一聚焦镜、光路三聚焦镜、光路二聚焦镜和光路四聚焦镜,安装在光学平台上的光路二匀光镜片和光路四匀光镜片,所述光路二聚焦镜和光路二匀光镜片组成光路二匀光聚焦镜组,所述光路四聚焦镜和光路四匀光镜片组成光路四匀光聚焦镜组;分别安装在光路一转台和光路三转台上的光路一摆臂和光路三摆臂;分别安装在光路一摆臂末端和光路三摆臂末端的光路一小反射镜和光路三小反射镜;分别安装在光路一与光路二切换滑台和光路三与光路四切换滑台上的光路一反射镜和光路三反射镜;安装在出光口滑台上的反射镜C和反射镜D ;安装在数控滑台上的反射镜E ;安装在激光器内部的合束镜;分别安装在光路三与光路四校验滑台和光路一与光路_■校验滑台上的光路二与光路四校验能量计和光路一与光路_■校验能量计;安装在光学平台上的防护板、防护罩和导光管。所述反射镜E在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在数控滑台上滑动;激光器上设置出光口 A和出光口 B ;当反射镜E处在出光口 A正前方时,激光束A经反射镜E反射至合束镜,再经合束镜反射出的激光与激光束B均由出光孔B输出;当反射镜E处在出光口 A 和出光口 B之间的位置时,激光束A和激光束B分别从出光口 A和出光口 B输出。所述反射镜C和反射镜D在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够同时在出光口滑台上滑动汸出光口和B出光孔同时出光时,当反射镜C和反射镜D分别正处于出光孔A和出光孔B的正后方时,A出光孔输出的激光经反射镜C的反射能够反射到反射镜C左方的反射镜A上,B出光孔输出的激光经反射镜D的反射能够反射到反射镜D右方的反射镜B上;只有B出光孔出光时,当反射镜C和反射镜D分别正处于出光孔A和出光孔B的后方时,B出光孔输出的激光经反射镜D的反射可以反射到反射镜D右方的反射镜B上;只有B出光孔出光时,当只有反射镜C正处于出光孔B的后方时,B出光孔输出的激光经反射镜C的反射可以反射到反射镜C左方的反射镜A上。所述光路一反射镜在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路一与光路二切换滑台上滑动;当反射镜B上有激光束反射出来时,光路一反射镜正处于反射镜B反射光路的正后方时,反射镜B反射来激光经光路一反射镜反射到光路一反射镜左方的光路I聚焦镜上;当反射镜B上有激光束反射出来时,光路一反射镜不处于反射镜B反射光路的正后方时,反射镜B反射来激光经光路二反射镜反射到光路二反射镜左方的光路二匀光聚焦镜组上。所述光路三反射镜在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路三与光路四切换滑台上滑动;当反射镜A上有激光束反射出来时,光路三反射镜正处于反射镜A反射光路的正后方时,反射镜A反射来的激光经光路三反射镜反射到光路三反射镜右方的光路三聚焦镜上;当反射镜A上有激光束反射出来时,光路三反射镜不处于反射镜A反射光路的正后方时,反射镜A反射来的激光经光路四反射镜反射到光路四反射镜右方的光路四匀光聚焦镜组上。所述光路一摆臂在伺服电机的驱动下或手动旋转伺服电机旁的旋钮,能够围绕光路一转台的轴线转动;当光路一聚焦镜有激光输出时,光路一摆臂摆至光路一小反射镜正好处于光路一聚焦镜输出光路的正左方时,光路一小反射镜将经光路一聚焦镜输出的激光反射到工件表面,形成直径为2-5mm的光强均匀的圆形光斑;当不需光路一工作时,光路一摆臂顺时针旋转至光学平台上。所述光路三摆臂在伺服电机的驱动下或手动旋转伺服电机旁的旋钮,能够围绕光路三转台的轴线转动;当光路三聚焦镜有激光输出时,光路三摆臂摆至光路三小反射镜正好处于光路三聚焦镜输出光路的正右方时,光路三小反射镜将经光路三聚焦镜输出的激光反射到工件表面,形成直径为2-5mm的光强均匀的圆形光斑;当不需光路三工作时,光路三摆臂逆时针旋转至光学平台上。当光路二匀光聚焦镜组有激光束输入时,光路二聚焦镜输出的激光照射到工件表面,形成边长为2-5mm的光强均勻的方形光斑。当光路四匀光聚焦镜组有激光束输入时,光路四聚焦镜输出的激光照射到工件表面,形成边长为2-5mm的光强均勻的方形光斑。所述光路一与光路二校验能量计在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路一与光路二校验滑台上滑动;光路一摆臂和光路三摆臂均处于不工作状态,校验光路一的完好性时,光路一与光路二校验能量计移动到光路一聚焦镜的正后方,选择从光路一中输出激光,测量光路一输出的能量,与激光器输出的能量做对比;校验光路二的完好性时,光路一与光路二校验能量计移动到光路二聚焦镜的正后方,选择从光路二中输出激光,测量光路二输出的能量,与激光器输出的能量做对比;当对工件进行冲击强化加工时,光路一与光路二校验能量计移动到不遮挡光路的地方。所述光路三与光路四校验能量计在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路三与光路四校验滑台上滑动;光路一摆臂和光路三摆臂均处于不工作状态,校验光路三的完好性时,光路三与光路四校验能量计移动到光路三聚焦镜的正后方,选择从光路三中输出激光,测量光路三输出的能量,与激光器输出的能量做对比;校验光路四的完好性时,光路三与光路四校验能量计移动到光路四聚焦镜的正后方,选择从光路四中输出激光,测量光路四输出的能量,与激光器输出的能量做对比;当对工件进行冲击强化加工时,光路一与光路二校验能量计移动到不遮挡光路的地方。当只由出光口 B出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路一或光路三能够输出激光光斑直径为2-5mm的光强均匀的圆形光斑;当只由出光口 B出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路二或光路四能够输出激光光斑为边长2-5mm的光强均勻的方形光斑。当出光口 A和出光口 B同时出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路一和光路三能够输出激光光斑直径为2-5mm的光强均匀的圆形光斑;当出光口 A和出光口 B同时出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8_25ns、光束直径< 27臟,发散角< 3mrad的激光束时,光路二和光路四能够输出激光光斑为边长2-5_的光强均勻的方形光斑。当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8_25ns、光束直径< 27臟,发散角< 3mrad的激光束时,光路一和光路三的能量损失< 6% ;当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路二和光路四的能量损失< 10%。本实用新型的优点与积极效果为:1.本实用新型结构简单,使用方面,在提高生产效率的同时,保证了激光冲击强化质量的均匀性和稳定性。2.本实用新型设计的四套光路,可以根据需要,任意选择一套光路或者两套光路工作,可以适应多种结构形状的工件加工。3.本实用新型提供的方形光斑对于加工平面等结构简单的工件,尤为适用,在方便路径规划的同时,能够保证加工质量均匀稳定,同时效率较高。4.本实用新型提供的圆形光斑对于加工结构复杂、被工件其他部位遮挡的加工区域尤为适用,使得难加工、不能加工的区域变得能够被加工。5.本实用新型提供的光路校验,能够快速有效的检查光路的完好性,能够快速的诊断光路系统运行是否正常。6.本实用新型提供的防护板、防护罩、导光管能够有效的防止水、灰尘污染能量计和镜片,从而保证了设备长期稳定的运行。

图1为本实用新型的光路系统简图。图2为本实用新型的光路系统俯视图。图3为本实用新型的光路系统立体图。图4为光学平台结构尺寸简图。图5为光学平台结构尺寸简图。图6为光路传输的激光束效果图。其中:I为光路一与光路二切换滑台,2为光路二反射镜,3为光路一反射镜,4为光路二匀光聚焦镜组,5为光路一聚焦镜,6为光路一转台,7为光路一小反射镜,8为光路三小反射镜,9为光路三转台,10为光路四匀光聚焦镜组,11为光路三聚焦镜,12为光路四反射镜,13为光路三反射镜,14为光路三与光路四切换滑台,15为光学平台;16为反射镜A,17为出光口滑台,18为反射镜C,19为激光器,20为反射镜E,21为数控滑台,22为反射镜D,23为反射镜B,24为光路二匀光镜片,25为光路二聚焦镜,26为光路三与光路四校验滑台,27为光路三与光路四校验能量计,28为光路一摆臂,29为光路三摆臂,30为光路一与光路二校验能量计,31为光路一与光路二校验滑台,32为光路四聚焦镜,33为光路四匀光镜片,34为防护板,35为防护罩,36为导光管,37为合束镜。
具体实施方式
以下结合附图对本实用新型作进一步详述。如图1-6所示,本实用新型整体叶盘单/双面激光冲击强化光路系统包括:安装在光学平台15上的光路一与光路二切换滑台1、光路三与光路四切换滑台14以及出光口滑台17 ;安装在激光器19内部用于光路切换的数控滑台21 ;安装在光学平台15上的光路三转台9和光路一转台6 ;安装在光学平台15上的光路三与光路四校验滑台26和光路一与光路二校验滑台31 ;安装在光学平台15上的光路二反射镜2、光路四反射镜12、反射镜A16和反射镜B23 ;安装在光学平台15上的光路一聚焦镜5、光路三聚焦镜11、光路二聚焦镜25和光路四聚焦镜32,安装在光学平台15上的光路二匀光镜片24和光路四匀光镜片33,所述光路二聚焦镜25和光路二匀光镜片24组成光路二匀光聚焦镜组4,所述光路四聚焦镜32和光路四匀光镜片33组成光路四匀光聚焦镜组10 ;分别安装在光路一转台6和光路三转台9上的光路一摆臂28和光路三摆臂29 ;分别安装在光路一摆臂28末端和光路三摆臂29末端的光路一小反射镜7和光路三小反射镜8 ;分别安装在光路一与光路二切换滑台I和光路三与光路四切换滑台14上的光路一反射镜3和光路三反射镜13 ;安装在出光口滑台17上的反射镜C18和反射镜D22 ;安装在数控滑台21上的反射镜E20 ;安装在激光器19内部的合束镜37 ;分别安装在光路三与光路四校验滑台26和光路一与光路二校验滑台31上的光路三与光路四校验能量计27和光路一与光路二校验能量计30 ;安装在光学平台15上的防护板34、防护罩35和导光管36。所述防护板34是用于防止加工过程中的水溅射到光路三与光路四校验能量计27、光路一与光路二校验能量计30、光路三与光路四校验滑台26和光路一与光路二校验滑台31上;所述防护罩35和导光管36是用来防止车间内的灰尘污染光路系统里的光学镜片。所述反射镜E20在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在数控滑台21上滑动;激光器上设置出光口 A和出光口 B ;当反射镜E20处在出光口 A正前方时,激光束A经反射镜E20反射至合束镜37,再经合束镜37反射出的激光与激光束B均由出光孔B输出;当反射镜E20处在出光口 A和出光口 B之间的位置时,激光束A和激光束B分别从出光口 A和出光口 B输出。所述反射镜C18和反射镜D22在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够同时在出光口滑台17上滑动汸出光口和B出光孔同时出光时,当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的正后方时,A出光孔输出的激光经反射镜C18的反射能够反射到反射镜C18左方的反射镜A16上,B出光孔输出的激光经反射镜D22的反射能够反射到反射镜D22右方的反射镜B23上;只有B出光孔出光时,当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的后方时,B出光孔输出的激光经反射镜D22的反射可以反射到反射镜D22右方的反射镜B23上;只有B出光孔出光时,当只有反射镜C18正处于出光孔B的后方时,B出光孔输出的激光经反射镜C18的反射可以反射到反射镜C18左方的反射镜A16上。所述光路一反射镜3在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路一与光路二切换滑台I上滑动;当反射镜B23上有激光束反射出来时,光路一反射镜3正处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路一反射镜3反射到光路一反射镜3左方的光路I聚焦镜5上;当反射镜B23上有激光束反射出来时,光路一反射镜3不处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路二反射镜2反射到光路二反射镜2左方的光路二匀光聚焦镜组4上。所述光路三反射镜13在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路三与光路四切换滑台14上滑动;当反射镜A16上有激光束反射出来时,光路三反射镜13正处于反射镜A16反射光路的正后方时,反射镜A16反射来的激光经光路三反射镜13反射到光路三反射镜13右方的光路三聚焦镜11上;当反射镜A16上有激光束反射出来时,光路三反射镜13不处于反射镜A16反射光路的正后方时,反射镜A16反射来的激光经光路四反射镜12反射到光路四反射镜12右方的光路四匀光聚焦镜组10上。所述光路一摆臂28在伺服电机的驱动下或手动旋转伺服电机旁的旋钮,能够围绕光路一转台6的轴线转动;当光路一聚焦镜5有激光输出时,光路一摆臂28摆至光路一小反射镜7正好处于光路一聚焦镜5输出光路的正左方时,光路一小反射镜7将经光路一聚焦镜5输出的激光反射到工件表面,形成直径为2-5mm的光强均匀的圆形光斑;当不需光路一工作时,光路一摆臂28顺时针旋转至光学平台上。所述光路三摆臂29在伺服电机的驱动下或手动旋转伺服电机旁的旋钮,能够围绕光路三转台9的轴线转动;当光路三聚焦镜11有激光输出时,光路三摆臂29摆至光路三小反射镜8正好处于光路三聚焦镜11输出光路的正右方时,光路三小反射镜8将经光路三聚焦镜11输出的激光反射到工件表面,形成直径为2-5mm的光强均匀的圆形光斑;当不需光路三工作时,光路三摆臂29逆时针旋转至光学平台上。当光路二匀光聚焦镜组4有激光束输入时,光路二聚焦镜25输出的激光照射到工件表面,形成边长为2-5_的光强均勻的方形光斑。当光路四匀光聚焦镜组10有激光束输入时,光路四聚焦镜32输出的激光照射到工件表面,形成边长为2-5_的光强均勻的方形光斑。所述光路一与光路二校验能量计30在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路一与光路二校验滑台31上滑动;光路一摆臂28和光路三摆臂29均处于不工作状态,校验光路一的完好性时,光路一与光路二校验能量计30移动到光路一聚焦镜5的正后方,选择从光路一中输出激光,测量光路一输出的能量,与激光器输出的能量做对比;校验光路二的完好性时,光路一与光路二校验能量计30移动到光路二聚焦镜25的正后方,选择从光路二中输出激光,测量光路二输出的能量,与激光器输出的能量做对比;当对工件进行冲击强化加工时,光路一与光路二校验能量计30移动到不遮挡光路的地方。所述光路三与光路四校验能量计27在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在光路三与光路四校验滑台26上滑动;光路一摆臂28和光路三摆臂29均处于不工作状态,校验光路三的完好性时,光路三与光路四校验能量计2移动到光路三聚焦镜11的正后方,选择从光路三中输出激光,测量光路三输出的能量,与激光器输出的能量做对比;校验光路四的完好性时,光路三与光路四校验能量计27移动到光路四聚焦镜32的正后方,选择从光路四中输出激光,测量光路四输出的能量,与激光器输出的能量做对比;当对工件进行冲击强化加工时,光路一与光路二校验能量计27移动到不遮挡光路的地方。当只由出光口 B出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路一或光路三能够输出激光光斑直径为2-5mm的光强均匀的圆形光斑;当只由出光口 B出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路二或光路四能够输出激光光斑为边长2-5mm的光强均勻的方形光斑。当出光口 A和出光口 B同时出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路一和光路三能够输出激光光斑直径为2-5mm的光强均匀的圆形光斑;当出光口 A和出光口 B同时出光时,当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8_25ns、光束直径< 27臟,发散角< 3mrad的激光束时,光路二和光路四能够输出激光光斑为边长2-5_的光强均勻的方形光斑。当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8_25ns、光束直径< 27臟,发散角< 3mrad的激光束时,光路一和光路三的能量损失< 6% ;当输入波长为1064nm、单脉冲能量为3-20J、脉宽为8-25ns、光束直径< 27mm,发散角< 3mrad的激光束时,光路二和光路四的能量损失< 10%。上述光路系统使用时:1、当光路三摆臂29不处在工作位置,当反射镜E20处在出光口 A正前方时,激光束A经反射镜E20反射,至合束镜37,再经合束镜37反射出的激光与激光束B均由出光孔B输出,同时当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的正后方时,出光孔B输出的激光经反射镜D22的反射反射到反射镜D22右方的反射镜B23上,同时当光路一反射镜3正处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路一反射镜3反射到光路一聚焦镜5上,同时当光路一摆臂28摆至光路一小反射镜7正好处于光路一聚焦镜5输出光路的正左方时,光路一小反射镜7将经光路一聚焦镜5输出的激光反射到工件表面,形成直径为2-5mm的光强均匀的圆形光斑,加工航空发动机叶盘的叶盆前缘区域。2、当光路一摆臂28和光路三摆臂29均不处在工作位置,当反射镜E20处在出光口 A正前方时,激光束A经反射镜E20反射,激光束A和激光束B将全部由出光孔B输出,同时当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的后方时,B出光孔输出的激光经反射镜D22的反射反射到反射镜D22正右方的反射镜B23上,同时当光路一反射镜3不处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路二反射镜2反射到光路二匀光聚焦镜组4上,形成边长2-5mm的光强均匀的方形光斑,加工航空发动机叶盘的叶背前缘区域和叶背叶尖边缘区域。3、当光路一摆臂28不处在工作位置,当反射镜E20处在A出光口正前方时,激光束经反射镜E20反射,激光束将全部由B出光孔输出,同时当反射镜C18正处于出光孔B的后方时,B出光孔输出的激光经反射镜C18的反射可以反射到反射镜C18左方的反射镜A16上,同时当光路三反射镜13正处于反射镜A16反射光路的正后方时,反射镜A16反射来激光经光路三反射镜13反射到光路三聚焦镜11上,光路三摆臂29摆至光路三小反射镜8正好处于光路三聚焦镜11输出光路的正右方时,光路三小反射镜8将经光路三聚焦镜11输出的激光反射到工件表面,形成直径为2-5mm的光强均匀的圆形光斑,加工航空发动机叶盘的叶背后缘区域。4、当光路一摆臂28和光路三摆臂29均不处在工作位置,当反射镜E20处在A出光口正前方时,激光束经反射镜E20反射,激光束将全部由B出光孔输出,同时当反射镜C18正处于出光孔B的后方时,B出光孔输出的激光经反射镜C18的反射可以反射到反射镜C18左方的反射镜A16上,同时当光路三反射镜13不处于反射镜A16反射光路的正后方时,反射镜A16反射来激光经光路四反射镜12反射到光路四匀光聚焦镜组10上,形成边长2-5mm的光强均匀的方形光斑,加工航空发动机叶盘的叶盆后缘区域和叶盆叶尖边缘区域。5、当光路一摆臂28和光路三摆臂29均不处在工作位置,当反射镜E20处在A出光口和出光口 B中间的位置时,出光口 A和出光口 B均输出激光束,同时当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的后方时,A出光孔输出的激光经反射镜C18的反射可以反射到反射镜C18左方的反射镜A16上,B出光孔输出的激光经反射镜D22的反射可以反射到反射镜D22右方的反射镜B23上,同时当光路一反射镜3不处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路二反射镜2反射到光路二匀光聚焦镜组4上,同时当光路三反射镜13不处于反射镜A16反射光路的正后方时,反射镜A16反射来激光经光路四反射镜12反射到光路四匀光聚焦镜组10上,形成边长2-5mm的光强均匀的方形光斑,可以同时加工航空发动机叶盘的“叶盆前缘区域和叶盆叶尖边缘区域”与“叶背后缘区域和叶背叶尖边缘区域”。6、当反射镜E20处在A出光口正前方时,激光束经反射镜E20反射,激光束将全部由B出光孔输出,同时当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的后方时,B出光孔输出的激光经反射镜D22的反射反射到反射镜D22右方的反射镜B23上,同时当光路一反射镜3正处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路一反射镜3反射到光路一聚焦镜5上,同时光路一摆臂28和光路三摆臂29不处在工作位置,激光束照射到光路一与光路二校验能量计30上,对光路一进行校验。7、当反射镜E20处在A出光口正前方时,激光束经反射镜E20反射,激光束将全部由B出光孔输出,同时当反射镜C18和反射镜D22分别正处于出光孔A和出光孔B的正后方时,B出光孔输出的激光经反射镜D22的反射反射到反射镜D22右方的反射镜B23上,同时当光路一反射镜3不处于反射镜B23反射光路的正后方时,反射镜B23反射来激光经光路二反射镜2反射到光路二匀光聚焦镜组4上,同时光路一摆臂28和光路三摆臂29不处在工作位置,激光束照射到光路一与光路二校验能量计30上,对光路二进行校验。8、当反射镜E20处在A出光口正前方时,激光束经反射镜E20反射,激光束将全部由B出光孔输出,同时当反射镜C18正处于出光孔B的正后方时,B出光孔输出的激光经反射镜C18的反射可以反射到反射镜C18左方的反射镜A16上,同时当光路三反射镜13正处于反射镜A16反射光路的正后方时,反射镜A16反射来激光经光路三反射镜13反射到光路三聚焦镜11上,同时光路一摆臂28和光路三摆臂29不处在工作位置,激光束照射到光路三与光路四校验能量计27上,对光路三进行校验。9、当反射镜E20处在A出光口正前方时,激光束经反射镜E20反射,激光束将全部由B出光孔输出,同时当反射镜C18正处于出光孔B的后方时,B出光孔输出的激光经反射镜C18的反射可以反射到反射镜C18左方的反射镜A16上,同时当光路三反射镜13不处于反射镜A16反射光路的正后方时,反射镜A16反射来激光经光路四反射镜12反射到光路四匀光聚焦镜组10上,同时光路一摆臂28和光路三摆臂29不处在工作位置,激光束照射到光路三与光路四校验能量计27上,对光路四进行校验。
权利要求1.一种整体叶盘单/双面激光冲击强化光路系统,其特征在于:该光路系统包括:安装在光学平台(15)上的光路一与光路二切换滑台(I )、光路三与光路四切换滑台(14)以及出光口滑台(17);安装在激光器(19)内部用于光路切换的数控滑台(21);安装在光学平台(15)上的光路三转台(9)和光路一转台(6);安装在光学平台(15)上的光路三与光路四校验滑台(26)和光路一与光路二校验滑台(31);安装在光学平台(15)上的光路二反射镜(2)、光路四反射镜(12)、反射镜A (16)和反射镜B (23);安装在光学平台(15)上的光路一聚焦镜(5)、光路三聚焦镜(11)、光路二聚焦镜(25)和光路四聚焦镜(32),安装在光学平台(15)上的光路二匀光镜片(24)和光路四匀光镜片(33),所述光路二聚焦镜(25)和光路二匀光镜片(24)组成光路二匀光聚焦镜组(4),所述光路四聚焦镜(32)和光路四匀光镜片(33)组成光路四匀光聚焦镜组(10);分别安装在光路一转台(6)和光路三转台(9)上的光路一摆臂(28 )和光路三摆臂(29 );分别安装在光路一摆臂(28 )末端和光路三摆臂(29 )末端的光路一小反射镜(7)和光路三小反射镜(8);分别安装在光路一与光路二切换滑台(I)和光路三与光路四切换滑台(14 )上的光路一反射镜(3 )和光路三反射镜(13 );安装在出光口滑台(17)上的反射镜C (18)和反射镜D (22);安装在数控滑台(21)上的反射镜E (20);安装在激光器(19)内部的合束镜(37);分别安装在光路三与光路四校验滑台(26)和光路一与光路二校验滑台(31)上的光路三与光路四校验能量计(27)和光路一与光路二校验能量计(30);安装在光学平台(15)上的防护板(34)、防护罩(35)和导光管(36)。
2.按权利要求1所述的整体叶盘单/双面激光冲击强化光路系统,其特征在于:所述反射镜E (20)在伺服电机的驱动下或手动旋转伺服电机后端的旋钮,能够在数控滑台(21)上滑动;激光器上设置出光口 A和出光口 B ;当反射镜E (20)处在出光口 A正前方时,激光束A经反射镜E (20)反射至合束镜(37),再经合束镜(37)反射出的激光与激光束B均由出光孔B输出;当反射镜E (20)处在出光口 A和出光口 B之间的位置时,激光束A和激光束B分别从出光口 A和出光口 B输出。
专利摘要本实用新型公开了一种整体叶盘单/双面激光冲击强化光路系统,属于整体叶盘激光冲击强化加工领域。主要由光学平台、数控滑台、数控转台、反射镜、聚焦镜、匀光镜片、摆臂、能量计、防护板、防护罩、导光管等一起组成四套光路。这四套光路可以通过手动/自动的方式选择任意一套光路工作,也可以选择光路二和光路四同时工作,其中,光路一和光路三为聚焦光路,当输入直径<27mm的激光束时,输出的激光光斑为直径2-5mm的光强均匀的圆形光斑,光路二和光路四为匀光光路,当输入直径<27mm的激光束时,输出边长2-5mm的光强均匀的方形光斑。本实用新型结构简单,使用方面,在提高生产效率的同时,保证了激光冲击强化质量的均匀性和稳定性。
文档编号B23K26/42GK203018909SQ20122072057
公开日2013年6月26日 申请日期2012年12月24日 优先权日2012年12月24日
发明者乔红超, 赵吉宾, 于彦凤 申请人:中国科学院沈阳自动化研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1