不锈钢板坯的在线质量预测系统以及应用该系统的预测方法

文档序号:3405368阅读:121来源:国知局
专利名称:不锈钢板坯的在线质量预测系统以及应用该系统的预测方法
技术领域
本发明涉及一种不锈钢板坯的在线质量预测系统以及应用该系统的预测 方法,更具体地讲,涉及这样一种不锈钢板坯的在线质量预测系统以及应用 该系统的预测方法,即,该预测系统通过收集可以从炼钢工艺到连铸工艺获 得的所有操作数据、然后通过热力学和统计学程序利用所有操作数据作为冶 金计算评价模型、允许利用基于网络的系统在线高精度的预测所生产的板坯的质量。
背景技术
通常,通过炼钢工艺和连铸工艺生产不锈钢。 图1是用图示出了普通不锈钢冶炼工艺-连铸工艺的视图。 首先,在电炉中熔化废铁以制成铁水。然而,由于所述铁水仅通过熔化 废铁而获得,所以该铁水含有大量杂质。因此,通过电炉获得的铁水在精炼炉中经过脱碳工艺和脱硫工艺后被制成钢水,所述钢水由可用作产品的组成物(compositions)构成。在随后的钢包精炼中控制最终成分并确保温度适合进行连铸之后,钢水 被送入连铸机。连铸机中的钢水从钢包经过中间包(tundish)被注入由水冷却的铜板模 (copperplate mold)中,随后被固化,从而被制成作为中间产品的板坯(slab)。这样生产的板坯通过轧制工艺而成为最终使用的产品。 然而,这样生产的板坯会具有各种缺陷。这些缺陷中典型的缺陷有裂 紋(板坯表面开裂)、掺入非金属夹杂物、形成非正常固化结构、表面振痕缺陷等。由于用肉眼可识别上述缺陷中暴露在表面上的大缺陷,因此可以通过板 坯研磨等来去除这些大缺陷。然而,由于无法用肉眼识别细微的表面缺陷并 且根本不可能识别板坯内部的缺陷,所以将板坯100%地研磨,或相反必须接 受有缺陷的产品。此外,该方法由于研磨需要增加质量成本并导致工艺负担和有缺陷的产 品,从而降低生产率。因此,为了克服这些问题,已开发一种技术,该技术允许操作员不需要 检查板坯就可以在线精确地预测板坯的质量状态。通常,由于随着工艺进行去除缺陷的成本增加,换言之,由于在板坯状 态下预测并去除缺陷更节约成本和工艺效率,所以如果通过利用高精度的质 量预测系统的预测结果对需要进行研磨的板坯或不需要进行研磨的板坯进行 分类,则不必对不需要进行研磨的板坯进行100%地研磨,从而可得到期望的 经济效益,同样通过只对需要进行研磨的板坯进行研磨来确保产品质量,从 而可得到期望的生产率。为了实现该目标,已开发了板坯质量预测系统,例如Voest公司的VAI-Q、 Terni公司的M-Cast、 Preussag S.公司的MID AS等。Voest公司的VAI-Q是一种根据利用炼钢工艺和连铸工艺中的操作数据 得出的质量评价结果来判断产品好坏的系统。Terni公司的M-Cast是一种利用铜板温度和连铸操作数据实时预测不锈 钢板坯质量的系统。Preussag S.公司的MIDAS是一种利用生产计划、质量和工艺数据等将评 价数据传输到生产计划部门并在切割板坯之前,改变生产计划、质量和工艺 数据的系统。然而,由于这些系统的特征采用了对操作数据简单评价的方法,从而仅 通过目标值和实际值之间的差来评价板坯质量,所以只评价了操作的精度, 从而不可能精确地预测不同的^!坯质量。例如,对于铸造速度来说,它对一些产品具有决定性作用,但对其他产 品的作用不显著。在传统的系统中根据重要程度的各种权重值被忽略。此外,由于大部分传统的板坯质量预测方法是为普通碳钢开发的,所以 对于直接应用到不锈钢,这些方法受到限制。原因在于不锈钢和普通碳钢在 它们的质量方面大不相同。例如,不锈钢在加热炉中去除的氧化皮(scale)的量 很小,而在普通碳钢中,去除了氧化皮的板坯上的所有超表面缺陷都成为产 品缺陷。因此,与普通碳钢不同,在不锈钢板坯的质量预测方法中,需要一种考 虑到包括振痕的板坯的超表面上的渗碳和渗硫缺陷等的系统;利用激光传感器等的高级传感器测量系统;能够产生更精确的评价结果的统计学和热力学计算程序;能够被操作员更容易地使用的基于网络的系统。发明内容因此,提出本发明来解决如前所述的现有技术中的问题。本发明的目标 在于提供一种不锈钢板坯的在线质量预测系统以及使用该系统的预测方法, 该系统可以克服预测方法由于现有的操作数据而受到的限制,通过收集可以 从炼钢工艺到连铸工艺获得的所有操作数据、然后通过热力学和统计学程序 利用所有操作数据作为冶金计算评价模型、允许利用基于网络的系统在线高 精度的预测所生产的板坯的质量,从而显著地提高质量和生产率。有利效果根据本发明的如前所述的不锈钢板坯的在线质量预测系统以及使用该系 统的预测方法可以克服预测方法由于现有的操作数据而受到的限制,通过收 集可以从炼钢工艺到连铸工艺获得的所有操作数据、然后通过热力学和统计 学程序利用所有操作数据作为冶金计算评价模型、允许利用基于网络的系统 在线高精度的预测所生产的板坯的质量,从而显著地提高质量和生产率。


图1是用图表示出通常的不锈钢冶炼工艺-连铸工艺的视图;图2是示出根据本发明优选实施例的不锈钢板坯在线质量预测系统的视图;图3是图2的概念图;图4a是示出根据图2的用于测量初始固化均匀度将热电偶插入铸模的视图;图4b是示出安装在铜板上的热电偶的位置的视图;图5a是示意性地示出在连铸操作稳定性的评价原理中用于计算浸入式 水口的沉积深度的激光传感器的视图;图5b是示出基于根据图5a的连铸操作稳定性评价原理的用于钢水流量 评价的上升流速的视图;图6是示出应用利用根据本发明优选实施例的不锈钢板坯在线质量预测系统的预测方法的铸模传热评价项目的效果的曲线图;图7a是示出在304钢板坯中5铁素体的分布的曲线图; 图7b是示出430钢板坯固化结构的宏观固化结构的照片; 图7c是示出420钢板坯固化结构的宏观固化结构的照片; 图8a是对振痕质量进行分类的视图;图8b是示出从包括振痕的板坯表面上的铸模粉末提取的碳和硫的曲线图;图9a是示出振痕的预测值与实际值之间的差的曲线图;图9b是示出碳提取量的预测值与实际值之间的差的曲线图;图10a是用图示出根据本发明实施例的氧化物评价的概念的视图;图10b是用图示出根据本发明实施例的氮化物和气泡评价的概念的视图;图lla是用图示出内在夹杂物形成图样的视图;图llb是用图示出基于如图lla所示的形成图样计算内在夹杂物的成分、氧化物含量、晶相、总氧的方法的视图;图12a是示出总氧的预测值与总氧的实际值之间的相互比较的视图; 图12b是示出钢中的夹杂物中高熔点的夹杂物的含量的预测值的图; 图13是示出应用利用根据本发明优选实施例的不锈钢板坯在线质量预测系统的预测方法的浸入式水口的沉积深度评价项目的效果的曲线图。
具体实施方式
为了实现该目标,提供了一种不锈钢板坯的在线质量预测系统,该系统 包括主计算机,从不锈钢板坯生产线收集并存储信息;热力学计算专用计 算机,与主计算机相互通信;服务器计算机,与主计算机相互通信。这里,收集在主计算机中的信息被传输到热力学计算专用计算机并随后 存储在数据库中。主计算机被配置为执行数据处理、冶金模型计算和数据库 管理中的至少一个,热力学计算专用计算机被配置为对纯度和固化中的至少 一个执行热力学计算。此外,该系统还包括多个热电偶,所述多个热电偶连接到主计算机以将 用于初始固化均匀度(initial solidification uniformity)的温度信息提供到主计算 机。这些热电偶以这样的形式安装,即,它们被插入铜板中,其中,在铜板的长边上分别安装多个热电偶中的五个热电偶,在铜板的短边上分别安装多 个热电偶中的 一 个热电偶。优选地,热电偶是套管型(sheath type)热电偶。此外,优选地,在铜板内侧和右侧的6个热电偶连接到 一个插槽(socket), 铜板外侧和左侧的6个热电偶连接到另一个插槽。结果,两个插槽延伸到铸 模(mold)外,从而热电偶连接到主计算机。此外,该系统还包括连接到主计算机的激光距离传感器以向主计算机提 供关于浸入式水口的沉积深度的信息。提供了 一种利用不锈钢板坯的在线质量预测系统的预测方法,该方法包 括以下步骤测量预测项目,用于预测不锈钢板坯的质量;评价,用于基于 所测量的预测项目做出数值评价;通过分析评价步骤所产生的数值来预测不 锈钢板坯的质量。这里,所述预测项目为初始固化均匀度、铸模冷却速度(mold cooling velocity)、板坯固化结构、板坯振痕质量、纯度和连铸操作稳定性。这时,在初始固化均匀度中测量的信息在评价步骤被数值地评价为铜板 温度、铜板温度偏差、铜板内侧/外侧的温度比率、铜板左侧/右侧的温度比率 以及铜板长边/短边的温度比率。通过以板坯为单位计算平均铜板温度并评价所述平均铜板温度与钢材的 最佳铜板温度之间的差来获得铜板温度。通过经过以板坯为单位统计地分析 所有铜板温度偏差来评价偏差程度,从而评价初始固化稳定性来获得铜板温 度偏差。通过以板坯为单位计算铜板长边的内侧和外侧的温度比率并评价所 述温度比率与平衡值之间的差来评价初始固化平衡,以获得铜板内侧/外侧的 温度比率。通过以板坯为单位计算铜板短边的左侧和右侧的温度比率并评价 所述温度比率与平衡值之间的差来评价初始固化平衡程度,以获得铜板左侧/ 右侧的温度比率。通过以板坯为单位计算铜板的长边和短边的温度比率并评 价所述温度比率与平衡值之间的差来评价初始固化平衡程度,以获得铜板长 边/短边的温度比率。此外,在铸模冷却速度中测量的信息在评价步骤中被数值地评价为传热 量、传热量偏差、内侧/外侧的传热量比率、左侧/右侧的传热量比率以及长边 /短边的传热量比率。这里,通过以板坯为单位计算平均传热量并评价所述平均传热量与钢材的最佳传热量之间的差来获得传热量。通过以板坯为单位统计地分析所有传 热量偏差来评价偏差程度,从而获得所述传热量偏差。通过以板坯为单位计 算铜板的长边的内侧和外侧的传热量比率并评价所述传热量比率与平衡值之 间的差来评价传热量的平衡程度,从而获得铜板内侧/外侧的传热量比率。通 过以板坯为单位计算铜板的短边的左侧和右侧的传热量比率并评价所述传热 量比率与平衡值之间的差来评价传热量的平衡程度,从而获得铜板左侧/右侧 的传热量比率。通过以板坯为单位计算铜板的长边和短边的温度比率并评价 所述传热量比率与平衡值之间的差来评价传热量的平衡程度,从而获得铜板 长边/短边的传热量比率。此外,在板坯固化结构中测量的信息在评价步骤中被数值地评价为奥氏 体平均残留的铁素体、奥氏体表面的铁素体、铁素体的等轴晶比率以及马氏 体的中心偏析度。这里,利用下面的方程,即,KRUPP方程,来评价并获得所述奥氏体平均残留的铁素体。 [方程]5-铁素体(%)=161%0 + %她+1.5%& + 0.5%M> + 2%77 + 18 %M + 30%C + 30%7V + 0.5%7Wn + 36一161其中,5-铁素体%表示体积百分比,元素%表示重量百分比。 利用下面的方程来评价并获得所述奥氏体表面的铁素体。 [方程]5 10111=巧(总平均铁素体),(二次冷却比水量),(热通量),(铸造速度),(铸造温度)]利用下面的方程评价并获得所述铁素体的等轴晶比率。 [方程]等轴晶比率(Ti《o5尸f!(平均热通量),(铸造速度),(铸造温度),(EMS-A)]等轴晶比率(Ti,5尸fl(TiN结晶温度),(平均热通量),(铸造速度),(铸造温度),(Si/Al),(Ti的实际收益率)]利用下面的方程评价并获得所述马氏体的中心偏析度。[方程]中心偏析度二fl(碳钢。/。),(铸造温度),(铸造速度),(EMS电流),(平均热通 量),(二次冷却比水量)]此外,在振痕质量中测量的信息在评价步骤中被数值地评价为振痕深度、 振痕质量、碳提取(C-提取)以及硫提取(S-提取)。这里,利用下面的方程评价并获得所述振痕深度。 [方程]振痕深度=取铸模频率),(铸模粉末消耗量)]铸模粉末消耗量=取中间包钢水温度),(铸模粉末固化温度),(铸模粉末粘 度),(铸造速度),(铸模频率)]利用下面的方程评价并获得所述振痕质量。 [方程]振痕质量f[(铸造速度),(MLAC误差率),(SEN沉积深度),(振痕深度)]利用下面的方程评价并获得所述碳提取。[方程]C提取二fl(铸模渣层厚度),(U值),(铸模粉末中c的百分比)]利用下面的方程评价并获得所述硫提取。[方程]s提^fl(铸模渣层厚度),(U值),(铸模粉末中s的百分比)]通过铸模粉末熔化速度和消耗速度的计算模型来计算所述铸模渣层厚度。此外,在纯度中测量的信息在评价步骤中被数值地评价为高熔点夹杂物的量、夹杂物氧化钛铝的含量、再氧化度、Ti的实际收益率、TiN结晶量、 TiN结晶温度、氮孔、氩孔和钢中的氧化物量。通过计算并评价在作为中间包钢水基准的钢水中的非金属夹杂物中的固体量来获得所述高熔点夹杂物的量。通过计算并评价在作为中间包钢水基准 的钢水中的非金属夹杂物中的与表面质量高度相关的Ti02+Ti203+Al203的含 量来获得所述夹杂物氧化钛铝的含量。通过利用从AOD出钢到中间包的氮浓 度的变化来评价再氧化度,从而获得所述再氧化度。通过计算并评价钛合金 钢(409L、 439等)的Ti的实际收益率来获得所述Ti的实际收益率。通过利用 热力学计算并评价钛合金钢(作为中间包基准)的TiN结晶量来获得所述TiN 结晶量。通过热力学地计算形成TiN的温度并评价该温度与中间包温度的差 来获得所述TiN结晶温度。通过热力学地计算并评价在高氮钢情况下固化过 程中氮气的形成量来获得所述氮孔。通过评价在连铸过程中使用的Ar气体流速来获得所述氩孔。通过热力学地计算并评价作为中间包基准的钢水中的总 氧化物含量来获得钢中的氧化物含量。此外,在连铸操作稳定性中测量的信息在评价步骤中被数值地评价为铸造温度偏差、铸造温度差量(casting temperature difference)、铸造速度偏差、 MLAC度、滑动门开度偏差(sliding gate open size deviation)、滑动门开度变化 量(sliding gate open size change amount)、钢水流量、浸人式水口的沉积深度、 铸模-板坯摩纟察力、板坯表面温度以及二次冷却比水量。通过计算并评价铸造温度偏差来获得所述铸造温度偏差。通过计算并评 价设定的铸造温度和实际铸造温度之间的差来获得所述铸造温度差量。通过 计算并评价铸造速度偏差来获得所述铸造速度偏差。通过计算并评价弯月面波动量(meniscus fluctuation amount)( ± 1mm误差率)来获得所述MLAC度。通 过计算并评价滑动门偏差来获得所述滑动门开度偏差。通过计算并评价在板 坯初始和结束之间的滑动门开度的变化来获得所述滑动门开度变化量。钢水 流量是钢水在碰撞铸模短边后向上流动的速度,其中,通过计算并评价从出 口流出的理论即时钢水流量、从弯月面到铜板短边上的钢水碰撞点之间的距 离、从浸入式水口中心到铜板短边上的钢水碰撞点之间的距离以及在出口处 的钢水出口角度来获得钢水向上的流动速度。通过计算并评价在铸模中的钢 水向上的流速来获得所述钢水流量。通过计算并评价利用激光传感器测量的 浸入式水口的沉积深度与操作标准下设定的沉积深度之间的差来获得所述浸 入式水口的沉积深度。通过利用铸造条件、铸模粉末消耗量等计算并评价铸 模-板坯摩擦力来获得所述铸模-板坯摩擦力。通过计算并评价利用温度计测量 的板坯表面温度和钢材最佳值之间的差来获得所述板坯表面温度。通过计算 并评价由二次冷却水的流速数据计算的二次冷却比水量与钢材的设定值之间 的差来获得所述二次冷却比水量。在下文中,将参照附图描述根据本发明的不锈钢板坯的在线质量预测系 统的优选实施例。图2是示意性地示出根据本发明优选实施例的不锈钢板坯的在线质量预 测系统的视图,图3是图2的概念图。根据本发明的不锈钢板坯的在线质量预测系统包括主计算机,从不锈 钢板坯生产线收集并存储信息;热力学计算专用计算机,与主计算机相互通 信;服务器计算机,与主计算机相互通信。主计算机、热力学计算专用计算机和服务器计算机被安装在不锈钢生产线中的连铸间(continuous casting carbin)中。热力学计算专用计算机可被配置为执行与纯度和固化相关的热力学计算。与固化相关的热力学计算利用常用的Thermo-Calc程序,与纯度相关的 计算利用常用的FactSage程序。热力学计算所需的钢材的成分、温度和其他数据被传输到主计算机并随后被储存在数据库中。计算所需的向数据库中传输数据和计算结果是通过主 计算机和热力学计算专用计算机之间的相互通信实现的。主计算机执行核心功能,例如数据处理,冶金模型计算以及数据库管理 等。通过两种途径收集操作数据诸如钢材的成分、钢水的重量等数据从集 成数据库收集,诸如在固定的时间内(例如以5秒钟为间隔)测量的铸造速度、 弯月面稳定性、中间包温度等数据从其他服务器收集,其中,全部数据通过 为质量预测系统安装的专属光导电缆传输。作为用于预测质量的传感器的铜 板温度和利用激光测量的浸入式水口的沉积深度也^t传送到主计算机并在主 计算机中进行处理。终端服务器计算机与连接到网络的用户进行连接,从而用户能够查询以 板坯为单位完成的评价和预测的板坯的结果数据。图4a是示出为测量初始固化均匀度将热电偶插入到铸模的视图,图4b 是示出安装在图4a中的铜板上的热电偶的位置的视图。初始固化均匀度对所有种类的钢材都是非常重要的项目,并且是评价产 生作为板坯典型缺陷的裂紋的可能性的最佳方法。在本发明的优选实施例中,为了评价初始固化均匀度,已经通过将热电 偶插入到铜板中来评价初始固化位置的热传递的稳定性。换言之,如果稳定 地保持温度,则热传递稳定,从而稳定地保持初始固化。插入铜板中的热电偶使用了总共12个K型热电偶。分别在矩形铜板的 长边的内侧和外侧设置12个K型热电偶中的5个热电偶,分别在矩形铜板 的短边的左侧和右侧设置12个K型热电偶中的一个。铜板插入到加工过的 垂直孔中,由于在质量预测性能方面需要持久性,所以铜板的上部利用螺丝 刚性固定。此外,为了在铸造不锈钢时保证其内在质量,在操作电磁搅拌器(EMS) 的情况下,如果热电偶直接接触铜板,会发生从电磁搅拌器产生的感应电流千扰温度测量的情况。因此,热电偶以套管型安装,以在铜板上产生浮动电 位。热电偶正位于弯月面下方,而铸模中的钢水位于弯月面上。此外,铜板内侧和右侧的6个热电偶连接到一个插槽(未示出),铜板外 侧和左侧的6个热电偶连接到另一个插槽(未示出)。因此,两个插槽延伸出铸 模,从而热电偶被连接到主计算机,从而通过热电偶将测量的数据发送/输入 到主计算机。图5a是示意性地示出在评价连铸操作稳定性的原理中用于计算浸入式 水口的沉积深度的激光传感器的视图;图5b是示出基于连铸操作稳定性评价 原理的用于钢水流量评价的上升流速的视图。激光传感器安装在中间包的一侧以测量距离。中间包的该侧设置有目标, 该目标为激光传感器的测量点。激光传感器测量从其自身到所述目标的距离 并将数据传输到主计算机。在中间包下落前从传感器到目标的距离被设定为Do。在中间包下落的状 态下从传感器到目标的距离被设定为D。在铸造过程中的从浸入式水口到钢 水面(ML)的距离被设定为K,在中间包下落前,浸入式水口的沉积深度d被 设为(D- DQ)K。可以通过这种方式获得浸入式水口的沉积深度。钢水流量(U-值)表示在下述现象中钢水向上的流速,即,从浸入式水口 的出口流出的钢水碰撞铸模的短边后, 一部分在铸模中向上流动,另一部分 向下流动。当钢水流量值大时,则上升流的强度大,导致钢水弯月面不稳定并易于 出现各种铸模板坯的掺入缺陷(incorporation defect)。参照图5b,钢水流量值是从出口流出的理论即时钢水流速U^、从弯月 面到铜板短边上的钢水;並撞点的距离X2、从浸入式水口的中心到铜板短边上 的钢水碰撞点的距离X,以及在出口处的钢水出口角度6 "在下文中,将描述根据本发明的利用不锈钢板坯的在线质量预测系统的 预测方法的优选方法。根据本发明的利用不锈钢板坯的在线质量预测系统的预测方法包括以下 步骤测量用于预测不锈钢板坯的质量的预测项目;评价,基于所测量的预 测项目进行数值评价;通过分析在评价步骤中获得的数值来预测不锈钢板坯 质量。这里,预测项目为初始固化均匀度、铸模冷却速度、板坯固化结构、板坯振痕质量、纯度以及连铸操作稳定性。这时,在初始固化均匀度中测量的信息在评价步骤中被数值地评价为铜 板温度、铜板温度偏差、铜板内侧/外侧的温度比率、铜板左侧/右侧的温度比 率和铜板长边/短边的温度比率。初始固化均匀度对所有种类的钢材都是非常重要的项目,具体地,是用 于评价产生作为板坯典型缺陷的裂紋的可能性的最佳方法。通过预先设定需要的最佳值并将最佳值与实际测量值比较来得到对在初 始固化均匀度中测量的信息中的铜板温度的评价。即,通过以板坯为单位计 算平均铜板温度并将其与钢材的最佳铜板温度之间的差进行比较,随后通过 他们之间的差值得出所述评价。平均铜板温度与预设的最佳值之间的差值越 大,得分越低,平均铜板温度与最佳值之间的差值越小,得分越高。铜板温度偏差判断在铜板自身中的温度分布是否均匀。即,通过以板坯 为单位统计地分析所有铜板温度的偏差来评价铜板的偏差程度,从而评价初 始固化均匀度,即,稳定性。所述偏差越小,铜板自身的温度分布越高,所 述偏差越大,均匀度越低。铜板内侧/外侧的温度比率用于评价铜板内侧/外侧的温度差。获得的以板 坯为单位的铜板长边的内侧/外侧的温度比率作为比率,从而比较并评价该比 率与平衡值(即,l(内侧的铜板温度等于外侧的铜板温度时的值))之间的差。 铜板内侧/外侧温度比率与l之间的偏差越小,表现出的铜板均匀度会越好。坯为单位的铜板短边的左侧/右侧温度比率作为比率,比较并评价该比率与平侧/右侧温度比率与l之间的偏差越小,可以表现出的铜板特性就越好。坯为单位的方形铜板的长边和短边的温度比率还通过比较并评价该比率与平铜板长边/短边的温度比率与l之间的偏差越小,可以表现出的铜板特性就越好。此外,在铸模冷却速度中测量的信息在评价步骤中被数值地评价为传热 量、传热量偏差、内侧/外侧的传热量比率、左侧/右侧的传热量比率以及长边 /短边的传热量比率。冷却速度作为全部铸模的平均冷却速度对铸模中的固化操作是非常重要 的因素。即,如果冷却速度不够,则从铸模中取出的板坯的固化壳薄,从而会出现板坯膨胀(swellingout)现象,即,出现鼓出(bulging)现象,最坏的情形 是出现板坯停炉(slab blowing out)现象。相反,如果传热量过大,则容易由于 过大的热应力引起板坯停炉现象。因此,保持适当的传热量是很重要的。利用铸模中循环的冷却水的上升温度和铸造条件来计算本发明中的传热量。计 算公式如下[公式]<formula>formula see original document page 17</formula>
这里,q表示来自连铸流面(strand face)的传热量,其单位为J/m2s=W/m2; L和U分别表示铸模中的连铸流的长度和宽度,其单位为m; Pw表示冷却 水的密度,其单位为kg/m3; C两表示冷却水的比热,其单位为J/kg°C; AT 表示流出侧温度和流入侧温度之间的差,作为铸模冷却水的温度上升幅度, 其单位为。C; Fw表示冷却水的流速,其单位是mVs。从连铸操作数据收集计算所需的全部数据并且通过获得对应于被分析的 板坯的数据平均值来计算所述传热量。通过以板坯为单位计算平均传热量并评价该平均传热量与钢材最佳传热 量之间的差来获得所述传热量,其中,依据该平均传热量与需要的最佳值来 进行评价。通过以板坯为单位统计地分析所有传热量偏差来分析偏差程度,从而获 得所述传热量偏差,其中,所述偏差越小,表现出的传热量偏差程度的特性 就越好。通过以板坯为单位计算铜板的长边的内侧和外侧的传热量比率并评价该 比率与平衡值(即,内侧/外侧的传热量比率为1时的值)之间的差来评价传热 量的平衡程度,从而获得内侧/外侧的传热量比率。通过以板坯为单位计算铜板的短边的左侧和右侧的传热量比率并评价该 比率与平衡值(即,左侧/右侧的传热量比率为1时的值)之间的差来评价传热量的平衡程度,从而获得左侧/右侧的传热量比率。通过以板坯为单位计算铜板的长边和短边的传热量比率并评价该比率与平衡值(即,长边/短边的传热量比率为1时的值)之间的差来评价传热量的平 衡程度,从而获得长边/短边的传热量比率。内侧/外侧的传热量比率、左侧/右侧的传热量比率和长边/短边的传热量 比率的最理想值是l,其中,这些比率距离l越远,它们的特性越差。图6是示出利用应用根据本发明优选实施例的不锈钢板坯在线质量预测 系统的预测方法的铸模传热评价项目的效果的曲线图。如图6所示,在开发含大量Ti的钢种的铸模粉末的过程中,当应用本发明的优选实施例时,应该理解,铸模粉末的传热偏差比现有技术的传热偏差 小,使得可以均匀地传热,从而预测质量的提高。此外,在板坯固化结构中测量的信息在评价步骤中被数值地评价为奥氏 体平均残留的铁素体、奥氏体表面的铁素体、铁素体的等轴晶比率以及马氏 体的中心偏析度。图7a是示出在304钢板坯中5铁素体的分布的曲线图,图7b是示出430 钢板坯固化结构的宏观固化结构的照片,图7c是示出420钢板坯固化结构的 宏观固化结构的照片。板坯固化结构被分为与钢材质量直接相关的固化结构。换言之,300系 列钢,即,奥氏体钢评价板坯的残留5铁素体。参照图7a,板坯厚度方向的5铁素体与产品质量之间密切相关。可以通 过经验获得最佳5铁素体的分布值。因此,本发明实施例利用操作结果按板 坯的厚度来预测5铁素体的分布,从而评价其稳固性。参照图7b,铁素体不锈钢评价板坯内的等轴晶比率。等轴晶比率表示如 图7b以方框示出的具有好的固化结构的部分。如果保证等轴晶比率,则不会 引起最终产品中的起皱缺陷(ridging defect),并可省略退火操作。本发明实施例开发了预测等轴晶比率的冶金模型,以从操作结果预测等 轴晶比率。参照图7,由于马氏体不锈钢包含大量碳,如图7c中的方框部分所示的 板坯中间部分的碳偏析变为最重要。本发明实施例开发了预测板坯中间部分 的碳偏析的冶金学模型,以预测板坯质量。如前所述的评价结果可被用于预测奥氏体钢中的M-裂片(M-sliver),判 断铁素体钢中的热雾退火,并预测马氏体钢的分层缺陷(lamination defect)。这里,利用下述称为KRUPP方程的方程来评价并获得所述奥氏体平均残留的铁素体。得到的值与最佳值之间的差越小,可以预测其性能越好。 利用下面的方程来评价并获得所述奥氏体表面的铁素体。 [方程]5 K)n^fl(总平均铁素体),(二次冷却比水量),(热通量),(铸造速度),(铸造温度)]相似的,得到的值与最佳值之间的差越小,可以预测其性能越好。利用下面的方程评价并获得所述铁素体的等轴晶比率。[方程]等轴晶比率(T尸。.05广fl(平均热通量),(铸造速度),(铸造温度),(EMS-A)]等轴晶比率(Tix).05)^fl(TiN结晶温度),(平均热通量),(铸造速度),(铸造温 度),(Si/Al),(Ti的实际收益率)]即使Ti为0.05或更少或Ti为0.05或更多,仍然是等轴晶比率越高,表 现出的特性就会越好。利用下面的方程评价并获得所述马氏体的中心偏析度。[方程]中心偏析度二fl(碳钢。/。),(铸造温度),(铸造速度),(EMS电流),(平均热通 量),(二次冷却比水量)]这时,中心偏析越接近l,表现出的特性就会越好。模型中独立变化的项目可以直接用作一次操作数据,并且可以使用二次 模型公式中二次处理或评价的项目。此外 ,在振痕质量中测量的信息在评价步骤中被数值地评价为振痕深度、 振痕质量、碳提取(C-提取)以及硫提取(S-提取)。振痕是形成在板坯表面上的以恒定间距存在的具有深度的痕迹,振痕通 过以恒定的振幅和频率摆动铸模顶部和底部以连续地铸造板坯而形成。由于 不锈钢在连铸过程和加热炉中去除很少量的氧化皮,因此振痕质量尤其重要。 即,如果振痕的深度过深或振痕具有偏析和破裂,则这些板坯缺陷与最终产 品缺陷直接相关。图8a是示出对振痕质量分类的视图,图8b是示出从包括振痕的板坯表 面上的铸模粉末提取的碳和硫的曲线图。参照图8a,其示出了随着振痕的种类增多,质量下降。参照图8b,其示出了碳和硫的提取与振痕质量同样重要。本发明实施例 开发了利用用于预测振痕深度和质量的操作结果和铸模粉末特性以及如上所 述的板坯表面的碳和硫的提取量的冶金模型,从而预测板坯质量。
利用下面的方程评价并获得所述振痕深度。
振痕深度=爪铸模频率),(铸模粉末消耗量)]
铸模粉末消耗量=取中间包钢水温度),(铸模粉末固化温度),(铸模粉末粘 度),(铸造速度),(铸模频率)]
这时,振痕深度越小,评价出的特性就越好。 [方程]
振痕质量二f[(铸造速度),(MLAC误差率),(SEN沉积深度),(振痕深度)] 振痕质量值越高,评价出的特性就越好。 利用下面的方程评价并获得所述碳提取。
C提^f[(铸模渣层厚度),(U值),(铸模粉末中的c的百分比)]
利用下面的方程评价并获得所述硫提取。
S提取=取铸模渣层厚度),(11值),(铸模粉末中的s的百分比)]
在碳或硫提取的情况中,数值越小,其特性越好。通过用于铸模粉末的 熔化速度和消耗速度的计算模型来计算铸模板渣层厚度。
该方法主要用于预测由于渗碳导致的黑带缺陷和300系列钢的M-裂片缺陷。
模型中独立变化的项目可以直接用作一次操作数据,并且可以使用二次 模型公式中二次处理或评价的项目。
图9a是示出振痕的预测值与实际值之间的差的曲线图,图9b是示出碳 提取量的预测值与实际值之间的差的曲线图。
参照图9a,在预测300系列钢(诸如304钢)中,示出了预测值与实际值 大约一致。同时,在预测400系列钢(诸如430钢)中,预测值比实际值大,然 而,可以理解,预测值在一定范围内接近实际值。因此,在400系列钢中, 当开发不研磨板坯的技术时,可以理解需要减少振痕深度。
参照图9b,可以理解,预测的板坯表面中的碳提取量大约接近实际提取量。这样的数据可被用于开发低碳或低硫的铸模粉末。
在纯度中测量的信息在评价步骤中被数值地评价为高熔点夹杂物的量、
夹杂物氧化钛铝的含量、再氧化度、Ti的实际收益率,TiN结晶量、TiN结
晶温度、氮孔、氩孔和钢中的氧化物含量。
图10a是用图示出根据本发明实施例的氧化物评价的概念的视图,图10b 是用图示出根据本发明实施例的氮化物和气泡评价的概念的视图。
在图10a所示的氧化物的评价中,利用FactSage常用程序进行热力学计 算。在氮化物和气泡的评价中,利用Thermo-Calc常用程序进行热力学计算。 夹杂物操作的预测。计算所需的操作数据(例如,成分和温度等)使用储存在数 据库中的值。
图lla是用图示出内在夹杂物的形成图样的视图,图llb是用图示出基 于图lla所示的形成图样计算内在夹杂物的成分、氧化物含量、晶相、总氧 (overall oxygen)的方法的一见图。
非金属内的夹杂物的成分、含量、总氧、总氧化物量在纯度评价中是最 重要的项目。
参照图lla,可以理解,通过利用悬浮在钢水中的渣料作为成核部位, 随着温度的降低,钢水中的A1、 Ti等发生脱氧反应,从而可以改变夹杂物的 成分和含量。
参照图lib,可以基于形成图样利用FactSage常用程序计算夹杂物的成 分、氧化物含量、晶相、总氧等。
通过计算并评价在作为中间包钢水基准的钢水中的非金属夹杂物中的固
体量来获得所述高熔点夹杂物的量。固体量越大,可以预测出的特性越差。
通过计算并评价在作为中间包钢水基准的钢水中的非金属夹杂物中与表 面质量高度相关的Ti02+Ti203+Al203的含量来获得所述夹杂物氧化钛铝的含 量。夹杂物氧化钛铝含量越大,预测出的特性越差。
通过利用从AOD出钢到中间包的氮浓度的变化来评价再氧化度,从而 获得所述再氧化度。
通过计算并评价钛合金钢(409L、 439等)的Ti的实际收益率来获得所述 Ti的实际收益率。该值越高,评价出的特性越好。
通过利用热力学计算并评价钛合金钢(作为中间包基准)的TiN结晶量来 获得所述TiN结晶量。TiN结晶量越高,特性变得越差。通过热力学地计算形成TiN的温度并评价该温度与中间包温度之间的差
来获得所述TiN结晶温度。当TiN结晶温度比中间包钢水温度高时,即,TiN 结晶温度越高,预测出的特性越差。
通过热力学地计算并评价在高氮钢情况下的固化过程中氮气的形成量来 获得所述氮孔。通过利用在连铸过程中使用的Ar气体流速来评价氩孔,从而 获得所述氩孔。通过热力学地计算并评价作为中间包基准的钢水中的总的氧 化物含量来获得所述氧化物含量。氮孔和氩孔两者越高,特性变得越差。
图12a是示出总氧的预测值以及总氧的实际值之间的相互比较的视图, 图12b是示出钢中的夹杂物中的高熔点的夹杂物的量的预测值的曲线图。
参照图12a,可以理解,预测的总氧值与实际总氧值相似。
参照图12b,可以意识到,在304钢和430钢中预测到很好的没有高熔 点的夹杂物,在409L钢中预测到大量的具有高熔点的夹杂物。实际上,已确 认在409L钢中具有诸如CaTi03的高熔点相。
在连铸稳定性中测量的信息在评价步骤中被数值地评价为铸造温度偏 差、铸造温度差量、铸造速度偏差、MLAC度、滑动门开度偏差、滑动门开 度变化量、钢水流量、浸入式水口的沉积深度、铸冲莫-板坯摩擦力、板坯表面 温度以及二次冷却比水量。连铸稳定性评价目标值和结果值之间的差,该差 是与质量相关的重要的连铸操作因素。
具体来讲,铸造速度偏差、铸造温度偏差、MLAC度和铸模-板坯摩擦力 是主要在连铸操作中评价的因素;浸入式水口的沉积深度、上升流速、滑动 门开度偏差和滑动门开度变化量是与控制铸模中钢水流量相关的评价因素; 二次冷却比水量和板坯表面温度是与二次冷却相关的评价因素。
通过计算并评价铸造温度偏差来获得所述铸造温度偏差。通过计算并评
价设定的铸造温度和实际铸造温度之间的差来获得所述铸造温度差量。通过 计算并评价铸造速度偏差来获得所述铸造速度偏差。铸造温度偏差、铸造温
度差量和铸造速度偏差越小,获得的评价结果越好。
通过计算并评价弯月面波动量(± lmm误差率)来获得所述MLAC度。通 过计算并评价滑动门开度在板坯的开始和结束之间的变化来获得所述滑动门 开度变化量。通过计算并评价滑动门偏差来获得所述滑动门开度偏差。关于 MLAC度的评价越高,并且滑动门开度偏差和滑动门开度变化量越小,评价 结果变得越好。通过计算并评价在铸模中的钢水流速来获得所述钢水流量(U-值)。该值 越小,评价结果变得越好。
通过计算并评价利用激光传感器测量的浸入式入水口的沉积深度与在操 作标准下设定的沉积深度之间的差来获得所述浸入式水口的沉积深度。该差 越小,评价结果变得越好。
通过利用铸造条件、铸模粉末消耗量等计算并评价铸模-板坯摩擦力来获 得所述铸模-板坯摩擦力。当摩擦力小时,能够进行稳定的操作并生产出优良 的产品。
通过计算并评价利用温度计测量的板坯表面温度和钢材最佳值之间的差 来获得所述板坯表面温度。通过计算并评价由二次冷却水流速数据计算的二 次冷却比水量与钢材的设定值之间的差来获得所述二次冷却比水量。
测系统的预测方法的浸入式水口的沉积深度的评^r项目的效果的曲线图。
参照图13,当根据本发明优选实施例应用激光传感器时,可以理解,在
本操作中的沉积深度精确地符合110mm和120mm。同时,可以理解,传统
的沉积深度的分布为100mm到140mm。
因此,可以通过准确地观察需要的沉积深度来期望最终产品质量的提高。 通过上述评价数值地得出的项目被收集到系统中,使得它们可以被用于
以板坯为单位的质量评价、以板坯为单位的产生产品缺陷的可能性评价、质
量分析和根据质量问题的操作指南等。
虽然示出并描述了本发明的一些实施例,但是本领域技术人员应该理解,在 不脱离本发明的原理和精神的情况下,可对这些实施例进行改变,本发明的 范围在权利要求及其等同物中限定。
权利要求
1、一种不锈钢板坯的在线质量预测系统,包括主计算机,从不锈钢板坯的生产线收集并存储信息;热力学计算专用计算机,与主计算机相互通信;服务器计算机,与主计算机相互通信。
2、 根据权利要求1所述的不锈钢板坯的在线质量预测系统,其中,多个 热电偶以套管型被插入到铜板中,以将关于初始固化均匀度的温度信息提供 给主计算机,在铜板的长边的内侧和外侧分别布置多个热电偶中的5个热电 偶,在铜板的短边的左侧和右侧分别布置多个热电偶中的一个热电偶。
3、 根据权利要求1所述的不锈钢板坯的在线质量预测系统,其中,还包 括激光距离传感器,连接到主计算机以向主计算机提供关于浸入式水口的沉 积深度的信息。
4、 一种利用不锈钢板坯的在线质量预测系统的预测方法,该方法包括以 下步骤测量预测项目,以预测不锈钢板坯的质量; 评价,基于所测量的预测项目做出数值评价; 通过分析评价步骤所产生的数值来预测不锈钢板坯的质量。
5、 根据权利要求4所述的利用不锈钢板坯的在线质量预测系统的预测方 法,其中,所述预测项目是初始固化均匀度、铸模冷却速度、板坯固化结构、 板坯振痕质量、纯度和连铸操作稳定性。
6、 根据权利要求5所述的利用不锈钢板坯的在线质量预测系统的预测方 法,其中,在初始固化均匀度中测量的信息在评价步骤被数值地评价为铜板 温度、铜板温度偏差、铜板内侧/外侧的温度比率、铜板左侧/右侧的温度比率 以及铜板长边/短边的温度比率。
7、 根据权利要求5所述的利用不锈钢板坯的在线质量预测系统的预测方 法,其中,在铸模冷却速度中测量的信息在评价步骤中被数值地评价为传热 量、传热量偏差、内侧/外侧的传热量比率、左侧/右侧的传热量比率以及长边 /短边的传热量比率。
8、 根据权利要求5所述的利用不锈钢板坯的在线质量预测系统的预测方 法,其中,在板坯固化结构中测量的信息在评价步骤中被数值地评价为奥氏体平均残留的铁素体、奥氏体表面的铁素体、铁素体的等轴晶比率以及马氏 体的中心偏析度。
9、根据权利要求8所述的利用不锈钢板坯的在线质量预测系统的预测方 法,其中,利用下述KRUPP方程来评价并获得所述奥氏体平均残留的铁素 体,[KRUPP方程]5-铁素体(%)=161%0 + %她+1.5%& + 0.5%M + 2%77 +18 %M + 30%C + 30%^ + 0.5%她+ 36161其中,5-铁素体%表示体积百分比,元素%表示重量百分比, 利用下面的方程来评价并获得所述奥氏体表面的铁素体, [方程]5 ,On^f[(总平均铁素体),(二次冷却比水量),(热通量),(铸造速度),(铸造温度)]。
10、 根据权利要求8所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,利用下面的方程评价并获得所述铁素体的等轴晶比率,[方程]等轴晶比率(T尸o.o5rf!(平均热通量),(铸造速度),(铸造温度),(EMS-A)] 等轴晶比率(T^.Q5产fl(TiN结晶温度),(平均热通量),(铸造速度),(铸造温 度),(Si/Al),(Ti的实际收益率)]。
11、 根据权利要求8所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,利用下面的方程评价并获得所述马氏体的中心偏析度,[方程〗中心偏析度二ft(碳钢。/。),(铸造温度),(铸造速度),(EMS电流),(平均热通 量),(二次冷却比水量)]。
12、 根据权利要求5所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,在板坯振痕质量中测量的信息在评价步骤中被数值地评价为振 痕深度、振痕质量、碳提取以及硫提取。
13、 根据权利要求12所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,利用下面的方程评价并获得所述振痕深度,[方程]振痕深度=取铸模频率),(铸模粉末消耗量)],铸模粉末消耗量二fl(中间包钢水温度),(铸模粉末固化温度),(铸模粉末粘 度),(铸造速度),(铸模频率)],利用下面的方程评^r并获得所述振痕质量,[方程]振痕质量-fl(铸造速度),(MLAC误差率),(SEN沉积深度),(振痕深度)]。
14、 根据权利要求12所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,利用下面的方程评价并获得所述碳提取,[方程]C提取fI(铸模渣层厚度),(U值),(铸模粉末中C的百分比)],利用下面的方程评价并获得所述硫提取,[方程]S提取-f[(铸模渣层厚度),(U值),(铸模粉末中s的百分比)]。
15、 根据权利要求5所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,在纯度中测量的信息在评价步骤中被数值地评价为高熔点夹杂 物的量、夹杂物氧化钛铝的含量、再氧化度、Ti的实际收益率,TiN结晶量、 TiN结晶温度、氮孔、氩孔和钢中的氧化物含量。
16、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过计算并评价在作为中间包钢水基准的钢水中的非金属夹杂 物中的固体量来获得所述高熔点夹杂物的量。
17、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过计算并评价在作为中间包钢水基准的钢水中的非金属夹杂 物中与表面质量高度相关的Ti02+Ti203+Al203的含量来获得所述夹杂物氧化 钛铝的含量。
18、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过利用从AOD出钢到中间包的氮浓度的变化来评价再氧化度, 从而获得所述再氧化度。
19、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过计算并评价钛合金钢的Ti的实际收益率来获得所述Ti的实 际收益率。
20、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过利用热力学计算并评价作为中间包基准的钛合金钢的TiN结晶量来获得所述TiN结晶量;通过热力学地计算形成TiN的温度并评价该温度与中间包温度的差来获 得所述TiN结晶温度。
21、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过热力学地计算并评价在高氮钢情况下在固化过程中氮气的 形成量来获得所述氮孔;通过使用在连铸过程中使用的Ar气体流速评价氩孔来获得所述氩孔。
22、 根据权利要求15所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,通过热力学地计算并评价作为中间包基准的钢水中的总的氧化 物的量来荻得所述钢中的氧化物含量。
23、 根据权利要求5所述的利用不锈钢板坯的在线质量预测系统的预测 方法,其中,在连铸操作稳定性中测量的信息在评价步骤中被数值地评价为 铸造温度偏差、铸造温度差量、铸造速度偏差、MLAC度、滑动门开度偏差、 滑动门开度变化量、钢水流量、浸入式水口的沉积深度、铸模-板坯摩擦力、 板坯表面温度以及二次冷却比水量。
24、 根据权利要求23所述的利用不锈钢板坯的在线质量预测系统的预测方法,其中,通过计算并评价利用激光传感器测量的浸入式入水口的沉积深 度和操作标准下设定的沉积深度之间的差来获得所述浸入式水口的沉积深度。
全文摘要
本发明公开了一种不锈钢板坯的在线质量预测系统以及使用该系统的预测方法,该系统通过收集从炼钢工艺到连铸工艺获得的所有操作数据、然后通过热力学和统计学程序利用所有操作数据作为冶金计算评价模型、允许利用基于网络的系统在线高精度的预测所生产的板坯的质量,该系统包括主计算机,从不锈钢板坯生产线收集并存储信息;热力学计算专用计算机,与主计算机相互通信;服务器计算机,与主计算机相互通信,从而该系统能允许克服预测方法由于存在的操作数据而受到的局限,并且通过收集从炼钢工艺到连铸工艺获得的所有操作数据、然后通过热力学和统计学程序利用所有操作数据作为冶金计算评价模型、允许利用基于网络的系统在线高精度的预测所生产的板坯的质量,从而显著地提高质量和生产率。
文档编号B22D11/00GK101283361SQ200680037136
公开日2008年10月8日 申请日期2006年9月27日 优先权日2005年10月4日
发明者崔资镛, 徐辅晟, 金钟完 申请人:Posco公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1