生产生铁水或液态钢的预产物的方法

文档序号:3396199阅读:422来源:国知局
专利名称:生产生铁水或液态钢的预产物的方法
技术领域
本发明涉及用包含铁矿石和熔剂及至少部分地含细粉部分的炉料生产生铁水或液态钢的预产物的工艺,按该工艺,铁矿石在至少二个还原阶段中用流化床法被直接还原成海绵铁,该海绵铁在供有碳载体和含氧气体的条件下在熔融气化区中熔化,而且产生含CO和H2的还原气体,它被喷入该还原阶段的还原区中,在此区反应,并作为炉顶煤气排出,及任选地被供给用户,本发明还涉及实施该工艺的设备。
比如,从EP-A-0594557中得知这种工艺。用此已知工艺,按一较佳实施方案,还原在两个位置分开的,串联连接的还原区中进行,其中离开第一还原区的还原气体被供往第二还原区,按细矿石流的方向,该区被连接在第一还原区之前,在此将此方向称为逆流方向,还原气体从此处在加压的状态下被供往预热区。
因而,当与单阶段直接还原、即仅用单还原区的直接还原相比时就产生了优点,所述优点的要点主要是还原气体消耗低,即出于以下原因工业生产的还原工艺要求至少750℃的还原温度,从而当还原气体离开还原区时,不可避免地形成750℃的最低的还原气体温度。
由于技术上的原因,不允许来自熔融气化器的还原气体具有超过950℃温度,因此只能达到约200℃的温度增减率,这意味着只有约1/3的还原气体的显热可被利用。为了能够保持上述的温度水平,按单阶段还原工艺就必须以数倍于还原所需量的量使用还原气体。这将导致还原气体的利用不充分,在此指的是在熔融气化器中,煤的消耗水平很高。
虽然已证明了这种公知工艺的价值,但还原程度的不同可归因于在处理不同粒度的矿石时,铁矿石中的细粒部分和粗粒部分,即,在处理具有稍高的细粉矿石部分的矿石(如,未筛的原矿)时会产生不同的还原程度。补救是困难的,因为用已知的工艺不可能单独地调节铁矿石中的细粒部分或粗粒部分在还原容器内的带留时间。
按该已知工艺,将来自就在熔融气化区之前的还原区中的、经完全还原的细矿石部分,与粗矿石部分分开地加到熔融气化区中,即在形成于熔融气化区的固定床上方的流化床的高度上加入。从而避免了随着产生于熔融气化器中的还原气体将细粒部分带出。若流化床因所加的细粒部分而变为超负荷,结果产生流化床的破坏和堵塞气体。这造成气体的突发性爆发。因而明显地干扰了碳载体的气化过程及经还原的铁矿石,即海绵铁的熔化过程。结果形成所生成的还原气体的压力和数量的不可控制的波动,及形成了对还原过程不利的还原剂成分。
从KR专利申请94-38980得知一种上述类型的工艺,按该工艺,在就设置在熔融气化区之前的还原区中,借助还原气体将经预还原的细矿石部分排出,然后被供往单独的细矿石还原区中。如与EP-A-0594557一样,也把被完全还原的细矿石导向熔融气化器中的流化床区中,从而在熔融气化器中会出现上述的扰动。
按KR专利申请94-38980,矿石在第一还原区中被预还原,而细矿石部分和粗矿石部分在单一还原区中被一起还原。这导致了上述的,与EP-A-0594557相关联的缺点,即在此还原区中,细矿石部分和粗矿石部分的还原程度不均匀。
本发明旨在避免这些缺点和困难,因而其目的在于提供一种开始述及类型的工艺及用于实施该工艺的设备,用此工艺,不仅可达到矿石的细的部分和粗的部分的均匀还原,即,在还原过程中,为达到还原气体的良好利用,该工艺是多阶段进行的,即是有至少二阶段的还原工艺。尤其是在本发明方法中避免了熔化过程中和生产还原气体过程中的波动。
用开始述及类型的工艺,按本发明,通过下列特点的组合完成了这一目的·在第一还原阶段中,借助于还原气体将铁矿石分成颗粒尺寸分筛各不相同的两个部分,即分成至少一个细颗粒部分和至少一个粗颗粒部分。
·在分开的流化床中用还原气体将每个部分还原,其中·还原气体维持着含粗粒部分的流化床,并将细粒部分与其分开,
·而且其中,还将还原气体另行直接引入另一流化床,其量和/或化学组成要保证细粒部分在此流化床中的还原在预定的时期内达到预定的金属化程度,及·将还原后的铁矿石从第一和另一流化床中排出,和·将在第一还原阶段被还原的、细粒的和粗粒的部分在另一以与第一还原阶段相同的方式运行的还原阶段中进一步还原,然后将细粒部分从该最后的还原阶段引入熔融气化区,同时通过供氧,最好借助于燃咀使之结团,而粗粒部分则在重力作用下直接供入熔融气化区中。
借助于烧咀将经还原的细粒部分加于熔化容器中本身可从KR专利申请92-27502得知。但此处,还原气体的还原按单阶段进行,在该单阶段中被预还原的矿石的熔化按所谓的“浴内”法进行。按此方法,在反应容器中仅存有被渣覆盖的金属熔体,而不存在固定床和流化床。所加的煤在渣层中气化,所加的预还原矿石也在其中完全还原。但,这种还原方法采取了与开始时述及类型的工艺完全不同的过程,而符合本发明的方法如,在预还原时,仅用CO和/或H2将Fe2O3大部分还原到FeO阶段,然后,在熔化容器中用碳将经预还原的矿石完全还原,即按反应式还原。这些“浴内”溶炼工艺因而与开始时述及的工艺根本不同,因为还原气体的还原仅进行到稍许的程度,即进行到约还原30%的程度。为在该熔化反应器中完全还原,若与符合本发明的工艺相比,则需要高百分比的碳,而且开始时述及类型的和符合本发明的工艺仅用还原气体将还原进行到90%或更高的还原度。由于按“浴内”法没有固定床和流化床,所以在发明中不会发生如流化床超负荷这样的问题。
按照一较佳实施方案,在两个还原阶段中,通过调节第一流化床中的单位时间内的还原气体量,调节作为总的颗粒尺寸分布的函数的、按本发明分开的细粒部分的颗粒尺寸分布。同时,通过调节另行直接供于细粒部分的第二还原气体量,调节该细粒部分的还原程度。
一种符合本发明的工艺的简化实施方案使在第一还原阶段中被还原的细的和粗的颗粒部分在另一还原阶段的第一流化床中一起进一步还原,而该细粒部分一旦再被分开,于是就被供往另一流化床,并于此进一步还原。
将在第一还原阶段还原的细粒部分直接供往另一还原阶段的流化床,并于此进一步还原是适宜的。
上述本发明工艺的变型、另一简化的工艺的特征是细粒部分不是经烧咀引入熔融气化器中,而是在极接近供氧装置开口之处引入熔融气化区中。
用于实施本发明工艺的设备包括至少二个串联布置的还原装置,按该设备,以下管线通向第一反应器容器中输送含有铁矿石和熔剂的炉料的输送管,输送还原气体的气体输送管及为输送在其中形成的还原产物的、并将其导向带有反应器容器的另一还原装置的输送管,及排放炉顶气体的气体排放管,其中还原气体的气体输送管构成了来自另一还原装置的还原气体的排放管,而用于在该另一还原装置中形成的还原产物的另一输送管则伸入一个熔融气化器,该气化器中设有用于含氧气体和碳载体的供应管以及生铁或钢的预产物和渣的排放口,其中用于输送在熔融气化器中形成的还原气体的、伸入所说另一还原装置的还原气体输送管离开该熔融气化器,所述设备的特征在于,每个还原装置都设有至少二个沿铁矿石物流方向串联排列的反应器容器,设有一种平行设置的、将还原气体导向各个所述反应器容器的气体输送管,其中,从反应器容器-若沿铁矿石物流向方向看则为第一个-出发,还原气体排放装置伸入为欲被还原的铁矿石中的细粒部分而设的、同一还原装置的第二反应器容器中,而且还原产物的输送管道离开每个反应器容器,而且其中,另二条出自第一还原装置的输送管道伸入另一还原装置,而与离开另一还原装置的输送管-在该装置构成最后的还原装置的情况下-分别地导入熔融气化器,即与离开最后的还原装置的第一反应器容器的输送管直接进入熔融气化器,而与最后的还原装置中的第二反应器容器分离的输送管道则在富氧的位点,最好经烧咀进入此熔融气化器。
按一较佳实施方案,二支从第一还原装置引出的输送管一起进入另一还原装置。
出自还原装置的另一反应器容器的输送管直接伸入顺序布置的还原装置的另一反应器容器是适宜的。
另一较佳实施方案的特征在于,预热铁矿石的预热容器位于第一还原装置之前,引导来自第一还原装置的还原气体的气体导管伸入其中。
现参照某些举例性的实施方案,参照附图详述本发明,

图1-3各以示意的方式展示了符合本发明的有益的实施方案。图4涉及一种带一个熔融气化器的实施方案,该实施方案是经修改的。
根据图1,符合本发明的设备设有顺序串联连接的二个还原阶段或还原装置1和2,其中至少含有一个细的部分(下文称之为细粒部分)和一个粗的部分(下文称之为粗粒部分)的铁矿石-任选地混有熔剂,它任选地已经过预热了-经矿石输送管3被供往第一还原装置1。此时,在装置1中预还原和-若铁矿石还未预热-预热就发生了。第一还原装置1的构成如下还原装置1设有容纳由铁矿石5形成的第一流化床6的第一反应器容器4。该流化床6由还原气体维持,还原气体经由环绕反应器容器4的环形管8出发的气体输管7径向对称地供应。矿石输送管3由侧面进入反应器容器4。
在反应器容器4的、按截头锥形变窄的下端设有经预还原的铁矿石的排放装置10。在第一反应器容器4的、按照发明目的而具有一个圆形截面11的上端,在距流化床6上方一定距离处,设有大致为垂直取向的还原气体排放装置12,它具有一个相对于反应器截面11呈收缩状的截面13,最好同样是圆形的截面13。排放装置12借此形成了一个喷咀状的缩口结构。排放装置12的垂直设置能使被上升的还原气体气流偶然夹带的较大的矿石颗粒或在还原时形成的团块再循环到流化床6中。
直接地,在第一反应器容器4上方设有用于容纳另一流化床15的另一个反应器容器14。在该具有一个比第一反应器容器4的截面较大的圆形截面16的第一反应器容器4的排放装置12经径向对称地设置的、即此处中心设置的气体供应口17进入具有比第一反应器容器4的截面11大的圆形截面16的另一反应容器14,还原气体经过开口17离开第一反应器容器4,它夹带部分铁矿石5,即粒度处于粒度分布下部的部分(即细粒部分)矿石,进入流化床15,并维持该床。第二反应器容器14的下端同样也按截头锥状构成,而该另一个反应器容器14相对于第一反应器容器4以圆环状径向地向外伸展,即设有向外延伸的圆环状扩大部18。
在这个扩大部18处,另一反应器容器14设有一个径向对称设置的分配底板19,它用于直接输入经气体输送管20输来的还原气流,然后该气流随同来自第一反应器容器4的还原气流向上进入反应器容器14,它们不仅用于维持另一反应器容器14中的流化床15,而且还用于使流化床15中的细矿石5充分还原。此时,出自第一反应器容器4的还原气流的还原势能也被利用。可按带孔的底,筛子底,阀座或盖馏板型式等构成的气体分布底板19被设计成一头向中心设置的气体供应口17变细的形状(大致为截头锥形),以便使较大的颗粒及由其所形成的团块回落入第一反应器容器4中的流化床6内,然后于此处被进一步还原。为使气体流动,平行地设置气体输送管7和20。
在该另一反应器容器14的上部设有扩张部21,它也是沿径向向外伸展的、即向外横向伸展的,其结果是使气体速度在流化床15上方一段距离处明显下降,即降到流化床15内速度的一半,结果引起随用过的还原气体排出的即在顶部经排放管22排出的粉尘量迅速减少。用过的还原气体在旋风除尘器23中提纯,从此处,被这样分离出来的细颗粒经再循环管24被任选地返回另一反应器容器14的流化床15中。另一个反应器容器14设有单独的排放装置25,它按输送管构成,用于输送在反应器容器14中被还原的细矿石。
在还原装置1内,通过用还原气体进行的风力过筛,使粒度范围很宽(比如,尺寸范围为0.01-8mm)的所加入的矿石被分成粗粒部分和细粒部分,即分成具有不同颗粒尺寸分布的几个部分。因而最佳地调节流态化的流动状态及铁矿石的滞留时间,以将这些颗粒烘烤是可行的。
由于喷咀状的收缩部12,防止了被带出第一下部反应器容器4的细颗粒流回所述的反应器容器4,因为它们被经收缩部12高速向上流动的还原气体再夹带向上而去。设在气体输送管8和20中的体积控制装置26对于保证最佳的气体流动,从而保证还原气体中的矿石颗粒的每个部分的最佳滞留时间,即在流化床6和15中每一个中的滞留时间是可行的。以最低可能的还原气体消耗及在预定的时期内,精确地调节铁矿石的-包括其细粒部分和粗粒部分的-预定金属化程度是可行的。
经排放装置10被带出第一反应器容器4的铁矿石5的已还原粗粒部分然后经固体物排放装置27向前输送,装置27是按输送管构成的。经与旋风除尘器23相连的管道28,经提纯的气体与在该气体中残留的粉尘一起被抽出。
于其中大部分预还原铁矿石完全还原成海绵铁的第二还原装置2中设有两个反应器容器29,30,但它们是分开布置的,即彼此分开地布置的,粗粒部分的输送管27和细粒部分的输送管25一起进入两个串联布置的反应器容器中的第一个29,它用于容纳欲被还原的物料,其中经供应管31通过所述第一容器的底部输送还原气体。于此处也进行风力筛分,而在其中被分离出来的经预还原的细矿石、即细粒部分经设置在第二还原装置2中的第一反应器容器29上端的排放装置32被随还原气体一起被供往还原装置2中的第二反应器容器30。
按照一种变型,如图1中的虚线所示,将经排放装置25排出的细粒部分直接经输送管道25’供往第二还原装置2中的第二反应器容器30也是可能的。
将还原气体经输送管33、再经第二反应器容器30的底部供往反应器容器30,反应器容器30的向上弯曲的圆拱中的还原气体与经气体排放装置32传来的来自第二还原装置2的第一反应器容器29的还原气体一起供往第一还原装置1。还原气体输送管31和33中的每一个都设有体积控制装置26,所述的管31和33是为使气体流动而平行设置的。
出自第二还原装置2的第一反应器容器29的粗粒部分经输送管34,在重力作用下被引向熔融气化器35。从第二还原装置2的第二反应器容器30中被带出的细粒部分经排放管36,及设在熔融气化器35的圆拱37上的烧咀38被引入熔融气化器35。烧咀38使细粒部分中的颗粒结团,从而在重力作用下使它们进入熔融气化区39。
在熔融气化器35之内,在熔融气化区39中,由煤和含氧气体生成含CO和H2的还原气体,它经还原气体输送管40被导向第二还原装置2中的二个反应器容器29,30。
熔融气化器35设有固体碳载体供应管41、含氧气体供应管42及任选地设置的、在室温下为液态或气态的碳载体如烃类的供应管42和煅烧过的熔剂的供应管。在熔融气化器35之内,在熔融气化区39的下方,分别聚集了生铁水或钢的预产物43及熔渣44,它们经排放口45放出。
在熔渣44上方,将形成碳载体(焦炭)的固定床Ⅰ,在其上方是粗粒碳载体流化床Ⅱ,其上是细粒碳载体流化床,所述碳载体均为碳颗粒。
在离开熔融气化器35并伸入二个反应器容器29,30的还原气体供应管40中,设有除尘装置46如热气体旋风除尘器,在所述的热气体旋风分离器46中被分离出来的粉尘颗粒与作为输送介质的N2一起经折返管47再经烧咀48、在吹氧的条件下被供往熔融气化器35。烧咀48可设在流化床Ⅱ的相同高度上或设在其上方。
为调节还原气体的温度,最好设一气体再循环管49,它从还原气体供应管40旁引出,经除尘器50和压缩机51,将部分还原气体回输入还原气体供应管40中,即在先于热气体旋风除尘器46的部位回输入管40中。
按照图2中所示的实施方案,其中将第一还原装置1连接在预热阶段52之后,出自第一还原装置1的部分炉顶气体作为预热气体及经空气供应管53供来的空气被供于预热阶段52中,二个还原装置的设计相同,即,它们都以与图1中所示的实施方案中的第一还原装置1相同的方式构成。
按照图3,第一还原装置1相当于图1中所示的实施方案中的第二还原装置2,而第二还原装置2相当于图1中的实施方案的第一还原装置1。
图4展示了符合一种变型设备的细节,按照此设备,经完全还原的细粒部分不经烧咀38,而是被直接引入熔融气化器35。在进入熔融气化器35内部的排料管36的入口处,伸入了供氧管42,以便即使按此变型,就立即发生细粒部分颗粒的结块,从而也防止了细粒部分被出自熔融气化器35的还原气体排走。排放管36的一个入口位点还可设在熔融气化器35的靠下的部位,如图4所示该管36’和供氧管42’均用虚线画出。
按照本发明,形成了工艺技术方面的一些优点;其中重要的例子尤其是相当敏锐地和精确可调地将矿石分成粗粒和细粒部分,因而借重力直接把尽可能的份额加入熔融气化器35是可行的,而只有极必要的份额才不得不经烧咀或富氧的位点加入熔融气化器35。结果,低性能的烧咀就足够了,因而它在熔融气化器35的拱顶37中只形成低的温度负荷,从而使总能耗下降,因而还原气体只需经相当少的冷却。这还减少了粘附的风险。在加料过程中使细粒部分熔化,从而避免了熔融气化器中粉尘富集。用于熔化细粒部分的能量通过化学反应放出,从而烧咀无需另加碳即可运行。
本发明不限于图中所示的各举例性的实施方案,而是在各方面都可改变。比如还原阶段或还原装置的数目可由本领域中的普通技术人员自由选择。它们可根据所需的工艺流程及作为所加材料的函数加以选择。
权利要求
1.用于从含铁矿石(5)和熔剂及至少部分地含细粉部分的炉料生产生铁水(43)或液体的钢预产物的方法,其中该铁矿石在至少二个还原阶段(1,2)中,用流化床法被直接还原成海绵铁,该海绵铁在熔融气化区(39)中,在供有碳载体和含氧气体的条件下熔化,并且产生含CO和H2的还原气体,该还原气体被注入还原阶段(1,2)中,在此处反应,作为炉顶气体被抽出,及任选地被供往用户,该方法的特征在于,采用了以下特征的组合·在第-反应阶段(1)中,借助还原气体将铁矿石(5)分成各有不同颗粒尺寸分布的至少二个部分,即分成至少一个粗粒部分和至少一个细粒部分,·各个部分在分开的流化床(6,15)中被还原气体还原,其中·还原气体维持含粗粒部分的流化床(6),并使细颗粒部分与粗颗粒部分分开,·且其中,还另将还原气体直接引入另一流化床(15),其量和/或化学组成要保证细颗粒部分在流化床(15)中,在预定的时间期间内被还原到预定的金属化程度,及·将被还原的铁矿石(5)从第一和另一流化床(6,15)中排出,而且·在第一还原阶段(1)中被还原的细粒和粗粒部分在至少一个以与第一还原阶段相同的方式运行的另一还原阶段(2)中被进一步还原,然后将此细粒部分从后一还原阶段(2)引入熔融气化区(39),同时通过供氧,更好是借助烧咀使之结团,而粗粒部分则借助重力直接供入熔融气化区(39)中。
2.权利要求1的方法,其特征在于,在还原阶段(1,2)两者中,作为总的颗粒尺寸分布函数的、被分出的细粒部分的颗粒尺寸分布,通过调节单位时间供往第一流化床(6)的还原气体量而被调节,同时,通过调节直接另行供往细粒部分的第二还原气体量来调节该部分的还原程度。
3.权利要求1或2的方法,其特征在于,在第一还原阶段(1)中被还原的细粒和粗粒部分在另一还原阶段(2)中的流化床(6)中一起被进一步还原,而细粒部分被再分离出来,被供往另一流化床(15)并在此处被进一步还原。
4.权利要求1-3中之一项或几项的方法,其特征在于,在第一反应阶段(1)中被还原的细粒部分被直接供往另一还原阶段(2)中的另一流化床(15)中,并在此处被进一步还原。
5.权利要求1-4中之一项或几项的方法,其特征在于,细粒部分不经烧咀(38)、而是在非常靠近供氧装置开口处被引入熔融气化区(39)中(图4)。
6.用于实施上述权利要求1-5中之一项或几项方法的设备,它包括至少二个串联排列的还原装置(1,2),按照该设备,有以下管线伸入第一反应器容器(4,29),用于含铁矿石(5)和熔剂的炉料输送管(3)、还原气体的供气管(7)及预定为输送在所述反应器容器中形成的还原产物、并将其导向设有反应器容器(29)的另一还原装置(2)的输送管(27)、及炉顶气体排入管(22),其中还原气体供气管(7)构成了来自另一还原装置(2)的还原气体排放管,而用于在另一还原装置(2)中形成的还原产物输送管(34)伸入设有含氧气体和碳载体供应管(41,42),及生铁(43)或液态的钢预产物和炉渣(44)的排放口(45)的熔融气化器(35),其中伸入另一还原装置(2)的、用于供应在熔融气化器(35)中形成的还原气体的还原气体供应管(40)离开熔融气化器(35),该设备的特征在于,在每一个还原装置(1,2)中都设有沿矿石(5)的流动方向串联设置的至少二个反应器容器(4,14;29,30)、一种将还原气体导向所述各反应器容器的、平行设置的供气管(7,20;31,33),其中从反应器容器(4,29)-若沿矿石流向看为第一个-中有还原气体排放装置(12,32)伸入同一还原装置(分别为1或2)的、打算用于待还原的铁矿石的细粒部分的第二反应器容器(14,30),而用于还原产物的输送管(25,27,34,36)则离开各反应器容器(4,14;29,30),而且其中,还有二条出自第一还原装置(1)的输送管(25,27)伸入另一还原装置(2),而离开另一还原装置(2)的输送管(25,27)-若还原装置(2)为最后的还原装置-则分别导向熔融气化器(35),即,离开最后的还原装置(2)的第一反应器容器(4;29)的输送管(34)直接进入熔融气化器(35),而离开第二还原装置(2)的第二反应器容器(14;30)的输送管(36)在富氧的位点、最好经烧咀(38)进入熔融气化器(35)。
7.权利要求6的设备,其特征在于,两条出自第一还原装置(1)的输送管(25,27)一起进入另一还原装置(2)。
8.权利要求6的设备,其特征在于,出自还原装置(1)的另一反应器容器(14;30)的输送管(25)直接进入顺序设置的还原装置(2)的另一反应器容器(14;30)。
9.权利要求6、7或8的设备,其特征为,铁矿石(5)的预热容器(52)在第一还原装置(1)之前,引导来自第一还原装置的炉顶气体的气体导管进入该容器(52)中。
全文摘要
在用含铁矿石(5)、熔剂及至少部分地含细粉部分的炉料生产生铁水或液态的钢预产物的方法中,铁矿石在至少2个还原阶段中,用流化床法被直接还原成海绵铁,该海绵铁在供有碳载体及含氧气体的条件下、在熔融氧化区中熔化,而且产生含CO和H
文档编号C21B13/06GK1223693SQ97195933
公开日1999年7月21日 申请日期1997年6月26日 优先权日1996年6月28日
发明者L·W·克普林格, F·瓦尔内, J·施恩克, I-O·李, Y-H·金, M·D·朴 申请人:奥地利钢铁联合企业阿尔帕工业设备, 浦项综合制铁株式会社, 工业科学与技术研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1