用于聚烯烃的齐格勒-纳塔催化剂的制作方法

文档序号:3690750阅读:257来源:国知局
专利名称:用于聚烯烃的齐格勒-纳塔催化剂的制作方法
相关申请的交叉引用本申请是于2000年10月13日提交的题为“用于窄分子量分布到宽分子量分布的聚烯烃的齐格勒-纳塔催化剂及其制备方法和使用方法,以及由其制备的聚烯烃(Ziegler-Natta Catalyst For Narrow to Broad MWD of Polyolefins,Method ofMaking,Method of Using,And Polyolefins Made Therewith)”的美国专利申请09/687560的部分继续申请,其通过引用包括于此,专利申请09/687560是于1997年1月28日提交的题为“用于烯烃聚合的齐格勒-纳塔催化剂(Ziegler-NattaCatalysts for Olefin Polymerization)”的美国专利申请08/789862的部分继续申请,美国专利申请08/789862于2001年1月16日授权为美国专利6174971号,其也通过引用包括于此。
发明
背景技术
领域本发明一般涉及催化剂、制备催化剂的方法、使用催化剂的方法、聚合的方法以及用此类催化剂制备的聚合物。更具体地说,本发明涉及聚烯烃催化剂和齐格勒-纳塔(Ziegler-Natta)催化剂、制备此类催化剂的方法、使用此类催化剂的方法、聚烯烃聚合和聚烯烃。
背景技术
烯烃,也称为链烯,是分子中含有一对或多对被双键连接的碳原子的不饱和烃。当进行聚合过程时,烯烃可以转化为聚烯烃,例如聚乙烯和聚丙烯。一种常用的聚合方法涉及将烯烃单体与齐格勒-纳塔类催化剂体系接触。许多齐格勒-纳塔类聚烯烃催化剂、它们的一般制备方法和随后的应用在聚合领域中是众所周知的。通常,这些体系包括齐格勒-纳塔类聚合催化剂组分;助催化剂;和给电子化合物。一类齐格勒-纳塔类聚合催化剂组分可以是衍生自过渡金属的卤化物与金属氢化物和/或烷基金属的络合物,其中所述过渡金属例如钛、铬或钒,烷基金属通常是有机铝化合物。该催化剂组分通常包含与烷基铝络合的负载在镁化合物上的卤化钛。有许多涉及主要被设计用来聚合丙烯和乙烯的催化剂和催化剂体系的已出版专利,它们是本领域技术人员已知的。此类催化剂体系的例子在美国专利第4,107,413、4,294,721、4,439,540、4,114,319、4,220,554、4,460,701、4,562,173、5,066,738、和6,174,971号中提及,其通过参考包括于此。
常规的齐格勒-纳塔催化剂包含一般用通式MRx表示的过渡金属化合物,其中M是过渡金属化合物,R是卤素或氢羧基,x是过渡金属的化合价。通常,M选自第IV至VII族的金属,诸如钛、铬或钒,R是氯、溴或烷氧基。常用的过渡金属化合物是TiCl4、TiBr4、Ti(OC2H5)3Cl、Ti(OC3H7)2Cl2、Ti(OC6H13)2Cl2、Ti(OC2H5)2Br2和Ti(OC12H25)Cl3。过渡金属化合物通常负载在惰性固体上,例如,负载在氯化镁上。
齐格勒-纳塔催化剂一般以负载在载体上的形式提供,即,沉积在固体晶体载体上。载体可以是不与常规的齐格勒-纳塔催化剂的任何组分发生化学反应的惰性固体。载体通常是镁化合物。可用来给催化剂组分提供载体源的镁化合物的例子是卤化镁、二烷氧基镁、卤化烷氧基镁、卤氧化镁、二烷基镁、氧化镁、氢氧化镁和镁的羧酸盐。
聚合催化剂的性质会影响到用此催化剂形成的聚合物的性质。例如,聚合物的形态通常取决于催化剂的形态。良好的聚合物形态包括粒径和形状的均一以及可接受的堆积密度(bulk density)。而且,因为各种原因,例如,为了避免堵塞传输或再循环管路,需要最大程度地减少极小聚合物颗粒(即,细颗粒(fines))的数目。非常大的颗粒也必须尽可能地减少,以避免在聚合反应器中形成块状物和绳状物。
受所用催化剂类型影响的另一个聚合物性质是分子量分布(MWD),指给定的聚合物树脂中分子长度变化的宽度。例如,在聚乙烯中,窄化分子量分布可以提高韧性,即提高穿刺、拉伸和冲击性能。另一方面,较宽的分子量分布会使加工变得容易并且有利于熔化强度。
尽管关于齐格勒-纳塔催化剂知道的已经很多,但是还是需要不断努力,在聚合物产量、催化剂寿命、催化剂活性以及在产生具有特定性质的聚烯烃的能力方面取得进步。

发明内容
本发明的一个实施方式提供了一种制备催化剂的方法,其包括a)使二醇镁化合物与卤化剂接触,形成反应产物A;b)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;c)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;以及d)使反应产物C与第三卤化/钛酸酯化剂接触,形成反应产物D。第二和第三卤化/钛酸酯化剂可包含四氯化钛。第二和第三卤化/钛酸酯化步骤可各包括钛对镁的比例在约0.1-5的范围内。反应产物A、B和C可在随后的卤化/钛酸酯化步骤前各用烃类溶剂进行清洗。反应产物D可用烃类溶剂进行清洗,直到钛元素[Ti]含量小于约100毫摩尔/升。
本发明的另一个实施方式提供了一种聚烯烃催化剂,该催化剂由一般包括以下步骤的方法制得使本发明的催化剂组分与有机金属试剂接触。催化剂组分通过上述方法制得。本发明的催化剂可具有适应聚合生产过程的绒毛(fluff)形态,可使聚乙烯的分子量分布至少为5.0,并且提供均一的粒径分布,小于约125微米的颗粒较少。催化剂的活性取决于聚合条件。通常催化剂的活性至少为5000克PE/克催化剂,但是催化剂的活性也可以大于50000克PE/克催化剂或大于100000克PE/克催化剂。
本发明的另一个实施方式还提供了一种通过包括以下步骤的方法制备的聚烯烃聚合物a)在聚合条件下,使一种或多种烯烃单体在本发明的催化剂存在下接触;b)提取聚烯烃聚合物。一般来说,单体是乙烯单体,聚合物是聚烯烃。
而本发明的另一个实施方式提供了包含由本发明制备的聚合物的膜、纤维、管材、织物材料或制成品。制成品可以是包含至少一层的膜,该层包含由涉及本发明催化剂的方法制备的聚合物。
本发明的另一个实施方式提供了一种制备催化剂的方法,其包括通过加入烷基铝控制催化剂合成溶液的粘度,来改变催化剂组分从催化剂合成溶液中的沉淀,其中催化剂组分的平均粒径随着合成溶液中烷基铝浓度的增加而增加。该方法可进一步包括使催化剂组分与有机金属预活化剂接触,形成催化剂,其中催化剂的平均粒径随合成溶液中烷基铝浓度的增加而增加。
本发明的另一个实施方式提供一种制备催化剂的方法,其包括a)使二醇镁化合物与卤化剂接触,形成反应产物A;b)使反应产物A与第一卤化/钛酸酯化(titanating)剂接触,形成反应产物B;c)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;d)使反应产物C与第三卤化/钛酸酯化剂接触,形成反应产物D;以及e)使反应产物D与有机金属预活化剂接触,形成催化剂。二醇镁化合物是包括以下物质的反应的反应产物通式为MgRR'的烷基镁化合物,其中R和R'是具有1-10个碳原子的烷基,R和R'可相同或不同;通式为R″OH的醇,其中,醇是直链或支链的,R″是具有2-20个碳原子的烷基;通式为AlR3的烷基铝,其中至少一个R是具有1-8个碳原子的烷基或烷氧基或卤素,其中各R可相同或不同。催化剂的平均粒径随着烷基铝对烷基镁的比例的增加而增加。
第二和第三卤化/钛酸酯化剂可包括四氯化钛。第二和第三卤化/钛酸酯化步骤可各包括钛对镁的比例在约0.1-5的范围内。反应产物A、B和C可在随后的卤化/钛酸酯化步骤前用烃类溶剂进行清洗。反应产物D可用烃类溶剂进行清洗,直到钛元素[Ti]含量小于约100毫摩尔/升。
本发明的另一个实施方式中还提供了一种通过一种包括以下步骤的方法制备的聚烯烃聚合物a)在聚合条件下,使一种或多种烯烃单体在本发明的催化剂存在下接触;以及b)提取聚烯烃聚合物。聚合物的平均粒径随着催化剂制备中所用烷基铝对烷基镁的比例的增加而增加。一般来说,单体是乙烯单体,聚合物是聚乙烯。
而本发明的另一个实施方式提供了包含由本发明制备的聚合物的膜、纤维、管材、织物材料或制成品。制成品可以是包含至少一层的膜,该层包含由本发明制备的聚合物。
其它实施方式包括一种形成用在烯烃聚合中的催化剂的方法。该方法包括使氯化剂与醇镁化合物反应,形成镁-钛-醇盐加合物,使镁-钛-醇盐加合物与烷基氯化合物反应,形成氯化镁载体。然后使载体与四氯化钛(TiCl4)反应,形成用于生成聚烯烃的高活性催化剂。
在本发明的一个实施方式中,首先将丁基乙基镁(BEM)与醇反应形成醇镁化合物,其中醇一般用通式ROH表示,R是含有例如约1-20个碳原子的烷基。然后将醇镁化合物与氯化剂结合,其中氯化剂一般用通式TiCln(OR')4-n表示,其中,R'是烷基、环烷基或芳基,n为1-3。醇镁化合物与氯化剂混合的结果是形成镁-钛-醇盐加合物。
将烷基氯化合物与镁-钛-醇盐加合物反应,形成氯化镁(MgCl2)载体和一种或多种副产物如醚和/或醇。随后,用TiCl4处理MgCl2,形成负载在MgCl2上的齐格勒-纳塔催化剂。使用此催化剂制备的聚烯烃具有窄分子量分布,因而可形成如阻挡膜、纤维和管材子之类的终端用品。


图1说明了用本发明的催化剂制备的聚合物(实施例1)和用常规的催化剂制备的聚合物(对比例4)的沉降效率曲线。
图2描绘了对比例1A-2A和实施例1A-2A中所述的催化剂的粒径分布。
图3描绘了对比例1A-2A和实施例4A中所述的催化剂的粒径分布。
图4描绘了实施例4A-10A中作为PhCOCl用量的函数的催化剂产量。
图5-6描绘了实施例4A-10A中形成的催化剂的粒径分布。
图7描绘了实施例4A-10A中作为PhCOCl用量的函数的平均催化剂粒径(D50)。
图8描绘了对比例1A-2A和实施例4A和11A中所述的催化剂的粒径分布。
图9描绘了对比例3A-4A和实施例12A中所述的聚合物树脂的绒毛状颗粒的粒径分布。
图10描绘了对比例3A-4A和实施例13A中所述的聚合物树脂的绒毛状颗粒的粒径分布。
图11描绘了实施例14A中所述的催化剂的粒径分布。
图12描绘了实施例15A中所述的催化剂的粒径分布。
具体实施例方式
依据本发明的一个实施方式,制备催化剂组分的方法一般包括以下步骤由二烷基金属和醇形成金属二醇盐,卤化金属二醇盐形成反应产物,在三步或更多步中使反应产物与一种或多种卤化/钛酸酯化剂接触,形成催化剂组分,然后用如有机铝之类的预活化剂处理催化剂组分。
本发明的一个实施方式一般如下1.
2.
3.
4.;5.
6.
在上述通式中,M可以为任何合适的金属,一般是第IIA族金属,通常为Mg。在上述通式中,R、R'、R″、R和R″″各自独立为烃基或取代的烃基部分,R和R'具有1-20个碳原子,一般为1-10个碳原子,通常为2-6个碳原子,可以具有2-4个碳原子。R″一般包含3-20个碳原子,R一般包含2-6个碳原子,R″″一般包含2-6个碳原子并且通常为丁基。也可以使用R、R'、R″、R和R″″中两个或多个的任意组合,R基团的组合可以相同或互不相同。
在上述涉及通式ClARx的实施方式中,A是能够使一个氯与一个烷氧基发生交换的非还原性亲氧化合物,R是烃基或取代的烃基,x是A的化合价减1。A的例子包括钛、硅、铝、碳、锡和锗,通常是钛或硅,x是3。R的例子包括甲基、乙基、丙基、异丙基和具有2-6个碳原子的烃基等。可用在本发明中的氯化剂的非限制性例子是ClTi(OiPr)3和ClSi(Me)3。
上述实施方式中的金属二醇盐被氯化,形成反应产物″A″。虽然产物″A″的确切组成是未知的,但是相信其含有部分氯化的金属化合物,一个例子可以是ClMg(OR″)。
然后使反应产物″A″与一种或多种卤化/钛酸酯化剂接触,形成反应产物″B″,其中卤化/钛酸酯化剂的例子是TiCl4和Ti(OBu)4的组合。反应产物″B″可以是氯化的和部分氯化的金属与钛化合物的络合物。反应产物″B″可包含钛浸渍的MgCl2载体,例如,用如(MCl2)y(TiClx(OR)4-x)z之类的化合物表示的。反应产物″B″可作为固体从催化剂浆料中沉淀出来。
第二卤化/钛酸酯化步骤产生反应产物或催化剂组分,″C″也可以是卤化的或部分卤化的金属与钛化合物的络合物,但是不同于″B″,可用(MCl2)y(TiClX'(OR)4-x')z'表示。希望″C″的卤化程度超过产物″B″的卤化程度。卤化程度更大可以产生不同的化合物的络合物。
第三卤化/钛酸酯化步骤产生反应产物或催化剂组分,″D″也可以是卤化的或部分卤化的金属与钛化合物的络合物,但是不同于″B″和″C″,可以用(MCl2)y(TiClX″(OR)4-x″)z″表示。希望″D″的卤化程度超过产物″C″的卤化程度。卤化程度更大会产生不同的化合物的络合物。虽然在此对反应产物的说明给出了化学上最有可能的解释,但是如权利要求所述的本发明不受限于此理论机理。
适用于本发明的二烷基金属和所得的金属二醇盐可包括任何能用在本发明中产生合适的聚烯烃催化剂的物质。这些金属二醇盐和二烷基金属可包括第IIA族金属的二醇盐和二烷基化物。金属二醇盐或二烷基金属可以是镁二醇盐或二烷基镁。合适的二烷基镁的非限制性例子包括二乙基镁、二丙基镁、二丁基镁、丁基乙基镁等。丁基乙基镁(BEM)是一种合适的二烷基镁。
在实施本发明中,金属二醇盐可以是通式为Mg(OR″)2的镁的化合物,其中,R″是具有1-20个碳原子的烃基或取代的烃基。
金属二醇盐可以是可溶的,通常是非还原性的。非还原性化合物具有形成MgCl2而非不可溶物质的优点,不可溶物质可通过如MgRR'之类的化合物的还原而形成,会导致形成具有宽粒径分布的催化剂。另外,当活性低于MgRR'的Mg(OR″)2使用在涉及用温和的氯化剂进行氯化、随后进行卤化/钛酸酯化步骤的反应中时,可以得到更均一的产物,例如,催化剂粒径更好的控制和分布。
可使用的金属二醇盐的非限制性例子包括丁醇镁、戊醇镁、己醇镁、二(2-乙基己氧基)镁和任何适用于使体系可溶的醇盐。
作为非限制性例子,镁的二醇盐,诸如二(2-乙基己氧基)镁,可通过如下所示的烷基镁化合物(MgRR')与醇(ROH)反应制得。
该反应可在室温下进行,并且反应物形成溶液。R和R'可各为具有1-10个碳原子的任何烷基,R和R'可相同或不同。合适的MgRR'化合物包括,例如,二乙基镁、二丙基镁、二丁基镁和丁基乙基镁。MgRR'化合物可以是BEM,其中RH和R'H分别是丁烷和乙烷。
在实施本发明中,可以使用任何能生成所需金属二醇盐的醇。一般来说,使用的醇可以是任何通式为R″OH的醇,其中,R″是具有2-20个碳原子的烷基,碳原子数可以是至少3个、至少4个、至少5个或至少6个。合适的醇的非限制性例子包括乙醇、丙醇、异丙醇、丁醇、异丁醇、2-甲基戊醇、2-乙基己醇等。相信几乎所有的醇都可以使用,可以使用直链或支链的、高级支链醇,例如2-乙基-1-己醇。
醇的加入量可以变化,例如在一个非排它性范围0-10当量内,一般在约0.5当量至约6当量的范围内(文中当量相对于镁或金属化合物),可以是在约1当量至约3当量的范围内。
金属烷基化合物可以产生高分子量、在溶液中粘度很大的物质。通过向反应中加入如三乙基铝(TEAl)之类的烷基铝可以降低粘度,烷基铝可以阻断各烷基金属分子之间的缔合。烷基铝对金属的比例通常可在0.001∶1至1∶1的范围内,可以是0.01∶1至0.5∶1,也可以在0.03∶1至0.2∶1的范围内。另外,可使用如醚之类的电子给体(例如,二异戊醚(DIAE))来进一步降低烷基金属的粘度。电子给体对金属的比例通常在0∶1至10∶1的范围内,可以在0.1∶1至1∶1的范围内。
用在卤化金属醇盐的步骤中的试剂包括任何当使用在本发明中时能产生合适的聚烯烃催化剂的卤化剂。卤化步骤可以是氯化步骤,此时卤化剂含有氯(即,为氯化剂)。
金属醇盐化合物的卤化通常在烃类溶剂中、在惰性气氛下进行。合适的溶剂的非限制性例子包括甲苯、庚烷、己烷、辛烷等。在此卤化步骤中,金属醇盐对卤化剂的摩尔比一般在约6∶1至约1∶3的范围内,可以在约3∶1至约1∶2的范围内,可以在约2∶1至约1∶2的范围内,也可以为约1∶1。
卤化步骤一般在约0℃至约100℃范围内的温度下进行,反应时间在约0.5小时至24小时的范围内。卤化步骤可在约20℃至约90℃范围内的温度下进行,反应时间可在约1小时至约4小时的范围内。
在进行了卤化步骤且金属醇盐被卤化后,对卤化产物″A″可以进行两次或更多次卤化/钛酸酯化处理。
使用的卤化/钛酸酯化剂可以是两种四取代钛化合物的混合物,四取代钛化合物中的所有四个取代基都是相同的,取代基是卤素或者具有2-10个碳原子的烷氧基或苯氧基,诸如TiCl4或Ti(OR″″)4。使用的卤化/钛酸酯化剂可以是氯化/钛酸酯化剂。
卤化/钛酸酯化剂可以是单一的化合物或化合物的组合。本发明方法在第一卤化/钛酸酯化反应后,提供了一种活性催化剂;但是,希望总共进行至少三个卤化/钛酸酯化步骤。
第一卤化/钛酸酯化剂通常是温和的钛酸酯化剂,它可以是卤化钛和有机钛酸酯的混合物。第一卤化/钛酸酯化剂可以是TiCl4和Ti(OBu)4的混合物,其中TiCl4/Ti(OBu)4在0.5∶1至6∶1的范围内,该比例也可以是2∶1至3∶1。据信卤化钛和有机钛酸酯的混合物反应形成烷氧基卤化钛,Ti(OR)aXb,其中,OR和X分别是烷氧基和卤素,a+b是钛的化合价,通常为4。
或者,第一卤化/钛酸酯化剂可以是单一的化合物。第一卤化/钛酸酯化剂的例子是Ti(OC2H5)3Cl、Ti(OC2H5)2Cl2、Ti(OC3H7)2Cl2、Ti(OC3H7)3Cl、Ti(OC4H9)Cl3、Ti(OC6H13)2Cl2、Ti(OC2H5)2Br2和Ti(OC12H5)Cl3。
第一卤化/钛酸酯化的步骤一般通过首先在室温/环境温度下使卤化产物″A″在烃类溶剂中成泥浆状态来进行。合适的烃类溶剂的非限制性例子包括庚烷、己烷、甲苯、辛烷等。产物″A″在烃类溶剂中至少是部分可溶的。
在向可溶的产物″A″中加入卤化/钛酸酯化剂后,固体产物″B″在室温下沉淀。卤化/钛酸酯化剂的使用量必须足以使固体产物从溶液中沉淀下来。一般来说,以钛对金属的比例为基准计,卤化/钛酸酯化剂的使用量一般在约0.5至约5的范围内,通常在约1至约4的范围内,可以在约1.5至约2.5的范围内。
然后用合适的回收技术回收第一卤化/钛酸酯化步骤中沉淀的固体产物″B″,然后在室温/环境温度下用如己烷之类的溶剂进行清洗。一般来说,对固体产物″B″进行清洗,直到[Ti]小于约100毫摩尔/升。在本发明中,[Ti]表示能够作为第二代齐格勒-纳塔催化剂的任何钛类,可包括不是文中所述反应产物的一部分的钛类。然后对所得的产物″B″进行第二和第三卤化/钛酸酯化步骤,生成产物″C″和″D″。在各卤化/钛酸酯化步骤后,可对固体产物进行清洗,直到[Ti]小于要求的量。例如,小于约100毫摩尔/升,小于约50毫摩尔/升,或小于约10毫摩尔/升。在最后一次卤化/钛酸酯化步骤后,可对产物进行清洗,直到[Ti]小于要求的量。例如,小于约20毫摩尔/升,小于约10毫摩尔/升,或小于约1.0毫摩尔/升。据信,由于减少了钛的量,较低的[Ti]可以生成改进的催化剂,使其可以作为第二代齐格勒催化剂物质。据信,较低的[Ti]是生成改进的催化剂的一个因素,例如使催化剂具有窄分子量分布。
第二卤化/钛酸酯化的步骤一般通过使从第一钛酸酯化步骤中回收的固体产物、固体产物″B″在烃类溶剂中成泥浆状态来进行。可使用适用于第一卤化/钛酸酯化步骤中的烃类溶剂。第二和第三卤化/钛酸酯化步骤可使用与第一卤化/钛酸酯化步骤中不同的化合物或化合物的组合。第二和第三卤化/钛酸酯化步骤可使用与第一卤化/钛酸酯化步骤中相同但浓度更高的试剂,但是这不是必须的。第二和第三卤化/钛酸酯化剂可以是卤化钛,诸如四氯化钛(TiCl4)。将卤化/钛酸酯化剂加入到浆料中。加料可在环境温度/室温下进行,但是也可以在与环境条件不同的温度和压力下进行。
一般来说,第二和第三卤化/钛酸酯化剂包含四氯化钛。通常第二和第三卤化/钛酸酯化步骤各包括钛对镁的比例在约0.1至5的范围内,比例也可以是约2.0,比例可以是约1.0。第三卤化/钛酸酯化步骤一般在室温下、在浆料中进行,但是也可以在不同于环境条件的温度和压力下进行。
所使用的四氯化钛的量或其它的卤化/钛酸酯化剂的量也可以用当量表示,这里当量是相对于镁或金属化合物的钛的量。第二和第三卤化/钛酸酯化步骤中钛的量一般分别在约0.1至约5.0当量的范围内,可以在约0.25至约4当量的范围内,通常是在约0.3至约3当量的范围内,希望是在约0.4至约2.0当量的范围内。在一个特定的实施方式中,使用在第二和第三卤化/钛酸酯化步骤中的四氯化钛的量分别在约0.45至约1.5当量的范围内。
由上述方法制备的催化剂组分″D″可与有机金属催化剂组分(一种“预活化剂”)组合,形成适用于烯烃聚合的预活化催化剂体系。通常,与含有过渡金属的催化剂组分″D″一起使用的预活化剂是有机金属化合物,诸如烷基铝、氢化烷基铝、烷基铝锂、烷基锌、烷基镁等。
预活化剂通常是有机铝化合物。有机铝预活化剂通常是通式为AlR3的烷基铝,其中,至少一个R是具有1-8个碳原子的烷基或卤素,各个R可相同或不同。有机铝预活化剂可以是三烷基铝,例如,三甲基铝(TMA)、三乙基铝(TEAl)和三异丁基铝(TiBAl)。铝对钛的比例在约0.1∶1至2∶1的范围内,通常是0.25∶1至1.2∶1。
任选地,齐格勒-纳塔催化剂可以是预聚合的。一般来说,预聚工艺过程通过在催化剂与助催化剂接触后,使少量单体与催化剂接触而起作用。预聚工艺过程描述在美国专利第5,106,804、5,153,158和5,594,071号中,其通过参考包括于此。
本发明的催化剂可用在任何用于均聚或共聚任何类型的α-烯烃的方法中。例如,本发明的催化剂可用于催化乙烯、丙烯、丁烯、戊烯、己烯、4-甲基戊烯和其它的至少具有两个碳原子的α-烯烃,以及它们的混合物。上述的共聚物可产生所需的结果,例如,较宽的MWD和多峰分布,诸如双峰和三峰性质。本发明的催化剂可用于聚合乙烯产生聚乙烯。
本发明可使用各种聚合工艺,例如,单和/或多回路工艺、不涉及回路型反应器的间歇工艺或连续工艺。可用来进行本发明的多回路工艺的例子是双回路体系,其中,第一回路进行聚合反应,在该回路中所得的聚烯烃比第二回路聚合反应所产生的聚烯烃具有更低的MW,从而使所得树脂具有较宽的分子量分布和/或具有双峰性质。或者,可用来进行本发明的多回路工艺的另一个例子是双回路体系,其中第一回路进行聚合反应,在该回路中所得的聚烯烃比第二回路聚合反应所产生的聚烯烃具有更高的MW,从而使所得树脂具有较宽的分子量分布和/或双峰性质。
聚合过程可以是,例如,体相、浆相或气相聚合。本发明的催化剂可用在浆相聚合中。聚合条件(例如,温度和压力)取决于聚合过程中所使用的设备的类型以及所采用的聚合工艺的类型,并且这些条件在本领域中是已知的。一般来说,温度在约50-110℃的范围内,压力在约10-800psi的范围内。
本发明实施方式所得的催化剂的活性至少部分的取决于聚合方法和条件,例如,所使用的设备和反应的温度。例如,在聚合乙烯产生聚乙烯的实施例方式中,一般催化剂的活性为至少5000克PE/克催化剂,但是活性也可以超过50000克PE/克催化剂,活性可以超过100000克PE/克催化剂。
另外,本发明所得的催化剂可以使聚合物的绒毛形态得到改进。因而,本发明的催化剂可以得到尺寸分布均匀的大聚合物颗粒,而细小的颗粒(小于约125微米)只以低浓度存在,例如,小于2%或小于1%。本发明的催化剂包括具有高粉末堆积密度的大而易于转移的粉末,这种催化剂是适应聚合生产过程的。一般来说,本发明的催化剂使聚合物中的小颗粒减少,堆积密度(B.D.)增加,其中,B.D.值大于约0.31克/立方厘米,可以大于约0.33克/立方厘米,甚至可以大于约0.35克/立方厘米。
烯烃单体可以在稀释液中加入到聚合反应区中,所述稀释液是非活性的热交换剂,它在反应条件下是液体。此类稀释剂的例子是己烷和异丁烷。对于乙烯与另一种α-烯烃如丁烯或己烯的共聚反应,第二α-烯烃的存在量可以是0.01-20摩尔%,可以在约0.02-10摩尔%之间。
任选地,电子给体可与卤化剂、第一卤化/钛酸酯化剂或随后的卤化/钛酸酯化剂一起加入。在第二卤化/钛酸酯化步骤中,希望使用电子给体。用在制备聚烯烃催化剂中的电子给体是众所周知的,在本发明中可使用任何合适的能产生合适的催化剂的电子给体。电子给体,也称为路易斯(Lewis)碱,是能够给催化剂提供电子对的氧、氮、磷或硫的有机化合物。
电子给体可以是单官能或多官能化合物,可选自脂族或芳族羧酸和它们的烷基酯、脂族醚或环醚、酮、乙烯基酯、丙烯酰基衍生物(特别是丙烯酸烷基酯或甲基丙烯酸烷基酯)和硅烷。合适的电子给体的例子是邻苯二甲酸二正丁酯。合适的电子给体的一类例子是通式为RSi(OR')3的烷基甲硅烷基醇盐,例如,甲基甲硅烷基三乙醇盐[MeSi(OEt3)],其中,R和R'是具有1-5个碳原子的烷基,R和R'可相同或不同。
对于聚合过程而言,内电子给体可用于催化剂的合成,而外电子给体或立体选择性控制剂(SCA)可用于在聚合反应时活化催化剂。内电子给体可在卤化或卤化/钛酸酯化步骤中用在催化剂的形成反应中。适合作为内电子给体用于制备常规的负载型齐格勒-纳塔催化剂组分的化合物包括醚、二醚、酮、内酯、具有N、P和/或S原子的电子给体化合物以及特殊类的酯。特别合适的是邻苯二甲酸的酯,诸如邻苯二甲酸二异丁酯、邻苯二甲酸二辛酯、邻苯二甲酸二苯酯和邻苯二甲酸苄基丁酯;丙二酸的酯,诸如丙二酸二异丁酯和丙二酸二乙酯;新戊酸烷基酯和新戊酸芳基酯;马来酸烷基酯、马来酸环烷基酯和马来酸芳基酯;碳酸烷基酯和碳酸芳基酯,诸如,碳酸二异丁酯、碳酸乙基苯酯和碳酸二苯酯;丁二酸酯,诸如丁二酸单乙酯和丁二酸二乙酯。
可用在制备本发明催化剂中的外电子给体包括有机硅化合物,诸如通式为SiRm(OR')4-m的烷氧基硅烷,其中R选自烷基、环烷基、芳基和乙烯基;R'是烷基;m是0-3,R与R'可相同;当m是0,1或2时,R'基团可相同或不同;当m是2或3时,R基团可相同或不同。
本发明的外电子给体可选自通式为 的硅烷化合物,其中,R1和R4都是含有与硅相连的伯、仲或叔碳原子的烷基或环烷基,R1和R4相同或不同;R2和R3是烷基或芳基。R1可以是甲基、异丙基、环戊基、环己基或叔丁基;R2和R3可以是甲基、乙基、丙基或丁基,并且不需要相同;R4也可以是甲基、异丙基、环戊基、环己基或叔丁基。具体的外电子给体是环己基甲基二甲氧基硅烷(CMDS)、二异丙基二甲氧基硅烷(DIDS)、环己基异丙基二甲氧基硅烷(CIDS)、二环戊基二甲氧基硅烷(CPDS)或二叔丁基二甲氧基硅烷(DTDS)。
使用上述催化剂制备的聚乙烯的MWD至少为5.0,可以大于约6.0。
本发明的聚烯烃适合用在各种应用中,例如,用在挤出过程中,产生范围很广的产物。这些挤出过程包括,例如,吹膜挤出、铸膜挤出、狭缝带状挤出、吹塑、管材挤出和发泡板材挤出。这些工艺可包括单层挤出或多层共挤出。
可使用本发明制得的终端用品包括,例如,膜、纤维、管材、织物材料、制成品、尿布成分、女性卫生用品、汽车部件和医药材料。
文中所引用的所有参考文献,包括研究论文,所有美国和其它国家的专利和专利申请,通过参考逐一和完整地包括于此。
第一组实施例已经对本发明进行了一般的描述,以下的实施例只是为了说明本发明的某些实施方式,表明其实施和优点。应理解,通过示例性说明的方式给出实施例,并且实施例不旨在以任何方式限制本发明的说明书或权利要求的范围。
用于合成此类催化剂的合成方案如下(所有的比例相对于BEM)
认为最佳的配方是X=0.5至2,在预活化催化剂C前用TEAl清洗0-2次。为了使钛酸酯化更有效,对于催化剂制备进行了如下的改进
如上所示,TiCl4的加料在两步中完成,其中X和Y=0.5-1.0。催化剂C一般进行一次或两次清洗,同时两次清洗在Y之后完成,以移出作为第二代齐格勒催化剂类的可溶的钛类。
实施例1在一个氮气吹洗过的箱中,将1412.25克(2.00摩尔)BEM-1、27.60克(0.060摩尔)TEAl(在庚烷中,浓度为24.8%)和189.70克(1.20摩尔)DIAE加入到3升圆底烧瓶中。然后将瓶中物通过套管在氮气流下转移到20升Buchi反应器中。然后将烧瓶用大约400毫升己烷洗涤,洗涤液转移到反应器中。搅拌器的转速设定在350rpm。
向1升瓶中加入2-乙基己醇(543.60克,4.21摩尔)并加盖。然后在加入到反应器中前,用己烷稀释到体积共为1升。使用质量流量控制器通过套管将该溶液转移到反应器中。初始顶部温度为25.3℃,达到的最高温度为29.6℃。加料之后(大约2小时),用400毫升己烷洗涤瓶,洗涤液转移到反应器中。将反应混合物在转速为350rpm、在氮气压力为0.5巴的条件下搅拌过夜,关闭热交换器。
启动热交换器,并设定为25℃。向2个1升瓶中加入氯化三异丙醇钛(774.99和775.01克,共2.00摩尔),得到总共两升的物质。使用质量流量控制器通过套管将每个瓶中的物质转移到反应器中。初始液面上空间(head space)的温度为24.6℃,在第二个瓶的加料过程中温度最高达到25.9℃。对于瓶1和瓶2,加料时间分别为145分钟和125分钟。在加料结束后,用200毫升己烷对每个瓶进行洗涤,洗涤液转移到反应器中。反应混合物在转速为350rmp和氮气压力为0.5巴的条件下搅拌过夜。关闭热交换器。
TiCl4/Ti(OBu)4的制备使用标准schlenk系统技术在5升圆底烧瓶中制备四氯化钛/四丁醇钛的混合物。在1升压力瓶中,用己烷将680.00克(1.99摩尔)Ti(OBu)4稀释到总体积为1升。然后该溶液通过套管转移到反应器中。用200毫升己烷洗涤瓶,洗涤液转移到反应器中。在1升量筒中,用己烷将440毫升(~760克,4.00摩尔)TiCl4稀释到总体积为1升。对5升烧瓶中的溶液进行搅拌,在N2压力下,通过套管将TiCl4溶液滴加到反应器中。在加料结束后,用200毫升己烷洗涤1L量筒,洗涤液转移到反应器中。1小时后,用己烷将反应混合物稀释到总体积为4L,并储存在烧瓶中,直到使用。
启动热交换器,并设定为25℃。通过套管和质量流量控制器将TiCl4/Ti(OBu)4混合物转移到20升反应器中。初始的液面上空间温度为24.7℃,在225分钟加料过程中,温度最高达到26.0℃。在加料后,用1升己烷洗涤器皿,并使其搅拌1小时。
关闭搅拌器,并使溶液沉降30分钟。通过将反应器加压到1巴,降低汲取管,使溶液倾析出来,并且确保没有固体催化剂通过连接的透明塑料管。然后根据以下步骤对催化剂清洗3次。使用平衡状态的压力容器,称取2.7千克己烷到容器中,然后转移到反应器中。启动搅拌器,将催化剂混合物搅拌15分钟。然后关闭搅拌器,使混合物沉降30分钟。重复该步骤。在第三次加入己烷后,使浆料沉降过夜,关闭热交换器。
倾析出上层清液,向反应器中加入2.0千克己烷。搅拌重新开始,转速为350rpm,启动热交换器,并设定为25℃。在一个1升的量筒中,加入440毫升(760克,4.00摩尔)四氯化钛。用己烷将TiCl4稀释到1升,将一半溶液通过套管和质量流量控制器转移到反应器中。在加料过程中,初始顶部温度24.7℃升高了0.5℃。加料时间共45分钟。1小时后,关闭搅拌器,使固体沉降30分钟。倾析出上层清液,根据上述步骤用己烷清洗催化剂一次。在清洗完成后,将2.0千克己烷转移到反应器中,重新开始搅拌。按照与上述方式类似的方式使用余下的500毫升溶液完成TiCl4的第二次加料。在加料后,用400毫升己烷洗涤量筒,洗涤液加入到Buchi反应器中。在反应1小时后,关闭搅拌器,使固体沉降30分钟。然后倾析出上层清液,用己烷对催化剂清洗三次。然后将2.0千克己烷转移到反应器中。
在一个1升的压力瓶中,加入144.8克(312毫摩尔)TEAl(在己烷中,浓度为25.2%)。给该瓶加盖,并用己烷稀释到1升。然后使用质量流量控制器通过套管将该溶液转移到反应混合物中。在120分钟的加料过程中,浆料的颜色转变为深棕色。初始的顶部温度为24.5℃,最高温度达到25.3℃。在加料后,用400毫升己烷洗涤瓶,洗涤液转移到反应器中。在反应1小时后,关闭搅拌器,使催化剂沉降30分钟。倾析出上层清液,然后根据上述步骤对催化剂清洗一次。在清洗后,向反应器中加入2.7千克己烷。然后将反应器中的物质转移到三加仑压力瓶中。用1.0千克和0.5千克己烷洗涤Buchi反应器,洗涤液加入到压力瓶中。估计催化剂产量为322克。
在一个实施方式中,组成的重量百分数为Cl 53.4%;Al 2.3%;Mg 11.8%和Ti7.9%。对于各元素观察到的范围是Cl 48.6-55.1%;Al 2.3-2.5%;Mg 11.8-14.1%;Ti 6.9-8.7%。各元素的范围可以是Cl 40.0-65.0%;Al 0.0-6.0%;Mg 6.0-15.0%;Ti 2.0-14.0%。
表1列举了在加入TiCl4/Ti(OBu)4、三次清洗、第一次加入TiCl4、一次清洗和第二次加入TiCl4以及随后的三次清洗后,对样品测量所得的[Ti]。倾析样1-4对应于加入TiCl4/Ti(OBu)4之后,倾析样5和6对应于第一次加入TiCl4之后。倾析样7-10对应于第二次加入TiCl4之后。
表1

对比例1对比例1按照与实施例1中类似的方式制备,不同的是省去第三次钛酸酯化步骤,并且第二次钛酸酯化步骤使用四分之一量的TiCl4进行。
对比例2对比例2按照与实施例1中类似的方式制备,不同的是第二和第三钛酸酯化步骤在各钛酸酯化步骤中使用0.5当量的TiCl4进行。
对比例3对比例3按照与对比例1中类似的方式制备,不同的是在第二次钛酸酯化步骤中使用的TiCl4的量大约是对比例1中所用的4倍。在第二次钛酸酯化后,进行一次己烷清洗。在一个实施方式中,组成的重量百分数为Cl 57.0%;Al 2.0%;Mg 9.5%和Ti 10.0%。各元素的范围可以是Cl 55.0-57.0%;Al 2.0-2.6%;Mg 8.9-9.5%;Ti10.0-11.0%。
对比例4对比例4按照与对比例3中类似的方式制备,不同的是在第二次钛酸酯化步骤后,进行两次己烷清洗。在一个实施方式中,组成的重量百分数为Cl 53.0%;Al 2.3%;Mg 9.7%和Ti 9.5%。各元素的范围可以是Cl 52.6-53.0%;Al 2.0-2.3%;Mg 9.7-10.6%;Ti 8.7-9.5%。
表2列举了制备的催化剂。
表2

表3给出了用实施例1和对比例1-4制备的聚合物的MWD数据。对于给定的催化剂/助催化剂体系,该数据表明通过增加清洗次数或增加用TiCl4进行第三次钛酸酯化步骤,可以得到较窄的MWD。一般来说,聚合物树脂内在的MWD按照以下顺序增加,即对比例1<对比例2<对比例4<实施例1<对比例3。
表3

如表4中所示,各催化剂提供小颗粒(小于125微米的颗粒)较少的粉末;但是,通过两步钛酸酯化步骤制备的本发明的催化剂通常提供具有高堆积密度的绒毛。
表4

这些性质对于聚合物的沉降效率有着重要影响,如同实验室由图1所示的沉降效率曲线所证实的。用实施例1的本发明的催化剂制备的本发明聚合物表现出初始10毫升绒毛从溶液中迅速消失,意味着与用对比例4的常规催化剂制备的聚合物相比,该聚合物具有更快的沉降速率和更好的聚合物形态。
合成溶液的粘度控制已经发现,通过在催化剂合成过程中改变溶液粘度,可以改变催化剂组分从溶液中的沉淀。已经发现,改变催化剂组分的沉淀,会影响所得催化剂和用此催化剂制备的聚合物的粒径。可根据存在的烷基铝的相对量来改变催化剂合成溶液的粘度。因此,可根据所用烷基铝的相对量来改变催化剂和用此催化剂制备的聚合物的粒径。
用不同量的烷基铝在合成溶液中制备催化剂,并且该催化剂与用此催化剂制备的聚合物绒毛一起进行测试。实施例2描述了在催化剂制备中所用的合成方案,表5表示了所得催化剂和聚合物的尺寸。
实施例2所用的合成方案如下(所有的比例相对于BEM)1.
2.
3.
4.;5.
7.
依据该一般合成方案在1升Buchi反应器中制备四种催化剂,该合成方案中Y=Z=1。改变第一步反应中TEAl的量,研究对催化剂粒径的影响。在每个催化剂合成中调整2-乙基己醇的相对量,以防止钛络合物被任何未反应的烷基铝或烷基镁还原。下表列出了合成的催化剂、所用BEM、TEAl和2-乙基己醇的相对量、催化剂的平均粒径和用各催化剂制备的聚乙烯树脂的平均粒径。
下表提供了对于各个催化剂得到的粒径分布数据。如表中所示,平均粒径分布随TEAl量的增加而增加。
表5

如表5中所示,催化剂和所得绒毛状颗粒的平均粒径都随催化剂合成初始溶液中TEAl量的增加而增加。通过改变烷基铝的相对量,可以改变催化剂合成溶液的粘度。因而,溶液粘度的变化可改变催化剂组分从溶液中沉淀的沉淀性质,这可以影响催化剂组分和用此催化剂生产的聚合物的平均粒径。从表中可以看出,催化剂组分的平均粒径随合成溶液中烷基铝浓度的增加而增加。还可以看出,用此催化剂生产的聚合物树脂的平均粒径随合成溶液中烷基铝浓度的增加而增加。
可根据烷基铝对烷基镁的比例来测量烷基铝的量,其可在约0.01∶1至约10∶1的范围内变化。用上述催化剂生产的聚乙烯的MWD至少为4.0,可以大于约6.0。
表5中的催化剂101与上述实施例1相同。在一个实施方式中,组成的重量百分数为Cl 53.4%;Al 2.3%;Mg 11.8%和Ti 7.9%。各元素的范围可以是Cl40.0-65.0%;Al 0.0-6.0%;Mg 6.0-15.0%;Ti 2.0-14.0%。
表5中的催化剂102在一个实施方式中具有Cl 47.0%;Al 3.4%;Mg 13.1%和Ti 4.0%。各元素的范围可以是Cl 40.0-65.0%;Al 0.0-6.0%;Mg 6.0-15.0%;Ti2.0-14.0%。
表5中的催化剂103在一个实施方式中具有Cl 50.0%;Al 2.4%;Mg 12.1%和Ti 3.9%。各元素的范围可以是Cl 40.0-65.0%;Al 0.0-6.0%;Mg 6.0-15.0%;Ti2.0-14.0%。
表5中的催化剂104在一个实施方式中具有Cl 53.0%;Al 3.1%;Mg 12.8%和Ti 4.2%。各元素的范围可以是Cl 40.0-65.0%;Al 0.0-6.0%;Mg 6.0-15.0%;Ti 2.0-14.0%。
本发明的聚烯烃适合用在各种应用中,例如,用在挤出过程中,产生范围很广的产物。这些挤出过程包括,例如,吹膜挤出、铸膜挤出、狭缝带状挤出(silt tape extrusion)、吹塑、管材挤出和发泡板材挤出。这些工艺可包括单层挤出或多层共挤出。可使用本发明制得的终端用品包括,例如,膜、纤维、管材、织物材料、制成品、尿布成分、女性卫生用品、汽车部件和医药材料。
依据本发明的一个另选的实施方式,使用包括若干反应的方法来形成聚烯烃聚合催化剂。第一,烷基镁化合物(即,Mg(R*)2,其中R*可以是相同或不同的具有约1-20个碳原子的烷基),例如BEM,依据以下反应与醇发生反应形成可溶的醇镁
其中,R是含有例如约1-20个碳原子的烷基。用通式ROH表示的醇可以是支化或非支化的。合适的醇的例子是2-乙基己醇。任何合适的用于将BEM和醇反应物转化为醇镁化合物的反应条件和加料顺序都可以采用。在一个实施方式中,将醇加入到BEM溶液中,形成反应混合物,该过程维持在环境温度和环境压力下。将反应混合物搅拌足够的时间,形成可溶的醇镁化合物。
将所得的醇镁化合物与温和的氯化剂混合,形成镁-钛-醇盐加合物,该过程依据以下的方程式进行
其中R'是烷基、环烷基或芳基,n为1-3,m至少为1,也可以大于1。希望n为1。反应试剂包括TiCln(OR')4-n,其中,R'=烷基或芳基,n为1,或者Ti(OiPr)3Cl,其中iPr表示异丙基。任何合适的用于形成镁-钛-醇盐加合物的条件可被采用来进行该过程。在一个实施方式中,该过程在环境温度和环境压力下进行。将反应物混合足够长的时间,形成镁-钛-醇盐加合物。据信,加合物之所以能形成,是因为镁-钛-醇盐化合物是具有空间位阻的,使钛化合物中的氯原子难以与醇镁配体交换位置。本质上,加合物基本上但是不完全转化为MgCl2。
随后,将镁-钛-醇盐加合物与烷基氯化合物混合,使加合物转化为MgCl2载体。反应步骤如下
其中,R″是含有例如约2-18个碳原子的烷基,“TiMgCl2”表示钛浸渍的MgCl2载体。虽然R″可以是支化或未支化的,但是在某些实施方式中希望R″是未支化的。可能的烷基氯化合物包括苯甲酰氯、氯甲基乙基醚和叔丁基氯,在某些特定的实施方式中,苯甲酰氯是理想的。加入到醇镁加合物中的烷基氯的量可以超过反应所需的量。反应混合物中苯甲酰氯的量对Mg(例如,BEM)的量的比例可在约1-20的范围内变化(即,约1∶1的比例到约20∶1的比例),或约1-10,希望在约4-8的范围内变化。反应可在任何适合沉淀氯化镁载体的条件下进行。在一个实施方式中,将反应混合物回流足够长的时间,使MgCl2载体沉淀。在使用叔丁基氯的实施方式中,反应物可在回流的过程中进行加热。在使用苯甲酰氯或氯甲基乙基醚的实施方式中,反应物在回流的过程中可维持在室温。通过该反应也可以生产一种或多种如醚之类的副产物(如上述反应中所示)。据信,在沉淀MgCl2的过程中存在Ti,对于产生高活性催化剂起着主要作用。
在将MgCl2载体从反应混合物中分离后,可以用例如己烷清洗载体,以除去任何残留在载体上的污染物。然后用TiCl4处理MgCl2载体,形成催化剂浆料,该过程依据以下的方程式进行
该处理过程可在任何合适用于形成催化剂浆料的条件下进行,例如,在环境温度和环境压力下进行。用例如己烷清洗催化剂浆料,然后干燥。可以用烷基铝化合物如三乙基铝(TEAL)对所得的催化剂进行预活化,以防止催化剂腐蚀聚合反应器。更具体地说,当催化剂中的氯化钛与烷基铝化合物反应时,氯化钛转化为烷基钛。另外,当氯化钛暴露在湿气中时,可能转化为HCl,结果造成对聚合反应器的腐蚀。
第二组实施例已经对本发明进行了一般的描述,以下的实施例作为本发明的具体实施方式
给出,并用来表明其实施和优点。应理解,通过示例性说明的方式给出实施例,并且实施例不旨在以任何方式限制本发明的说明书或权利要求的范围。
除非另有指示,所有的实验性实施例在惰性气氛下使用标准Schlenk系统技术进行。依据本发明方法制备了几种催化剂(样品C-M)。另外,制备了两类常规的催化剂,称为样品A和样品B,其中样品B依据美国专利第5563225号制备,它们用于与其它催化剂样品作比较。实施例中所需的许多化合物,即2-乙基己醇、苯甲酰氯、正丁基氯、叔丁基氯、氯甲基乙基醚、ClTi(OiPr)3和TiCl4,购自Aldrich化学公司,并以收到货品时的形式使用。含有15.6重量%BEM和0.04重量%Al的庚烷溶液从Akzo Nobel购得。使用Malvem Mastersizer来测量催化剂粒径分布,包括平均粒径D50,并且这里给出的所有粒径分布以体积平均值为基础计算。
己烷从Phillips购得,并且为了纯化,以12毫升/分钟的速率从3A分子筛柱、F200氧化铝柱、填充了BASF R3-11铜催化剂的柱中通过。使用高压釜在各催化剂样品存在下进行乙烯聚合。该反应器的容量为4升,并配有四个混合隔板,隔板具有两个相对的螺旋推进器。向反应器中加入乙烯和氢气,同时使用装置在拱顶中的回压调节器(dome loaded back pressure)维持反应压力,使用蒸气和冷却水维持反应温度。向反应器中加入作为稀释剂的己烷。除非另有指示,聚合在表3A所述的条件下进行。通过使用CSC Scientific振筛机进行筛选分析得到所得聚乙烯的基于质量的绒毛状颗粒的粒径分布。小颗粒的百分数定义为小于125微米的绒毛状颗粒的重量百分数。
对比例1A通过向1升反应器中加入含有15.6重量%BEM(70.83克,100毫摩尔)的庚烷溶液来制备对比例催化剂样品A。然后,向含有BEM的溶液中缓慢加入26.45克(203毫摩尔)2-乙基己醇。将反应混合物在环境温度下搅拌1小时。然后,向上述混合物中缓慢加入77.50克(100毫摩尔)浓度为1.0M的ClTi(OiPr)3的己烷溶液。将反应混合物在环境温度下搅拌1小时,形成[Mg(O-2-乙基己基)2ClTi(OiPr)3]加合物。然后,向所得溶液中加入TNBT(34.04克,100摩尔)和TiCl4(37.84克,200毫摩尔)的混合物的己烷溶液(250毫升)。将反应混合物在环境温度下搅拌1小时,形成白色沉淀。使沉淀沉降,倾析出上层清液。用大约200毫升己烷清洗沉淀三次。使沉淀在大约150毫升己烷中重新呈泥浆状,加入50毫升含有TiCl4(18.97克,100毫摩尔)的己烷溶液。将浆料在环境温度下搅拌1小时。使固体沉降,倾析出上层清液。用200毫升己烷清洗固体一次。然后向沉淀中加入约150毫升己烷。用50毫升含有TiCl4(18.97克,100毫摩尔)的己烷溶液再次处理催化剂。将浆料在环境温度下搅拌1小时。使固体沉降,倾析出上层清液。用200毫升己烷清洗催化剂两次。向沉淀中加入约150毫升己烷。通过与7.16克(15.6毫摩尔)浓度为25重量%的TEAL的庚烷溶液在环境温度下反应1小时得到最终的催化剂。
对比例2A通过向1升烧瓶中加入330毫升浓度为15重量%的二丁基镁的庚烷溶液、13.3摩尔浓度为20重量%的四异丁基铝烷(tetraisobutylaluminoxane)的戊烷溶液、3毫升二异戊醚和153毫升己烷来制备对比例催化剂样品B。将混合物在50℃搅拌10小时。然后,加入0.2毫升TiCl4和叔丁基氯(96.4毫升)与DIAE(27.7毫升)的混合物。将混合物在50℃搅拌3小时。使沉淀沉降,倾析出上层清液。用己烷(100毫升)在室温下清洗固体三次。使固体在100毫升己烷中重新呈泥浆状。在20分钟内将无水HCl加入到反应混合物中。过滤固体,并用100毫升己烷清洗两次。再使固体重新悬浮在己烷中。将50毫升纯TiCl4加入到浆料中,并将混合物在80℃搅拌2小时。倾析出上层清液,用100毫升己烷清洗催化剂十次。在N2流和50℃下干燥催化剂。
实施例1A根据本发明按照如下步骤制备催化剂样品C向一个配有滴液漏斗、隔膜和冷凝管的250毫升三颈圆底烧瓶中加入含有15.6重量%BEM(17.71克,25毫摩尔)的庚烷溶液。然后,向含有BEM的溶液中缓慢加入6.61克(51毫摩尔)2-乙基己醇。将反应混合物在环境温度下搅拌1小时。然后,向此溶液中加入19.38克(25毫摩尔)ClTi(OiPr)3(1M,在己烷中)。将反应混合物在环境温度下搅拌1小时,形成[Mg(O-2-乙基己基)2ClTi(OiPr)3]加合物。然后,向所得溶液中加入18.51克(200毫摩尔)叔丁基氯,使叔丁基氯对BEM的摩尔比为约8∶1。将反应混合物在回流温度(即约80℃)下加热24小时,形成MgCl2沉淀(即,得到催化剂载体)。使白色沉淀沉降,倾析出浅黄色的上层清液。用约100毫升己烷清洗沉淀三次。然后向沉淀中加入约100毫升己烷,然后向所得溶液中缓慢加入TiCl4(9.485克,50毫摩尔)。将浆料在环境温度下搅拌1小时。使固体沉降,倾析出上层清液。用50毫升己烷清洗催化剂4次。
实施例2A按照实施例1A的步骤进行,形成催化剂样品D,不同的是通过向烧瓶中加入更多量的叔丁基氯来加快反应速率。具体地说,向烧瓶中的溶液中加入37.02克(400毫摩尔)叔丁基氯,并将溶液在55℃加热24小时。这样溶液含有的叔丁基氯/BEM摩尔比为约16∶1(相对于BEM为16当量)。如同预期的,实施例2A与实施例1A相比,得到更高的产量。
下表1A列出了对比例1A和2A以及实施例1A和2A中形成的催化剂的组成。
表1A

样品C和D中Mg和Cl的量与样品A中相应的量相似。样品C和D中Ti的量在样品A和B中Ti的量之间。
对于实施例1A和2A,用质子核磁共振(1H NMR)和和气相色谱-质谱(GCMS)分析来检测Ti(OiPr)3ClMg(OR)2]n与叔丁基氯反应的副产物。发现主要的副产物是2-乙基己醇,而不是预期的叔丁基2-乙基己基醚或叔丁基-2-异丙基醚。基于该结果,假设混合物中发生某种还原反应,可能形成异丁烯,从反应中除去。图1A说明了样品A-D的粒径分布。样品A和B催化剂都具有窄粒径分布。样品B催化剂的平均粒径比样品A催化剂的平均粒径稍大一些。用叔丁基氯制备的催化剂样品C和D具有较宽的双峰分布。
实施例3A按照实施例1A的步骤进行,不同的是向烧瓶中加入伯氯、正丁基氯而不是叔丁基氯,形成正丁基氯/BEM摩尔比约为16∶1(相对于BEM为16当量)的溶液。不幸的是,在50℃加热24小时后,正丁基氯不能沉淀[Ti(OiPr)3ClMg(OR)2]n。据假设,该观察结果表明了氯化机理涉及一个离解消除(E1)步骤,该步骤需要有一个稳定的碳阳离子。
实施例4A按照以下步骤制备催化剂样品K向一个配有滴液漏斗、隔膜和冷凝管的500毫升三颈圆底烧瓶中加入含有15.6重量%BEM(8.85克,12.5毫摩尔)的庚烷溶液和100毫升己烷。然后,向含有BEM的溶液中缓慢加入3.31克(25毫摩尔)2-乙基己醇,将反应混合物在环境温度下搅拌1小时。然后,向上述混合物中缓慢加入9.69克(12.5毫摩尔)ClTi(OiPr)3,将反应混合物在环境温度下搅拌1小时。然后,向该溶液中加入17.6克(125毫摩尔)苯甲酰氯(PhCOCl),使PhCOCl对BEM的摩尔比约为10∶1(相对于BEM为10当量)。将反应混合物在环境温度下搅拌2小时,形成MgCl2沉淀。使白色沉淀沉降,倾析出上层清液。用100毫升己烷清洗沉淀三次。然后向沉淀中加入约100毫升己烷,然后向该溶液中缓慢加入TiCl4(4.25克,25毫摩尔)。将所得浆料在环境温度下搅拌1小时。使浅黄色固体沉降,倾析出上层黄色清液。用50毫升己烷清洗催化剂3次。
显然,由PhCOCl形成MgCl2载体的反应不需要如同用叔丁基氯进行的反应一样进行加热。而且,如图3所示,使用PhCOCl形成的催化剂样品K的粒径分布与催化剂样品A和B的粒径分布相当。
实施例5A-10A按照实施例4A的步骤再制备六个样品(样品E-J),不同的是每一次PhCOCl的使用量都不同,使得相对于BEM的摩尔当量在1.2-7.2的范围内变化。
图4显示了催化剂产量,其作为实施例4A-410中PhCOCl使用量的函数。催化剂产量先随着PhCOCl浓度的增加而增加,然后在约7.0的当量处保持恒定,得到约1.7克的最大产量。下表2A列出了实施例4A-10A中形成的催化剂的组成。
表2A

如表2A中所示,在PhCOCl浓度升高到6.0当量的过程中,钛的含量下降,而在更高的当量时钛的含量保持恒定。催化剂样品H-K的Ti含量与催化剂样品B的相应含量相类似,比催化剂样品A的相应含量低。对钛含量下降可能的解释可涉及苯甲酸酯产物或未反应的PhCOCl。NMR和GCMS分析证实了氯化反应的主要副产物是苯甲酸2-乙基己酯和苯甲酸异丙酯。这些酯和未反应的PhCOCl,都是路易斯碱,都能与缺电子的钛或镁络合。据信,形成此类络合物将会使更多的钛从载体上被提取出来。也相信,与MgCl2载体的络合防止了TiCl4在随后的钛酸酯化中发生外延键接。有趣的是当PhCOCl的含量大于7当量后,钛的含量保持恒定。该数值对应于所有的ClTi(OiPr)3和Mg(OR)2都被氯化。在此PhCOCl量以上,酯的量也保持恒定,表明酯在决定最终催化剂中钛的量中起重要作用。
使用不同浓度的PhCOCl形成的催化剂样品E-H和I-K的粒径分布,分别表示在图5和图6中。用最低浓度的PhCOCl(相对于BEM为1.2当量)形成的催化剂样品E表现出宽双峰分布。提高PhCOCl的含量,产生具有较窄单峰分布的催化剂,并因此改善了催化剂的形态。此外,如图7所示,平均粒径(D50)随着PhCOCl浓度的增加而略有下降。假设PhCOCl和酯产物都能与生长中MgCl2载体上的不饱和镁位点发生络合。如上所述,这些路易斯碱有助于从生长中的载体上提取钛。同样,据信载体形成的动力学会因为缺少钛络合而发生变化。
实施例11A按照如下步骤制备催化剂样品L向一个配有滴液漏斗、隔膜和冷凝管的250毫升三颈圆底烧瓶中加入含有15.6重量%BEM(4.43克,6.25毫摩尔)的庚烷溶液和30毫升己烷(30毫升)。然后,向含有BEM的溶液中缓慢加入1.66克(12.5毫摩尔)2-乙基己醇,将反应混合物在环境温度下搅拌1小时。然后,向上述混合物中缓慢加入ClTi(OiPr)3(在己烷中浓度为1M,4.85克,6.25毫摩尔)的溶液,将反应混合物在环境温度下搅拌1小时。然后,向该溶液中加入含有氯甲基乙基醚(CMEE)(9.45克,100毫摩尔)的己烷溶液(25毫升),使CMEE对BEM的摩尔比约为8∶1(相对于BEM为8当量)。将反应混合物在环境温度下搅拌1小时,形成MgCl2沉淀。使白色沉淀沉降,倾析出上层清液。用50毫升己烷清洗沉淀三次。然后向沉淀中加入30毫升己烷,然后向该溶液中缓慢加入TiCl4(2.13克,125毫摩尔)的己烷溶液(30毫升)。将所得浆料在环境温度下搅拌1小时。使浅黄色固体沉降,倾析出黄色上层清液。然后用50毫升己烷清洗催化剂3次。
图9描绘了CMEE基催化剂样品L、PhCOCl基催化剂样品K和催化剂样品A和B的粒径分布。CMEE基催化剂样品具有比样品A、样品B和PhCOCl基催化剂样品K稍宽的粒径分布。CMEE基催化剂的粒径分布峰的肩宽约为7微米。
对比例3A
在催化剂样品A和TEAl助催化剂存在下且在表3A所列的条件下进行乙烯聚合。
对比例4A在催化剂样品B和TEAl助催化剂存在下且在表3A所列的条件下进行乙烯聚合。
实施例12A使用由叔丁基氯制备的催化剂样品C和D在表3A所列的条件下进行乙烯聚合。图9说明了实施例12A和对比例3A和4A中制备的聚合物的绒毛状颗粒的粒径分布。使用催化剂样品C和D得到的粒径分布很宽。相反,由催化剂样品A和B得到的分布相对较窄。由样品C和D制备的绒毛比由样品A和B制备的绒毛含有更多的小颗粒。由样品C和D制备的绒毛具有相对低的堆积密度。
表3A

下表4A列出了使用催化剂样品A、B、C和D制备的聚合物树脂的性质。
表4A

先将催化剂和由该催化剂形成的聚合物溶解在酸中,提取出剩余的Mg,这样来确定各催化剂样品的镁基活性。根据剩余的Mg含量来确定催化剂活性。如表4A中所示,催化剂样品C的镁基活性比催化剂样品A的相应活性略低,比催化剂样品B的相应活性高。催化剂样品D的活性比催化剂样品A和B的相应活性高。通过确定高负荷的熔化指数(HLMI)对熔化指数的比例来计算用催化剂样品制备的聚合物的剪切响应。由催化剂样品C和D制备的聚合物的剪切响应与样品B聚合物的剪切响应类似,但比样品A聚合物的剪切响应略低。制备的蜡(wax)的量对于所有的聚合物来说都是相当的。
实施例13A使用由苯甲酰氯制备的催化剂样品E-K在表3A所列的条件下进行乙烯聚合。图10A说明了该实施例中制备的聚合物(样品G-K)的绒毛状颗粒的粒径分布。PhCOCl基树脂的平均粒径(D50)与样品A和样品B树脂的平均粒径相比是较大的。
下表5A中对PhPOCl催化剂样品的形态与用PhCOCl催化剂样品形成的聚合物的形态进行了比较。
表5A

基于复制原理,聚合物的形态与催化剂的形态相关。但是,对于实施例F-K来说,聚合物的形态似乎不对应于催化剂的形态(即,不成比例),而对于样品A和B来说,两种形态似乎是相对应的。
下表6A列出了用PhCOCl催化剂样品(样品E-K)和催化剂样品A和B制备的聚合物的性质。
表6A

样品E-K的镁基活性大于样品A和B的相应活性。该活性一般随PhCOCl当量的增加而下降,但样品K除外,其具有的当量为10。样品E-K聚合物的密度与样品A和B聚合物的密度类似。样品E-K聚合物和样品A聚合物的熔体流动速率(即,熔化指数)比样品B聚合物的相应值要大。样品E-K聚合物的剪切响应与样品B聚合物的剪切响应类似,但是比样品A聚合物的剪切响应略低。制备的蜡的量对于所有的聚合物来说都是相当的。
实施例14A如上所述,通过用己烷清洗MgCl2沉淀来制备PhCOCl基催化剂样品I(下文中称为“样品I1”)。该实施例对催化剂样品I1与另一个以相同方式但省略清洗步骤所制备的催化剂样品I2进行了比较。据信,省略去清洗步骤,会明显减少生产催化剂所需的时间和成本。下表7A显示了样品I1和I2的催化剂组成。
表7A

省略去清洗步骤,会使钛含量下降约30%。清洗过的催化剂样品I1呈淡黄色。在加入TiCl4的过程中,未清洗的催化剂样品I2也是非常明显的黄色。但是,当TiCl4接触母液时,催化剂样品I2立刻变为无色。假设的是,酯与TiCl4的络合物会产生黄色,而PhCOCl与TiCl4反应形成无色的化合物。该观察结果支持了先前关于钛含量依赖于PhCOCl量的讨论。据信,过量的PhCOCl和酯如果没有被除去,会与TiCl2和载体表面发生络合,阻止了钛在载体表面上的沉积。
如图11所示,样品I1和I2的粒径分布基本上是相同的。因此,催化剂粒径分布不受清洗步骤的影响。该观察结果不是令人惊讶的,因为清洗步骤是在MgCl2载体形成后进行的。用样品I1和I2来聚合乙烯。下表8A列出了对于样品I1和I2的催化剂和聚合物的形态。
表8A

表8A进一步证实了粒径分布不受清洗步骤影响的结论。当省略去清洗步骤后,聚合物中形成的小颗粒的数目明显增加。小颗粒数目增加可能是由于较低的产量。使用催化剂样品I1和I2形成的聚合物的性质示于下表9A中。
表9A

如表9A中所示,未清洗的催化剂的聚合活性几乎是清洗过的催化剂活性的一半。两种聚合物的密度几乎是一样的。但是,剪切响应数据表明未清洗的催化剂与清洗过的催化剂相比具有更窄的分子量分布。据信,催化剂中PhCOCl和酯的存在影响催化剂中活性位点的分布。
实施例15A还研究了BEM浓度对催化剂性质的影响。使用被100毫升己烷稀释的BEM溶液来制备第一PhCOCl基催化剂样品(样品L)。为了比较的需要,使用被20毫升己烷稀释的BEM溶液来制备第二PhCOCl基催化剂样品(样品M)。图12显示了催化剂样品L和M的催化剂粒径分布。两种催化剂的分布是非常相似的。催化剂样品L和M以及由它们制备的聚合物的组成和性质分别列于下表10A和11A中。
表10A

表11A

表10A和11A表明BEM浓度对催化组成和聚合物性质基本上没有影响。
总而言之,使用如正丁基氯、叔丁基氯和氯甲基乙基醚之类的烷基氯合成了新的催化剂。由苯甲酰氯和氯甲基乙基醚形成的催化剂具有令人满意的粒径分布,而用叔丁基氯得到双峰分布,用正丁基氯不能形成MgCl2。通过改变加入到醇镁加合物中的苯甲酰氯的量来最优化催化剂的制备。如同预期的,催化剂产量随着苯甲酰氯量的增加而增加,并在苯甲酰氯相对于BEM约为7当量时达到饱和。催化剂的粒径分布随着苯甲酰氯量的增加而变窄。
还进行了一个实验,用来观察在载体形成后省略清洗步骤所带来的影响。未清洗的催化剂样品比清洗过的样品表现出更低的活性和更低的剪切响应。还检测了BEM浓度对催化剂性质的影响。粒径分布、催化剂组成以及聚合物性质不受BEM浓度影响。
虽然已经显示和描述了本发明的实施方式,但是本领域技术人员能在不背离本发明精神和教导的前提下对上述实施方式进行修改。文中所述的实施方式仅是示例性的,不旨在限制本发明。文中所揭示的化学机理或理论,是基于信息和看法所给出,而不需要受此束缚。对于这里所揭示的本发明可进行许多变化和修改,这些变化和修改也在本发明的范围内。因此,本发明的保护范围不受上述说明书所限制,而是仅受所附权利要求的限制,该范围包括所有权利要求的主题的等同物。
权利要求
1.一种催化剂组分的制备方法,其包括a)通过使二醇镁化合物与卤化剂接触生成反应产物A;b)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;c)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;以及d)使反应产物C与第三卤化/钛酸酯化剂接触,形成催化剂组分D。
2.如权利要求1所述的方法,其特征在于,所述卤化剂的通式为ClARx,其中A是非还原性亲氧化合物,R是具有约2-6个碳原子的烃基部分,x是A的化合物价减1。
3.如权利要求1所述的方法,其特征在于,所述卤化剂是ClTi(OiPr)3。
4.如权利要求1所述的方法,其特征在于,所述第一卤化/钛酸酯化剂是两种其四个取代基都相同的四取代钛化合物的混合物,所述取代基是卤素或具有2-10个碳原子的烷氧基或苯氧基。
5.如权利要求4所述的方法,其特征在于,所述第一卤化/钛酸酯化剂是卤化钛和有机钛酸酯的混合物。
6.如权利要求5所述的方法,其特征在于,所述第一卤化/钛酸酯化剂是TiCl4/Ti(OBu)4比例在0.5∶1至6∶1的范围内的TiCl4和Ti(OBu)4的混合物。
7.如权利要求1所述的方法,其特征在于,所述第二和第三卤化/钛酸酯化剂包括四氯化钛。
8.如权利要求7所述的方法,其特征在于,所述步骤c)和步骤d)各自包括四氯化钛对镁的比在约0.1至约5的范围内。
9.如权利要求1所述的方法,其特征在于,所述反应产物A、B和C在随后进行卤化/钛酸酯化步骤前用烃类溶剂进行清洗。
10.如权利要求9所述的方法,其特征在于,对所述反应产物A、B和C在随后进行卤化/钛酸酯化步骤前用烃类溶剂进行清洗,直到钛元素[Ti]含量小于约100毫摩尔/升为止。
11.如权利要求1所述的方法,其特征在于,用烃类溶剂对所述产物D进行清洗,直到钛元素[Ti]含量小于约20毫摩尔/升为止。
12.如权利要求1所述的方法,其特征在于,在步骤a)、b)、c)或d)的任何一步或多步中存在电子给体,其中电子给体对金属的比例在约0∶1至约10∶1的范围内。
13.如权利要求1所述的方法,还包括将本发明的催化剂放置在惰性载体上。
14.如权利要求13所述的方法,其特征在于,所述惰性载体是镁化合物。
15.如权利要求1所述的方法,还包括e)使D与有机金属预活化剂接触,形成预活化催化剂体系。
16.一种催化剂,所述催化剂由包括以下步骤的方法制得a)使催化剂组分与有机金属预活化剂接触,其中所述催化剂组分由包括i)、ii)、iii)和iv)的方法制得,i)使二醇镁化合物与卤化剂接触,形成反应产物A;ii)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;iii)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;以及iv)使反应产物C与第三卤化/钛酸酯化剂接触,形成催化剂组分。
17.如权利要求16所述的催化剂,其特征在于,所述有机金属预活化剂是通式为AlR3的烷基铝,其中至少一个R是具有1-8个碳原子的烷基或卤素,各个R可相同或不同。
18.如权利要求17所述的催化剂,其特征在于,所述有机金属预活化剂是三烷基铝。
19.如权利要求18所述的催化剂,其特征在于,所述第二和第三卤化/钛酸酯化剂包括四氯化钛。
20.如权利要求19所述的催化剂,其特征在于,铝对钛的比例在0.1∶1至2∶1的范围内。
21.如权利要求16所述的方法,其特征在于,所述反应产物A、B和C在随后进行卤化/钛酸酯化步骤前用烃类溶剂进行清洗。
22.如权利要求16所述的方法,其特征在于,用烃类溶剂对所述催化剂组分进行清洗,直到钛元素[Ti]含量小于约20毫摩尔/升为止。
23.一种聚合物,所述聚合物由包括以下步骤的方法制得a)在聚合反应条件下,使一种或多种烯烃单体在催化剂存在下进行接触,其中,所述催化剂由包括i)、ii)、iii)和iv)的方法制得,i)使二醇镁化合物与卤化剂接触,形成反应产物A;ii)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;iii)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;iv)使反应产物C与第三卤化/钛酸酯化剂接触,形成催化剂组分;以及b)提取聚烯烃聚合物。
24.如权利要求23所述的聚合物,其特征在于,所述催化剂由还包括v)的方法制备,其中v)为使催化剂组分与有机铝试剂接触。
25.如权利要求23所述的聚合物,其特征在于,所述第二和第三卤化/钛酸酯化剂包括四氯化钛。
26.如权利要求23所述的聚合物,其特征在于,所述反应产物A、B和C在随后进行卤化/钛酸酯化步骤前用烃类溶剂进行清洗。
27.包含如权利要求23所述的聚合物的膜、纤维、管材、织物材料、或制成品。
28.一种烯烃聚合的方法,其包括a)在聚合反应条件下,使一种或多种烯烃单体在催化剂存在下进行接触,其中,所述催化剂由包括i)、ii)、iii)和iv)的方法制得,i)使二醇镁化合物与卤化剂接触,形成反应产物A;ii)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;iii)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;iv)使反应产物C与第三卤化/钛酸酯化剂接触,形成反应产物D;b)提取聚烯烃聚合物;其中,至少一种反应产物A、B和C在随后进行卤化/钛酸酯化步骤前用烃类溶剂进行清洗;且用烃类溶剂对反应产物D进行清洗,直到钛元素[Ti]含量小于约100毫摩尔/升。
29.如权利要求28所述的方法,其特征在于,所述聚合物的分子量分布至少为4.0。
30.如权利要求28所述的方法,其特征在于,所述聚合物的堆积密度至少为0.31克/立方厘米。
31.一种制品,其包含由如权利要求28所述的方法制备的聚合物。
32.一种制备催化剂的方法,其包括通过加入烷基铝控制催化剂合成溶液的粘度,来改变催化剂组分从催化剂合成溶液中的沉淀,其中催化剂组分的平均粒径随着合成溶液中烷基铝浓度的增加而增加。
33.如权利要求32所述的方法,还包括使所述催化剂组分与有机金属预活化剂接触,形成催化剂,其中所述催化剂的平均粒径随着合成溶液中烷基铝浓度的增加而增加。
34.如权利要求32所述的方法,其特征在于,所述催化剂合成溶液包括使二醇镁化合物与卤化剂接触,形成反应产物A;使反应产物A与一系列卤化/钛酸酯化剂接触,形成催化剂组分;以及使催化剂组分与有机金属预活化剂接触,形成催化剂;其中,所述催化剂的平均粒径随着合成溶液中烷基铝浓度的增加而增加。
35.如权利要求34所述的方法,其特征在于,用溶剂对反应产物A和每次卤化/钛酸酯化步骤后所得的反应产物中的至少一种进行清洗,以除去污染物。
36.一种催化剂的制备方法,其包括a)使二醇镁化合物与卤化剂接触,形成反应产物A;b)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;c)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;d)使反应产物C与第三卤化/钛酸酯化剂接触,形成反应产物D;以及e)使反应产物D与有机金属预活化剂接触,形成催化剂;其中,二醇镁化合物是包括以下物质的反应的反应产物通式为MgRR′的烷基镁化合物,其中R和R′是具有1-10个碳原子的烷基,R和R′可相同或不同;通式为R″OH的醇,其中,醇是直链或支链的,R″是具有2-20个碳原子的烷基;通式为AlR3的烷基铝,其中至少一个R是具有1-8个碳原子的烷基或烷氧基或卤素,其中各R可相同或不同;且所述催化剂的平均粒径随着烷基铝对烷基镁的比例的增加而增加。
37.如权利要求36所述的方法,其特征在于,所述烷基铝对烷基镁的比例在约0.01∶1至约10∶1的范围内。
38.如权利要求36所述的方法,其特征在于,所述步骤c)和d)各自包括以四氯化钛作为卤化/钛酸酯化剂,所述四氯化钛对镁的比在约0.1至约5的范围内。
39.如权利要求36所述的方法,其特征在于,所述二醇镁化合物是二(2-乙基己氧基)镁。
40.如权利要求36所述的方法,其特征在于,所述烷基镁化合物是二乙基镁、二丙基镁、二丁基镁或丁基乙基镁。
41.如权利要求36所述的方法,其特征在于,所述醇选自乙醇、丙醇、异丙醇、丁醇、异丁醇、2-甲基戊醇和2-乙基己醇。
42.如权利要求36所述的方法,其特征在于,所述有机金属预活化剂包括烷基铝。
43.如权利要求36所述的方法,其特征在于,所述第一卤化/钛酸酯化剂是两种其四个取代基都相同的四取代钛化合物的混合物,其中取代基是卤素或具有2-10个碳原子的烷氧基或苯氧基。
44.如权利要求43所述的方法,其特征在于,所述第一卤化/钛酸酯化剂是卤化钛和有机钛酸酯的混合物。
45.如权利要求44所述的方法,其特征在于,所述第一卤化/钛酸酯化剂是TiCl4/Ti(OBu)4比例在0.5∶1至6∶1的范围内的TiCl4和Ti(OBu)4的混合物。
46.如权利要求36所述的方法,其特征在于,所述反应还包括电子给体。
47.如权利要求46所述的方法,其特征在于,所述电子给体对镁的比例在约0∶1至约10∶1的范围内。
48.如权利要求46所述的方法,其特征在于,所述电子给体是醚。
49.如权利要求36所述的方法,其特征在于,所述卤化剂的通式为ClARx,其中A是非还原性亲氧化合物,R是具有约2-6个碳原子的烃基部分,x是A的化合物价减1。
50.如权利要求49所述的方法,其特征在于,所述卤化剂是ClTi(OiPr)3。
51.如权利要求36所述的方法,其特征在于,用烃类溶剂对所述反应产物A、B、C和D中的至少一种进行清洗,直到钛元素[Ti]含量小于约100毫摩尔/升。
52.如权利要求36所述的方法,其特征在于,在步骤a)、b)、c)或d)中的任何一步或多步中存在电子给体,所述电子给体对金属的比例在约0∶1至约10∶1的范围内。
53.如权利要求36所述的方法,还包括将本发明的催化剂放置在惰性载体上。
54.如权利要求53所述的方法,其特征在于,所述惰性载体是镁化合物。
55.一种催化剂,所述催化剂由包括以下步骤的方法制得a)使催化剂组分与有机金属预活化剂接触,其中,所述催化剂组分由包括i)、ii)、iii)和iv)的方法制得,i)使通式为Mg(OR″)2的二醇镁化合物与能够用一个卤素交换一个烷氧基的卤化剂接触,形成反应产物A,其中R″是具有1-20个碳原子的烃基或取代烃基;ii)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;iii)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;以及iv)使反应产物C与第三卤化/钛酸酯化剂接触,形成催化剂组分;其中,二醇镁化合物是包括以下物质的反应的反应产物通式为MgRR′的烷基镁化合物,其中R和R′是具有1-10个碳原子的烷基,R和R′可相同或不同;通式为R″OH的醇,其中,醇是直链或支链的,R″是具有2-20个碳原子的烷基;通式为AlR3的烷基铝,其中至少一个R是具有1-8个碳原子的烷基或烷氧基或卤素,其中各R可相同或不同;以及所述催化剂的平均粒径随着烷基铝对烷基镁的比例的增加而增加。
56.如权利要求55所述的催化剂,其特征在于,所述有机镁预活化剂是通式为AlR3的烷基铝,其中至少一个R是具有1-8个碳原子的烷基或卤素,各R可以相同或不同。
57.如权利要求56所述的催化剂,其特征在于,所述有机预活化剂是三烷基铝。
58.如权利要求55所述的催化剂,其特征在于,所述第二和第三卤化/钛酸酯化剂包括四氯化钛。
59.如权利要求55所述的催化剂,其特征在于,所述铝对钛的比例在0.1∶1至2∶1的范围内。
60.一种聚合物,所述聚合物由包括以下步骤的方法制得a)在聚合反应条件下,使一种或多种烯烃单体在催化剂存在下进行接触,其中,所述催化剂由包括i)、ii)、iii)、iv)、v)和vi)的方法制得,i)使通式为MgRR′的烷基镁化合物与通式为R″OH的醇和通式为AlR3的烷基铝接触,形成通式为Mg(OR″)2的二醇镁,其中通式MgRR′中的R和R′是具有1-10个碳原子的烷基且R和R′可相同或不同,通式R″OH的醇可以是直链或支链的,R″是具有2-20个碳原子的烷基,通式AlR3中至少一个R是具有1-8个碳原子的烷基或烷氧基或卤素,各R可以相同或不同;ii)使二醇镁化合物与卤化剂接触,形成反应产物A,其中R″是具有1-20个碳原子的烃基或取代烃基;iii)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;iv)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;v)使反应产物C与第三卤化/钛酸酯化剂接触,形成催化剂组分;以及vi)使该催化剂组分与有机铝试剂接触;以及b)提取聚烯烃聚合物;其中,聚合物的平均粒径随着使用在步骤i)中的烷基铝对烷基镁的比例的增加而增加。
61.如权利要求60所述的聚合物,其特征在于,反应产物A、B和C中的至少一种在随后进行卤化/钛酸酯化步骤前用烃类溶剂进行清洗。
62.如权利要求60所述的聚合物,其特征在于,所述单体是乙烯单体。
63.如权利要求60所述的聚合物,其特征在于,所述聚合物是聚乙烯。
64.如权利要求60所述的聚合物,其特征在于,所述聚合物的分子量分布至少为4.0。
65.如权利要求60所述的聚合物,其特征在于,所述聚合物的堆积密度至少为0.31克/立方厘米。
66.包含如权利60所述的聚合物的膜、纤维、管材、织物材料或制成品。
67.一种控制聚烯烃聚合物粒径的方法,其包括a)在聚合条件下,使一种或多种烯烃单体在催化剂存在下进行接触,其中,所述催化剂由包括i)、ii)、iii)、iv)、v)和vi)的方法制得,i)使通式为MgRR′的烷基镁化合物与通式为R″OH的醇和通式为AlR3的烷基铝接触,形成通式为Mg(OR″)2的可溶性二醇镁,其中通式MgRR′中的R和R′是具有1-10个碳原子的烷基且R和R′可相同或不同,通式R″OH的醇可以是直链或支链的,R″是具有2-20个碳原子的烷基,通式AlR3中至少一个R是具有1-8个碳原子的烷基或烷氧基或卤素,各R可以相同或不同;ii)使所述可溶性二醇镁化合物与能用一个卤素交换一个烷氧基的卤化剂接触,形成反应产物A,其中R″是具有1-20个碳原子的烃基或取代烃基;iii)使反应产物A与第一卤化/钛酸酯化剂接触,形成反应产物B;iv)使反应产物B与第二卤化/钛酸酯化剂接触,形成反应产物C;v)使反应产物C与第三卤化/钛酸酯化剂接触,形成催化剂组分;以及vi)使所述催化剂组分与有机铝试剂接触;以及b)提取聚烯烃聚合物;其中,聚合物的平均粒径随着使用在步骤i)中的烷基铝对烷基镁的比例的增加而增加。
全文摘要
一种齐格勒-纳塔催化剂组分,其可由包括以下步骤的方法制得使二醇镁化合物与卤化剂接触,形成反应产物A,使反应产物A与第一、第二和第三卤化/钛酸酯化剂接触。揭示了催化剂组分、催化剂、催化剂体系、聚烯烃、由其制备的产品以及形成上述各物质的方法。可用烃类溶剂对反应产物进行清洗,以使钛元素[Ti]含量减少到小于约100毫摩尔/升。
文档编号C08F4/00GK1856363SQ200480027180
公开日2006年11月1日 申请日期2004年9月7日 优先权日2003年9月22日
发明者D·W·克内佩尔, T·J·科菲, H·恩瑞克斯, S·格雷, K·维齐尼 申请人:弗纳技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1