含萘[1,2‑c;5,6‑c]二[1,2,5]噻二唑的共轭聚合物及制备方法和应用与流程

文档序号:13652546阅读:273来源:国知局
含萘[1,2‑c;5,6‑c]二[1,2,5]噻二唑的共轭聚合物及制备方法和应用与流程

本发明涉及一种应用于有机光电材料与器件领域的新型聚合物半导体材料,具体涉及到一种含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的共轭聚合物及其制备方法与应用。



背景技术:

能源短缺、环境污染是我国经济可持续发展面临的重大问题,同时也是世界各国重视关注的问题。发展新型绿色能源技术是解决上述问题的重要途径之一,而太阳能由于其具有的绿色可再生、储量大、分布广和易获取等优势成为广泛关注的焦点。因此发展太阳能发电技术,对于降低污染和减少二氧化碳排放,实现低碳经济的发展具有重要意义。其中,利用有机半导体材料制备的有机太阳电池,可以通过溶液加工方式制备出质量轻、成本低、可柔性弯曲的器件,还可通过卷对卷(roll-to-roll)方式高速制备大面积器件,很好的克服了无机太阳电池器件面临的部分问题。此外,有机太阳电池作为一种新型薄膜光伏电池技术,具有全固态、光伏材料性质可调范围宽、可实现半透明、可制成柔性电池器件以及大面积低成本制备等突出优点,极具潜力应用在建筑物外窗、汽车挡风玻璃、可折叠窗帘等场所。

在众多光电材料中,萘[1,2-c;5,6-c]二[1,2,5]噻二唑是一类最近几年报道的性能优异的新型缺电子单元。萘[1,2-c;5,6-c]二[1,2,5]噻二唑分子的化学结构是由两个苯并噻二唑(bt)分子以“肩并肩”的形式组合到一起的,分子式如下所示:

萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元由于分子中噻二唑环本身具有较强的缺电子性,因此具有较强的吸电子能力,进而拓宽聚合物光谱的吸收范围,提高电流值。另一方面,萘[1,2-c;5,6-c]二[1,2,5]噻二唑分子较大的共轭平面呈现出强烈的自身聚集倾向,因此能有效的诱导分子链呈现出有序的堆积,增强聚合物的迁移率。这两方面的共同作用使得基于萘[1,2-c;5,6-c]二[1,2,5]噻二唑的聚合物具有优异的光电性质。

然而,由于萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元太强的自身聚集能力,导致聚合物的溶解性都不是很好,制备有机太阳电池器件时需要在较高的温度(约100℃)下进行加工,这样会给制备大面积柔性有机太阳电池器件带来极大的不便。



技术实现要素:

本发明的目的在于针对已有技术的缺点,提供一种含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的共轭多元聚合物,具有较好的溶解性,能够实现室温加工,可应用于制备有机太阳电池活性层。通过调控聚合物的分子堆积,可以获得高性能的有机太阳电池器件。

本发明的目的在于提供了所述的含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体材料的制备方法。

本发明的目的还在于提供所述的含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体材料在有机光电转换器件中的应用。

本发明的目的通过如下技术方案实现:

一种含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体材料,所述有机半导体材料的结构式为:

其中,d1、d2和d3为所述有机半导体材料中采用的不同的富电子性共轭单元;上述结构式中的r1和r3分别为氢或具有1-30个碳原子的烷基,其中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代;上述结构式中的r2为氢或具有1-30个碳原子的烷基,其中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代,此外r2还可以是任意一种共轭侧链取代基,如噻吩基、苯基、呋喃基、硒吩基、并噻吩基、噻唑基、噁唑基、苯并噻吩基、联噻吩基等;x、y、z分别为所述聚合物材料主链中不同片段的的相对含量,其中,0≤x<1,0≤y<1,0≤z<1,且x+y+z=1;n为所述有机半导体材料的聚合度,n为1到10000的自然数。

所述的聚合物半导体材料中d1、d2和d3单元分别为噻吩、并噻吩、二联噻吩、三联噻吩、氟代噻吩、氟代联噻吩、并三噻吩、苯并二噻吩、噻唑、苯环等。

所述d1、d2和d3单元分别优选为以下结构中的一种:

所述的聚合物半导体材料中,当r2为共轭侧链取代基时,r2优先为以下结构中的一种:

上述结构式中的r为氢或具有1-30个碳原子的烷基,其中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代。

含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的共轭聚合物的制备方法,包括如下步骤:将聚合单体溶于反应溶剂(超干氯苯)中,浓度为0.005~0.05mol/l,在保护气氛下,采用零价钯作为催化剂,采用油浴加热或者微波加热,进行聚合反应;所述油浴加热温度为90-180℃,微波反应的温度为100-200℃;所述油浴加热的时间为12-72小时,微波反应的时间为20分钟到4小时;反应结束,将反应液滴入甲醇中析出聚合物,通过在索氏提取器中洗涤提纯,最后得到聚合物。

所述共轭聚合物在制作聚合物有机太阳电池中的应用,将含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的共轭聚合物与电子受体材料itic、pc71bm或其衍生物、有机电子受体材料或无机纳米晶溶于加工溶剂制成活性层溶液,涂覆在玻璃或缓冲层上,制备成薄膜,然后在薄膜上蒸镀金属制备成器件。

所述加工溶剂为邻二氯苯、氯苯、甲苯、二甲苯、三甲苯、二苯醚和甲基四氢呋喃中的任意一种或两种以上的混合。

与现有技术相比,本发明的主要优点在于:

含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体材料在有机太阳电池中表现出优异的器件性能,能量转换效率得到了大幅度提高。本发明公开的含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的共轭聚合物具有良好的溶解性,能够实现室温加工,溶液和基板不加热的情况下,可以实现正常加工,材料应用于制备有机太阳电池的活性层,在富勒烯与非富勒烯太阳电池器件中都具有较高的能量转换效率。

附图说明

图1为实施例3所得聚合物p1的溶液和薄膜吸收光谱图。

图2为实施例4所得聚合物p2的溶液和薄膜吸收光谱图。

图3为实施例3、4所得聚合物p1和p2的氧化还原电势曲线图。

图4为实施例5所得聚合物的热失重分析图。

图5为实施例5所得聚合物的溶液吸收光谱图。

图6为实施例5所得聚合物的薄膜吸收光谱图。

图7为实施例3所得聚合物p1制备的富勒烯太阳电池器件j-v曲线图。

图8为实施例3所得聚合物p1制备的非富勒烯太阳电池器件j-v曲线图。

图9为实施例5所得聚合物制备的有机太阳电池器件j-v曲线图。

具体实施方式

以下结合具体实施例来对含萘[1,2-c;5,6-c]二[1,2,5]噻二唑单元的聚合物半导体的制备与应用作进一步的说明。但本发明所要求的保护范围并不局限于实施例所涉及的范围。

实施例1

3,7-双(4-烷基噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑的制备,反应式如下:

以制备3,7-双(4-(2-辛基十二烷基)噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑为例予以说明。在50毫升的两口烧瓶中加入3,7-二溴-萘[1,2-c;5,6-c]二[1,2,5]噻二唑(5g,10mmol),三丁基-(4-(2-辛基十二烷基)噻吩-2-基)烷锡(26.2g,40mmol),通氮气十五分钟,然后加pd(pph3)4(100mg,2%),在氮气保护下加入无水dmf30ml,油浴加热到120℃反应12小时。常规ch2cl2萃取处理后,硅胶过柱分离提纯,展开剂使用二氯甲烷:正己烷(1:8,体积比),最后将产物用乙醇重结晶提纯得到橙红色固体(3.5g,产率42%)。

实施例2

3,7-双(5-溴-4-烷基噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑的制备,反应式如下:

以制备3,7-双(5-溴-4-辛基十二烷基噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑为例予以说明。在50ml的单口瓶中加入3,7-二(4-(2-辛基十二烷基)噻吩-2-基)-萘[1,2-c;5,6-c]二[1,2,5]噻二唑(1.94g,2mmol),加入25ml四氢呋喃充分搅拌将其溶解,在充分搅拌下分4次加入n-溴代丁二酰亚胺(nbs)(391mg,2.2mmol),在室温避光反应12小时。常规ch2cl2萃取处理后,硅胶过柱分离提纯,展开剂使用二氯甲烷:石油醚(1:8,体积比),最后将产物用乙醇重结晶提纯得到红色固体(1.8g,产率85%)。

实施例3

聚合物的制备,反应式如下:

聚合物的制备包括以下步骤:称取化合物1、化合物2和化合物3于反应管中,加入氯苯(3ml),通氩气20分钟。随后快速加入催化剂及配体,pd2(dba)3,p(o-tol)3,通氩气使反应管中充满氩气,盖好盖子,进行聚合反应,于140℃反应48小时。反应结束,将反应液滴入甲醇中析出聚合物,然后将聚合物用丙酮、正己烷、二氯甲烷在索氏提取器中洗涤,最后用氯仿反抽提得到聚合物,最后将聚合物在真空干燥箱中烘干,得到聚合物。

通过调节聚合单体的量,得到比例不同的共聚物p1(x:y=95:5)、p3(x:y=90:10)和p5(x:y=50:50)。

实施例4

聚合物的制备,反应式如下:

聚合物的制备步骤与实施例3一致,通过调节聚合单体的量,得到比例不同的共聚物p2(x:y=95:5)、p4(x:y=90:10)和p6(x:y=50:50)。

实施例5

聚合物的制备,反应式如下:

聚合物的制备步骤与实施例3一致,通过调节聚合单体的量,得到比例不同的共聚物p7(x:z=95:5)、p8(x:z=90:10)和p9(x:z=85:15)。

实施例6

聚合物太阳电池器件的制备和性能

聚合物太阳电池器件的结构为:ito/pedot:pss/聚合物太阳电池活性层/pfn-br/ag。器件制作过程为:以预先清洗的ito玻璃为阳极,在ito玻璃上旋涂40纳米的水溶性聚合物pedot:pss,干燥后继续旋涂聚合物太阳电池活性层,所有器件的活性层均可在室温下加工,无需通过热甩进行加工。干燥后接着旋涂水醇溶聚合物pfn-br的甲醇溶液,控制厚度为5纳米,最后真空蒸镀100纳米的ag金属阴极。在ito和ag金属电极间施加正偏压,在100毫瓦每平方厘米的am1.5模拟太阳光的照射下测量其电池特性。

实施例3所制备的聚合物p1与pc71bm用氯苯为溶剂,按聚合物与itic重量比1:1.5混合旋涂聚合物太阳电池的活性层,测试结果如图7,其器件参数如下:开路电压0.79伏特,短路电流17.65毫安每平方厘米,填充因子72.42%,能量转换效率超过10%,表现出了优异的器件性能。

实施例3所制备的聚合物p1与itic用邻二氯苯为溶剂,按聚合物与itic重量比1:1混合旋涂聚合物太阳电池的活性层。测试结果如图8,其器件参数如下:开路电压0.79伏特,短路电流17.44毫安每平方厘米,填充因子73.35%,能量转换效率超过10%,是该体系材料目前在非富勒烯太阳电池的最高效率。

实施例5所制备的聚合物与pc71bm用邻二氯苯和氯苯体积比为1:3的混合溶剂为溶剂,按聚合物与pc71bm重量比1:1.5混合旋涂聚合物太阳电池的活性层,制备的器件性能参数如表1所示。其中,基于p7的电池器件性能最佳,其器件参数如下:开路电压0.79伏特,短路电流18.71毫安每平方厘米,填充因子74.59%,能量转换效率达到11%。本发明公开的材料很好的解决了目前该体系材料溶解性差,需要通过热甩才能加工的技术难题,并且获得了优异的器件性能。

图1和图2分别是实施例3、4所得聚合物p1和p2的溶液和薄膜吸收光谱图。可以发现该类材料具有较宽的太阳光吸收能力。图3为实施例3、4所得聚合物p1和p2的氧化还原电势曲线图,聚合物具有合适的电子能级,可以作为电子给体材料用于有机太阳电池中。

图5和图6分别是实施例5所得聚合物的溶液和薄膜吸收光谱图。可以发现该类材料具有较宽的太阳光吸收能力,其聚集峰较弱,同时也发现材料的溶解性有明显的改善。

图7、图8和图9为实施例3和5所得聚合物制备的有机太阳电池器件j-v曲线图。我们发现,本发明公开的有机半导体材料作为电子给体材料,用于有机太阳电池中,采用itic或者pc71bm作为电子受体材料,均获得了很好的器件效果,最高能量转换效率超过11%,而且解决了高效材料室温溶解性差的问题,实现了室温加工的高效有机太阳电池器件。

表1聚合物太阳电池的光伏性能参数

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1