一种含金属纳米钛粉的PVDF膜、其制备方法及用途与流程

文档序号:14946460发布日期:2018-07-17 21:35阅读:232来源:国知局

本发明涉及膜制备技术领域,具体涉及一种含金属纳米钛粉的聚偏氟乙烯(polyvinylidenefluoride,pvdf)膜、其制备方法及用途。



背景技术:

随着全球人口的不断增加、人类生活水平的逐步提高以及世界工业水平的快速发展,淡水资源的极度短缺影响着全球经济的发展和人类文明的进步。近年来工业蓬勃发展,人类对于淡水资源无节制的使用以及工业、生活废水的随意排放等问题,使得本来就极不平衡的淡水资源供需问题显得更加迫切。随着淡水资源的日渐枯竭,为满足人类对于淡水的需求,对海水(苦咸水)进行脱盐从而获得淡水的方法就成为解决淡水紧缺的重要解决方法,因而海水淡化技术的发展与应用就具有重大的战略意义和发展前景。

海水淡化(海水脱盐),是指将海水里面的有机/无机物质、溶解性金属盐、细菌和病毒以及各种杂质分离出来从而获得淡水的技术和过程。当下,海水淡化技术通常分为热法(蒸馏法)、薄膜法和化学生产法三大类,其中常用的方法是低多效蒸馏法、多级闪蒸法和反渗透薄膜法。其中,薄膜蒸馏技术具有操作温度低、设备要求低、理论上100%截留不挥发性组分等优点,是一种新型的将热能作为动力从而驱动溶液分离的物理过程,其原理是以具有疏水性表面的多孔薄膜充当媒介,当多孔薄膜两侧的蒸汽压形成一定压力差时,薄膜温度较高一侧的溶液中的挥发性组分就会以蒸汽分子的形式穿过多孔薄膜表面的微孔,然后在温度较低的一侧冷凝,从而实现液液分离的目的。

太阳能(solarenergy),顾名思义是指太阳的热辐射能(太阳以电磁波的形式向宇宙辐射的能量)。太阳光为人类提供了足够的可再生能源,有潜能转化为热能,并用于蒸汽生成、住宅供热、海水淡化、污水处理。但很可惜,由于当前技术与仪器的限制,人类当前对于太阳能的利用不足35%。所以在近些年,科研人员开始将工作重心逐渐放在了开发太阳能与探索低廉高效光热材料的领域。

近几年来,科学家们逐渐将研究重心转移到通过光热转换效应来实现光蒸发水的相关领域中,例如:美国圣母大学可持续能源中心的tengfeiluo教授课题组(acsnano,2017,11,5510-5518)成功制备了功能化的石墨烯材料;上海交通大学邓涛课题组(advancedmaterials,2015,27,2768-2774)成功制备了含金复合纸薄膜(pgf),将传统的薄膜蒸馏技术与光热转换结合在一起,利用吸收的太阳能,将其转换为热能,从而实现光蒸发水,淡化海水。

但是石墨烯、贵金属(金、银)等价格昂贵,大大限制了其在海水淡化领域的应用,因此寻找一种成本低廉、具有较高水蒸发效率的光吸收材料,并将其应用于光吸收器的制备就成为当下科研人员需要去面对的一种挑战。



技术实现要素:

本发明的目的是提供一种含金属纳米钛粉的pvdf膜、其制备方法及用途,通过将薄膜蒸馏技术和金属纳米钛粉的局域表面等离子共振效应的结合,实现光能与热能的转换,从而利用该pvdf复合膜实现低能耗、高效率、绿色环保的光蒸发水,从而达到淡化海水的目的,在一定的程度上有效地解决了淡水资源短缺的问题。

为达到上述目的,本发明提供了一种含金属纳米钛粉的pvdf膜的制备方法,其包括以下步骤:

步骤1:采用pvdf粉末制备pvdf有机溶液;

步骤2:在pvdf有机溶液中添加金属纳米钛粉,并混合均匀;

步骤3:将上述溶液均匀涂抹在平板玻璃表面上,形成一层薄膜;

步骤4:将步骤3中涂有薄膜的平板玻璃放置在水中浸泡一段时间后,将薄膜取出并烘干,从而制得含金属纳米钛粉的pvdf膜(ti/pvdf膜)。

上述的含金属纳米钛粉的pvdf膜的制备方法,其中,步骤1中,采用pvdf制备pvdf有机溶液的具体方法为:将pvdf粉末溶解于有机溶剂中并搅拌混合均匀。

上述的含金属纳米钛粉的pvdf膜的制备方法,其中,所述有机溶剂为n,n-二甲基甲酰胺或n-甲基吡咯烷酮。

本发明还提供了一种含金属纳米钛粉的pvdf膜,其中,所述含金属纳米钛粉的pvdf膜使用上述的方法制成;并且,所述含金属纳米钛粉的pvdf膜用于海水淡化。

上述的含金属纳米钛粉的pvdf膜,其中,所述含金属纳米钛粉的pvdf膜的厚度为50-500μm。

上述的含金属纳米钛粉的pvdf膜,其中,以重量百分数计,所述含金属纳米钛粉的pvdf膜中金属纳米钛粉的含量范围为14~65%。

本发明还提供了一种海水淡化方法,其中,所述方法使用上述的含金属纳米钛粉的pvdf膜,并包括以下步骤:将含金属纳米钛粉的pvdf膜覆盖在海水表面,使用太阳光照射含金属纳米钛粉的pvdf膜,盐类物质被截留在含金属纳米钛粉的pvdf膜的一侧,受热的水分以水蒸汽的形式从含金属纳米钛粉的pvdf膜的孔隙中挥发出去,从而实现淡化海水。

相对于现有技术,本发明具有以下有益效果:

金属纳米钛粉颗粒表面的局域表面等离子共振效应以及纳米尺寸的钛粉本身的特性,使其能够在紫外区、可见光区以及近红外区具有很好的光吸收效应。因此,将金属纳米钛粉与pvdf膜复合,使制备出的含金属纳米钛粉末的pvdf膜能够将吸收的太阳能转变为热能,使得海水受热蒸发,从而实现光蒸发水,进而实现海水淡化。

本发明提供的含金属纳米钛粉末的pvdf膜,通过利用简便的流程将金属纳米钛粉末与pvdf膜相结合,使得复合后的含金属纳米钛粉末的pvdf膜能够充分吸收太阳光辐射,并将光能充分转换为热能,从而节约了淡化海水所需成本与能源的消耗,提高了对环境的保护性,对海水淡化的工艺与流程进行了一定的简化。同时,本发明的含金属纳米钛粉末的pvdf膜制备工艺相较于传统工艺简便许多,降低了海水淡化工艺对仪器设备的要求,并且成本低廉、环保性能高,适合在光蒸发水、淡化海水领域内得到应用。

附图说明

图1为纯pvdf膜的实物照片;

图2为本发明制备出的含金属纳米钛粉的pvdf膜的实物照片;

图3为含金属纳米钛粉的pvdf膜的光学显微镜照片;

图4为含10mg金属纳米钛粉的pvdf膜的sem照片;

图5为本发明所添加使用的金属纳米钛粉的sem的照片;

图6为图5的局部放大示意图;

图7为本发明所添加使用的金属纳米钛粉水溶液的紫外可见吸光光谱;

图8为本发明实施例1-6制备的含金属纳米钛粉的pvdf膜的光蒸发水性能折线图;

图9为本发明实施例1-6制备的含金属纳米钛粉的pvdf膜的光蒸发水性能柱状图;

图10为本发明实施例1-6制备的含金属纳米钛粉的pvdf膜的光蒸发水实验的水蒸发速率与水蒸发效率图;

图11为在相同太阳光(1sun)辐射下本发明实施例5制备的含金属纳米钛粉的pvdf膜与10mg金属纳米钛粉水溶液的光蒸发水性能折线图;

图12为在相同太阳光(1sun)辐射下本发明实施例5制备的含金属纳米钛粉的pvdf膜与10mg金属纳米钛粉水溶液的光蒸发水性能柱状图;

图13为在相同太阳光(1sun)辐射下本发明实施例5制备的10mg-ti/pvdf膜与10mg金属纳米钛粉水溶液的光蒸发水性能实验的水蒸发速率与水蒸发效率图;

图14为在不同太阳光强度辐射下本发明实施例5制备的10mg-ti/pvdf膜的光蒸发水性能实验的水蒸发速率与水蒸发效率图。

具体实施方式

以下结合附图通过具体实施例对本发明作进一步的描述,这些实施例仅用于说明本发明,并不是对本发明保护范围的限制。

本发明提供了一种含金属纳米钛粉的pvdf膜的制备方法,其包括以下步骤:

步骤1:采用pvdf粉末制备pvdf有机溶液,具体方法为:将pvdf粉末溶解于有机溶剂中并搅拌混合均匀;优选地,所述有机溶剂为n,n-二甲基甲酰胺(dmf)或n-甲基吡咯烷酮(nmp);

步骤2:在pvdf有机溶液中添加金属纳米钛粉,并混合均匀;

步骤3:将上述溶液均匀涂抹在平板玻璃表面上,形成一层薄膜;

步骤4:将步骤3中涂有薄膜的平板玻璃放置在水中浸泡一段时间后,将薄膜取出并烘干,从而制得含金属纳米钛粉的pvdf膜。

本发明还提供了一种含金属纳米钛粉的pvdf膜,其中,所述含金属纳米钛粉的pvdf膜使用上述的方法制成;并且,所述含金属纳米钛粉的pvdf膜用于海水淡化。该含金属纳米钛粉的pvdf膜可以通过膜表面的金属纳米钛粉的局域表面等离子共振效应将吸收的太阳能转换为热能,并利用pvdf膜的微孔结构,使其蒸发的水蒸气能够通过微孔结构传输,从而实现光蒸发水的目的。优选地,所述含金属纳米钛粉的pvdf膜的厚度为50-500μm。优选地,以重量百分数计,所述含金属纳米钛粉的pvdf膜中金属纳米钛粉的含量范围为14~65%。当金属纳米钛粉的添加量发生改变时,含金属纳米钛粉的pvdf膜的光蒸发水的效果也会发生相应的变化。当减少钛粉添加量时,制备出的含金属纳米钛粉的pvdf膜的光蒸发水的水蒸发速率和水蒸发效率均不能达到运用到实际生产的标准;相反,当钛粉添加过多时,反而会使得纳米钛粉颗粒堵塞pvdf薄膜表面的微孔,使得水蒸汽分子无法全部穿过薄膜表面的微孔,降低了水蒸汽的透过效应,从而使含金属纳米钛粉的pvdf膜光蒸发水的水蒸发速率和水蒸发效率降低。

本发明还提供了一种海水淡化方法,其中,所述方法使用上述的含金属纳米钛粉的pvdf膜,并包括以下步骤:将含金属纳米钛粉的pvdf膜覆盖在海水表面,使用太阳光照射含金属纳米钛粉的pvdf膜,盐类物质被截留在含金属纳米钛粉的pvdf膜的一侧,受热的水分以水蒸汽的形式从含金属纳米钛粉的pvdf膜的孔隙中挥发出去,从而实现淡化海水。

制备聚偏氟乙烯有机溶液:将1gpvdf粉末溶解于15mln,n-二甲基甲酰胺溶液(dmf)或n-甲基吡咯烷酮(nmp)中,并磁力搅拌30-60min,使两种物质均匀混合溶解,制得无色、透明的澄清溶液。

实施例1:

将14.5mg金属纳米钛粉添加至含有1ml聚偏氟乙烯有机溶液的烧杯中,超声15min,从而得到均匀的混合溶液。用滴管取出0.5ml上述混合溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm、厚度约为150μm的pvdf薄膜。随后将涂有ti/pvdf膜的平板玻璃快速浸入去离子水中,之后将ti/pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的ti/pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的钛粉含量约为1mg的pvdf薄膜。

实施例2:

将29mg金属纳米钛粉添加至含有1ml聚偏氟乙烯有机溶液的烧杯中,超声15min,从而得到均匀的混合溶液。用滴管取出0.5ml上述混合溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm、厚度约为150μm的pvdf薄膜。随后将涂有ti/pvdf膜的平板玻璃快速浸入去离子水中,之后将ti/pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的ti/pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的钛粉含量约为2mg的pvdf薄膜。

实施例3:

将58mg金属纳米钛粉添加至含有1ml聚偏氟乙烯有机溶液的烧杯中,超声15min,从而得到均匀的混合溶液。用滴管取出0.5ml上述混合溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm、厚度约为150μm的pvdf薄膜。随后将涂有ti/pvdf膜的平板玻璃快速浸入去离子水中,之后将ti/pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的ti/pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的钛粉含量约为4mg的pvdf薄膜。

实施例4:

将116mg金属纳米钛粉添加至含有1ml聚偏氟乙烯有机溶液的烧杯中,超声15min,从而得到均匀的混合溶液。用滴管取出0.5ml上述混合溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm、厚度约为150μm的pvdf薄膜。随后将涂有ti/pvdf膜的平板玻璃快速浸入去离子水中,之后将ti/pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的ti/pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的钛粉含量约为8mg的pvdf薄膜。

实施例5:

将145mg金属纳米钛粉添加至含有1ml聚偏氟乙烯有机溶液的烧杯中,超声15min,从而得到均匀的混合溶液。用滴管取出0.5ml上述混合溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm、厚度约为150μm的pvdf薄膜。随后将涂有ti/pvdf膜的平板玻璃快速浸入去离子水中,之后将ti/pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的ti/pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的钛粉含量约为10mg的pvdf薄膜。

实施例6:

将174mg金属纳米钛粉添加至含有1ml聚偏氟乙烯有机溶液的烧杯中,超声15min,从而得到均匀的混合溶液。用滴管取出0.5ml上述混合溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm、厚度约为150μm的pvdf薄膜。随后将涂有ti/pvdf膜的平板玻璃快速浸入去离子水中,之后将ti/pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的ti/pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的钛粉含量约为12mg的pvdf薄膜。

对比例1:

与此同时,本实验还制备了不含金属纳米钛粉的纯pvdf薄膜,与实例1-6中的pvdf薄膜作为对比:从装有1ml聚偏氟乙烯有机溶液的烧杯中用滴管取出0.5ml聚偏氟乙烯有机溶液,用涂覆器将其涂覆在干燥、洁净的平板玻璃表面上,形成大小为8cm×8cm,厚度约为150μm的纯pvdf薄膜,随后将涂有pvdf薄膜的平板玻璃快速浸入去离子水中,之后将纯pvdf膜取出,用水和乙醇冲洗多次,最后放置在烘箱中50℃烘干2h。将干燥的纯pvdf膜裁剪成直径为33.5mm的圆形薄膜,从而成功制备出厚度约150μm的不含金属纳米钛粉的pvdf膜。

如图1和图2所示,分别为纯pvdf膜和本发明制备出的含金属纳米钛粉的pvdf膜(10mg-ti/pvdf膜)的实物照片;如图3所示,为含金属纳米钛粉的pvdf膜的光学显微镜照片;如图4所示,为含10mg金属纳米钛粉的pvdf膜的sem照片。

从图3和图4可以看出,含金属纳米钛粉末的pvdf复合膜为多孔膜,其孔洞均匀分布,为水蒸气的传输提供了通道。

图5和图6为本发明所添加使用的纳米钛粉末的sem照片。从图5和图6中可以看出,本发明所添加的金属纳米钛粉形状为球形颗粒,其平均粒径为60nm。

图7为本发明所添加使用的金属纳米钛粉水溶液的紫外吸光光谱。从图7可以明显的看出,纳米钛粉在250nm-300nm、500nm-700nm这两个区间内有两个明显的宽吸收峰。由此可以得出钛粉在紫外区、可见光区和近红外区对太阳光均有很好的光吸收。

分别将实施例1-6制备的6个含金属纳米钛粉末的pvdf膜放在开口直径为40mm的40mm×25mm内含有20ml去离子水的称量瓶的水面上,在利用太阳光模拟器模拟的太阳光(1sun)辐射下,通过电子天平上显示的水的重量变化来准确记录水的蒸发量,其测试结果见图8-图10(其中,“水-暗处”为水在无太阳光辐射以及在室温条件下其水蒸发的效果显示)。

图8和图9分别为本发明实施例1-6制备的pvdf薄膜的光蒸发水性能的折线图和柱状图,从中可以明显看出,当ti/pvdf复合膜中钛粉的添加量逐渐增加时,其光蒸发水效果呈上升趋势,当复合膜中钛粉含量为10mg时达到最好的光蒸发效果。将图8、图9与图10相结合,可以得到以下结论:随着钛粉添加量的增加,pvdf薄膜光蒸发水的效率与速率都会同步增加,并且当pvdf薄膜中的钛粉含量为10mg时,pvdf薄膜光蒸发水的效率也到达最高,此时pvdf薄膜光蒸发水的速率为1.29kgm-2h-1,其光蒸发水的效率则高达为81.5%;但是,当钛粉的添加量继续增加到12mg时,pvdf薄膜光蒸发水的效率与速率都呈下降趋势,其光蒸发水的速率与效率分别下降到1.13kgm-2h-1和71.5%。经分析认为产生这种现象的原因极有可能是由于当钛粉添加量过多时,大量纳米级别的钛粉将pvdf薄膜表面的微孔堵塞,对水蒸汽分子穿过这些微孔起到了一定的阻碍作用,使得水蒸汽无法顺利通过薄膜,从而降低了薄膜光蒸发水的效率与速率。所以从图8-图10可以得出,对于含金属纳米钛粉末的pvdf薄膜来说其最佳钛粉含量为10mg。

为进一步说明含10mg金属纳米钛粉的pvdf膜的性能与优势,本发明还将实施例5中制备的薄膜与含相同质量的纯纳米钛粉水溶液(ti水溶液)进行了光蒸发水实验(结果如图11-图13所示)。同时,将含10mg金属纳米钛粉的pvdf膜在太阳光模拟器模拟的不同强度的太阳光辐射下进行了光蒸发水实验(结果如图14所示)。

图11-图13为本发明实施例5制备的pvdf薄膜与含相同质量的纯金属纳米钛粉水溶液的光蒸发水性能实验图谱。从图11和图12可以看出,在相同时间、相同太阳光辐射(1sun)下,实例5制备的含金属纳米钛粉的pvdf膜的光蒸发水量为0.57g,明显高于纯钛粉水溶液光照强度为1sun下的蒸发水量(0.52g)。通过图13可以得知,钛粉含量为10mg的pvdf薄膜的光蒸发水的速率与光蒸发水的效率分别为1.29kgm-2h-1、81.5%,远远大于纯金属纳米钛粉水溶液的光蒸发水速率(0.9kgm-2h-1)与光蒸发水效率(69.7%)。所以,从图11-图13可以得出以下结论:将金属纳米钛粉掺杂到pvdf薄膜上,对钛粉的光热转换效应有良好的增强作用。

图14是将本发明实施例5制备的含金属纳米钛粉的pvdf膜在不同太阳光辐射强度下进行的光蒸发水性能的速率效率图。从中可以看出,随着太阳光模拟器模拟的太阳光强度的增加,光蒸发水实验的速率与效率也在不断增加,当太阳光强度为4sun时,含金属纳米钛粉的pvdf膜的光蒸发水实验的速率与效率达到最高值,其光蒸发水速率与光蒸发水效率分别为5.58kgm-2h-1、87.9%,展示出了最好的光热转换效率。

综上所述,本发明提供的含金属纳米钛粉末的pvdf膜,通过利用简便的流程将金属纳米钛粉末与pvdf薄膜相结合,使得复合后的含金属纳米钛粉末的pvdf膜能够充分吸收太阳光辐射,并将光能充分转换为热能,从而节约了淡化海水所需成本与能源的消耗,提高了对环境的保护性,对海水淡化的工艺与流程进行了一定的简化。同时,本发明的含金属纳米钛粉末的pvdf膜制备工艺相较于传统工艺简便许多,降低了海水淡化工艺对仪器设备的要求,并且成本低廉、环保性能高,十分适合在光蒸发水、淡化海水领域内得到应用。

尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1