一种基于磁性颗粒掺杂温敏大变形材料及制备方法与流程

文档序号:17288469发布日期:2019-04-03 03:45阅读:246来源:国知局
一种基于磁性颗粒掺杂温敏大变形材料及制备方法与流程

本发明属于传热技术及力学技术应用领域,涉及一种基于磁性颗粒掺杂的温敏大变形热膨胀材料。



背景技术:

可控变形材料,因其形状易调、易于小型化、环境适应性强等特点,已在航天航空以及生物医学等重要领域展现出很好的应用前景。例如,美国空军多年来一直致力于将可控变形材料用于设计变形飞机及多功能微型飞行器。与此同时,科学家们也将可控变形材料用到精准药物输送以及心血管支架等方面。

囿于微观结构的限制,固体物质很难获得较高的热膨胀效率。而在生产生活中,高膨胀效率的固体或者以固体为基质的复合材料也有广泛的应用需求,例如膨胀挤压型阀门、吸水膨胀袋等方面。因此,越来越多的复合型温敏性大变形材料被研发出来,用于解决纯固体物质难以用于大变形场合的问题。

已有的温敏大变形材料产生大变形一般有两种方式,一种是将电热丝直接插入材料通电进行加热,另一种是水浴加热。然而两种加热方式均存在一些问题。

电热丝的问题是:(1)加热过程中材料受热不均匀,电热丝的材料周围局部温度很高,易发生不可逆的损伤;(2)电热丝加热为接触式加热,需要外接电路,而在狭小空间或封闭空间内外电路难以接入,以至于难以给材料进行加热。水浴加热存在的问题是:水浴加热是表面加热,材料整体的升温过程需要热从材料表面传导至整个材料,故受材料本身热传导效率的影响,加热效率难以提高。因此,亟需研发新型的温敏大变形材料,使其无论在在接触式或者非接触式加热时,都能够均匀加热同时实现大变形的功能。



技术实现要素:

针对现有的材料在使用过程中存在的上述问题,本发明是一种新型温敏大变形材料,即基于含有磁性颗粒的液滴掺杂的弹性基质温敏大变形材料。并采用新的电磁加热方式,实现了温敏大变形材料能够在非接触的条件下,无损伤而高效地升温并发生大变形的功能。

为了实现上述目的,采用了如下发明方案:

本发明采用形变范围较大的弹性固体(如硅胶,橡胶)作为基质包裹沸点较低的液体(如乙醇,丙醇)液滴以及磁性颗粒(如磁性纳米颗粒,磁性微米颗粒)形成复合材料。磁性颗粒事先混入液体中,制成磁性颗粒的液体浊液,其浓度范围为1-5000mg/ml。并在弹性基质材料固化前,将配得的液体浊液按比例加入未固化的弹性基质材料中搅拌,其中液体浊液与基质材料的体积比范围为1比3到1比6。充分搅拌可使液滴与磁性颗粒较为均匀地分布在成形的复合材料中,从而保证了材料的加热效率与加热的均匀性。通过室温静置6-48小时使弹性基质固化,或者置于烘箱中加速固化(恒温70℃下6-24小时),即可制备出本发明中的温敏大变形材料。如果需要加强材料表面的致密性,可以在固化后的材料的外表面涂抹致密物质(如导热胶)的涂层,以保证材料的致密性。

本文提出的温敏大变形材料,具有如下优势:

1.原理简单易于实现,且制备使用流程简明;

2.本材料初始状态为粘流态液体,其最终形状由模具塑形而成,因而可制成各种形状,以实现多种功能;

3.电磁加热方式可以对材料均匀加热,从而避免材料内部出现局部高温;

4.磁性颗粒在材料中均匀分布,加热效率高;

5.电磁加热方式具有非接触性,对环境的适应性强。

附图说明

图1为电磁加热仪(交变电流频率为298khz,电流值设置为250a)对温敏大变形材料(含120mg/ml磁性纳米粒子)进行加热的温度随时间变化曲线。

表1为实验测得数据汇总得到的温敏大变形材料膨胀比例数据表。

具体实施方式

工作原理:

本发明提出的基于磁性颗粒的温敏大变形材料,采用形变范围较大的弹性固体(如硅胶,橡胶)作为基质包裹沸点较低的液体(如乙醇,丙醇)以及磁性颗粒(如磁性纳米颗粒,磁性微米颗粒)形成复合材料。采用以硅胶为代表的弹性材料作为固体基质,这种材料具有很好的延展性、合适的模量和一定的致密性,能够在加热过程中内部压强增大的情况下发生可逆的体积膨胀。以磁性颗粒为代表的掺杂颗粒,具有很好的电磁性能,能够被电磁加热仪加热,同时均匀地分布在材料中,从而进一步均匀加热固体基质和基质内液体液滴,引发膨胀。以乙醇为代表的液体沸点较低的液体易于在加热过程中发生液气相变,从而使得自身体积增大进而撑大复合材料整体体积。同时由于磁性颗粒具有较好的导热性能,进一步提高了材料的传热性能,使得该材料除了可以被电磁加热外,还可以被水浴加热和电热丝加热。这种材料一般具有如下几种加热方法:

1)电磁加热:

电磁加热仪是一种非接触式的加热仪器,其利用感应线圈内的电流高频变化,在被加热的金属中形成感应涡流从而实现加热。在加热时,可以在本文提出的温敏大变形材料中的磁性颗粒中形成感应电流。由于电流的热效应,磁性颗粒在此过程中作为热源分布在复合材料中对材料整体进行加热,从而进一步使得材料内孔中的液体气化,以达到体积膨胀的目的。

若想对样品进行加热,只需启动电磁加热仪,产生交变磁场,使得磁性颗粒中产生感应电流,分布在复合材料中的磁性颗粒即可作为热源对样品进行加热。

加热过程中温敏大变形材料(以磁性纳米粒子浓度为120mg/ml样品为例)内部的温度变化曲线由附图1给出。实验表明,经过加热膨胀后的温敏大变形材料样品,在现有实验中,其体积膨胀比最高可达340%。可以显而易见地预测到,当采用更高的电磁场或更长的加热时间,可以得到更高的膨胀比。

在电磁加热过程中,相同的线圈匝数、电流和交变频率下,加热速率随磁性纳米粒子的浓度升高而升高,而样品的膨胀比例随磁性纳米粒子的浓度的变化不显著。具体参数见附表1。

附表1温敏大变形材料膨胀比例数据表

2)水浴加热:

水浴加热温敏大变形材料是指,将材料样品浸入沸水(100℃,101kpa)中,通过材料从外到内自身的导热以实现材料整体的受热膨胀。若想对样品进行水浴加热,只需将水浴锅置于热源上,即可通过水浴的方式加热样品。

3)电热丝加热:

电热丝加热温敏大变形材料是指,将电热丝插入复合材料中,并给电热丝中通入适当的电流,通过电热的方式,对材料整体进行加热。只需在电路里通上合适的电流,即可通过电热丝的方式加热样品。

本发明提出的温敏大变形材料可通过加热使其体积大幅变大。现以硅胶作为固体基质、铁磁性纳米颗粒作为掺杂颗粒,乙醇作为掺杂液滴制备而成的温敏大变形复合材料的情况为例,对本材料的制备与使用的主要过程进行说明。并以电磁加热方式为例,对本材料的加热实现大变形的方法,进行说明。

材料组成:

硅胶合成物(parta和partb)、乙醇、铁磁性纳米粒子。

材料制备:

1、配置磁性纳米粒子的乙醇浊液(以120mg/ml为例);

2、取10g的硅胶parta于离心管;

3、向离心管中加入3ml磁性纳米粒子的乙醇浊液,并使用玻璃棒搅拌均匀;

4、再向离心管中加入2ml磁性纳米粒子的乙醇浊液,并再次搅拌均匀;

5、取10g的硅胶partb于离心管,并搅拌均匀;

6、将混合液体倒入模具,并在室温下静置24小时后(或者置于70℃烘箱内10小时后)取出即可得到成品。

材料加热和冷却:

1、将制成的样品置于电磁加热仪中;

2、将电磁加热仪的电流值设为250a,频率为298khz,并开始加热,10s左右即可观察到明显的样品膨胀;

3、加热结束后,样品在环境中自然冷却,即可恢复未膨胀的状态。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1