含三环庚烷的有机化合物及其制备方法和包含该化合物的有机电致发光器件与流程

文档序号:19128923发布日期:2019-11-13 02:24阅读:313来源:国知局
含三环庚烷的有机化合物及其制备方法和包含该化合物的有机电致发光器件与流程

本发明涉及有机光电材料领域,具体涉及含三环庚烷的有机化合物及其制备方法和包含该化合物的有机电致发光器件。



背景技术:

电致发光(el)是指在一定的电场下,一些有光电性质的材料被相应的电能激发,从激发态回到基态时产生的发光现象。

近年来,有机电致发光器件(oled)作为新一代显示技术逐渐进入人们的视野。有机电致发光器件(oleds)为在两个金属电极之间通过旋涂或者真空蒸镀沉积一层有机材料制备而成的器件,一个经典的三层有机电致发光器件包含空穴传输层、发光层和电子传输层。为了提高有机电致发光器件的亮度、效率和寿命,通常在器件中使用多层结构。这些多层结构包括:空穴注入层(holeinjectionlayer),空穴传输层(holetransportlayer),电子阻挡层((electron-blockinglayer)、发光层(emittinglayer)和电子传输层(electrontransportlayer)等等。有机电致发光器件可以根据需要通过改变发光层的材料来调节发射各种需要的光,有机电致发光器件性能的好坏取决于材料的选择。这些有机层具有提高载流子(空穴和电子)在各层界面间的注入效率,平衡载流子在各层之间传输的能力,从而提高器件的亮度和效率。

众所周知芳香胺的衍生物在oled器件中作为空穴传输材料、电子传输材料及发光材料,空穴传输材料应与阳极界面具有较低的电离能,同时具备较高的空穴迁移率,从而形成无针孔的薄膜且热稳定良好。目前,虽然大量性能优良的芳香胺类衍生物材料已被陆续开发出来,但该技术仍然存在很多问题,如何设计性能更好的材料,使器件能够达到低电压、高效率和寿命长的效果,一直是本领域技术人员亟待解决的问题。



技术实现要素:

本发明的目的在于克服现有技术中存在的问题,提供含三环庚烷的有机化合物及其制备方法和包含该化合物的有机电致发光器件,该化合物具有优异的空穴传输性能,可用于制作有机电致发光器件,能够有效提高有机电致发光器件的发光效率和使用寿命。

为了达到上述目的,本发明采用如下技术方案:该有机化合物的结构式如下式ⅰ所示:

其中,b是由式ⅱ表示的基团:

其中,a、b和c均是0~1的整数,且1≤a+b+c≤3;当a、b或c为0时,a为氢;当a、b或c为1时,a是如下式ⅲ所示的取代或未取代的三庚烷基团:

l是单键、取代或未取代的碳数6-30的亚芳基、取代或未取代的碳数6-30的杂亚芳基、取代或未取代的碳数2-11的亚烷基、取代或未取代的碳数2-11的环亚烷基、取代或未取代的碳数2-11的亚烯基、取代或未取代的碳数2-11的环亚烯基、取代或未取代的碳数2-11的杂环亚烯基、取代或未取代的碳数2-11的亚炔基、取代或未取代的碳数2-11的环亚炔基、取代或未取代的碳数2-11的杂亚环炔基;

ar1和ar2各自独自选自由以下组成的组:取代或者未取代的环碳原子数为6-30的芳基、取代或者未取代的环碳原子数为5-30的杂芳基。

进一步地,l选自下述结构中的任一个:

表示与式ⅱ中l结合的部分。

进一步地,ar1与ar2两两芳基间相邻的邻位能够通过c-c键、c-s-c或c-o-c相连。

进一步地,ar1和ar2选自下述结构:

进一步地,该有机化合物包括:

本发明制备方法的技术方案是:包括以下步骤:

(1)将原料ia、原料ib和有机溶剂混合均匀,再加入脱水剂,加热至90~180℃,保温反应2~8h,反应结束后依次经过降温、过滤、洗涤和烘干,得到中间体i;其中,原料ia、原料ib、有机溶剂和脱水剂的比例为(0.05~0.15)mol:(0.05~0.15)mol:(50~100)ml:(0.04~0.05)mol;反应方程式如下:

(2)将中间体i、原料ic和叔丁醇钠溶于甲苯中,在保护气氛下,升温至100~180℃并回流2~8h;降温后加入催化剂和膦配体,再升温至100~180℃保温反应2~8h,反应结束后依次经过冷却和提纯得到如下式a所示的含三环庚烷的有机化合物;其中中间体i、原料ic和叔丁醇钠的摩尔比为(0.05~0.15):(0.05~0.15):(0.1~0.2);反应方程式如下:

进一步地,步骤(1)中的有机溶剂是二氯甲烷,脱水剂是18mol/l的浓硫酸;步骤(1)和步骤(2)中的降温均是降至20~80℃。

进一步地,步骤(2)中的催化剂为pd2(dba)3,膦配体为x-phos;每0.05~0.15mol的中间体i均对应加入0.0001mol的催化剂和膦配体。

一种有机电致发光器件,包括阳极和阴极,以及介于阳极和阴极之间的一层以上有机层,有机层中至少一层包含有如上任意一项所述的含三环庚烷的有机化合物。

进一步地,有机层包括从阳极到阴极方向依次设置的空穴注入层、空穴传输层、发光层、空穴阻挡层和电子传输层;所述的空穴传输层、空穴阻挡层、发光层和电子传输层包含所述含三环庚烷的有机化合物。

与现有技术相比,本发明具有以下有益的技术效果:

本发明在三芳基胺的基础上,引入了三环庚烷作为新的核心基团,改变了分子形态,从而提升材料成膜性;三环庚烷基团本身具有较大的空间位阻和刚性结构,同时其非共轭的分子结构不会影响三芳基胺的电子能级,保证了材料的空穴传输性能。本发明提供的有机化合物稳定性能高、成膜性能好,由该化合物制备的有机电致发光器件,表现出高效率、低驱动电压和寿命长的特点。

本发明制备方法简单,成本低廉,转化率高,中间体产率70.56%~90%,所得化合物产率44%~72.34%。

本发明所述含三环庚烷基团的化合物具有优异的空穴传输性能,可用于制作有机电致发光器件,尤其是用作有机电致发光器件中的空穴传输层材料,同时,在应用于有机发光元件时具有寿命优异的杂环基团,通过应用于有机发光元件的有机物层,能够有效提高有机发光器件的发光效率和使用寿命,降低驱动电压,驱动电压在3.5~4.1v,并且在低的驱动电压下都具有较高的效率和亮度,光度效率达到6.3~7.8cd/a,相对常用空穴传输材料npb能够提高90.24%;光亮度在686~798cd/m2,相对npb能够提高103.57%。在色度、玻璃化温度及半衰期等方面具有优异的性能,热稳定良好,其中,玻璃化转变温度在112~164℃,t50在2180~2820h。

附图说明

图1是实施例1制得的产物具体氢谱图。

图2是实施例2制得的产物具体氢谱图。

图3是实施例3制得的产物具体氢谱图。

图4是实施例4制得的产物具体氢谱图。

图5是实施例5制得的产物具体氢谱图。

图6是实施例6制得的产物具体氢谱图。

图7是实施例7制得的产物具体氢谱图。

图8是实施例8制得的产物具体氢谱图。

图9是实施例9制得的产物具体氢谱图。

具体实施方式

下面结合附图对本发明做进一步详细说明。

本发明能够提供一种应用于有机电致发光二极管(oled)的光电材料及其主要制备方法,以及在电致发光器件中的应用,使其具有热稳定良好、高效率、低驱动电压和寿命长的优点。

本发明化合物结构式如下:

其中至少一个a是如下式所示的取代或未取代的三庚烷基团:其余为氢。

本发明材料的合成方法:

(1)向三口反应瓶中依次加入(50~100)ml二氯甲烷、原料0.05~0.15molia、0.05~0.15mol原料ib,开启搅拌,10~40min后,缓慢向体系加入0.04~0.05mol浓硫酸(浓度为18mol/l),开启加热,升温至90~180℃,开始保温反应2~8h,反应结束后降至约20~80℃时,过滤,滤饼水洗,放入鼓风烘箱烘料(30~60℃,12h),得中间体i;硫酸的作用是作为脱水剂,促进脱水反应,促进反应向正向进行;反应方程式如下:

(2)氮气保护下,向三口反应瓶中依次将0.05~0.15mol中间体i、0.05~0.15mol原料ic、0.1~0.2mol叔丁醇钠溶于50~100ml甲苯中,开启搅拌,通氮气,升温至100~180℃,回流2~8h。降温至20~80℃,加入pd2(dba)3、x-phos,放热不是太明显,继续升温至100~180℃左右,保温反应2~8h,反应结束后降至室温,搅拌下倒入水中,分液,水相再用甲苯萃取,有机相合并,无水硫酸钠干燥,滤液真空蒸馏得浓缩液,将浓缩的有机相倒入石油醚中,有固体析出,过滤烘干得化合物i;反应方程式如下:

一种有机电致发光器件,包括阳极和阴极,以及介于阳极和阴极之间的一层以上有机层,有机层中至少一层包含有含三环庚烷的有机化合物。

有机物层包含空穴注入层、空穴传输层、发光层、空穴阻挡层和电子传输层,所述空穴传输层、空穴阻挡层、发光层和电子传输层包含所述含三环庚烷的有机化合物。

发光层包含上述有机化合物作为发光层的主体。

应用实施例

实施例1:化合物1及其合成方法

化合物1的结构如下:

上述化合物1的合成方法,包括如下步骤:

(1)向三口反应瓶中依次加入50ml二氯甲烷、0.05mol原料1a和0.05mol原料1b,开启搅拌,10min后,缓慢向体系加入0.05mol浓硫酸,开启加热,升温至90℃,开始保温反应2h,反应结束后降至约20℃时,过滤,滤饼用80ml水淋洗,放入鼓风烘箱烘料(30℃,12h),得中间体1,收率90%;反应方程式如下:

(2)氮气保护下,向四口反应瓶中依次将0.05mol中间体1a、0.05mol原料1c、0.10mol叔丁醇钠溶于50ml甲苯中,开启搅拌,通氮气,升温至100℃,回流8h。降温至20℃,加入0.0001molpd2(dba)3、0.0001molx-phos,放热不是太明显,继续升温至100℃左右,保温反应8h,反应结束后降至室温,搅拌下倒入60ml水中,分液,水相每次用甲苯60ml萃取,两次,合并有机相,加入6g无水硫酸钠干燥,滤液真空蒸馏得浓缩液,将浓缩的有机相倒入40ml石油醚中,有固体析出,过滤烘干得化合物1,收率72.34%;反应方程式如下;

化合物1元素含量的计算值c40h33n:c:91.04;h:6.30;n:2.65;实测值:c40h33n:c:91.00;h:6.28;n:2.62。具体氢谱图见图1。其中,原料1a、原料1b、原料1c为购买的。

实施例2:化合物2及其合成方法

化合物2的结构如下:

上述化合物2的合成方法,包括如下步骤:

(1)向三口反应瓶中依次加入80ml二氯甲烷、0.15mol原料1a和0.15mol原料1b,开启搅拌,40min后,缓慢向体系加入0.04mol浓硫酸,开启加热,升温至180℃,开始保温反应2h,反应结束后降至约20℃时,过滤,滤饼用80ml水淋洗,放入鼓风烘箱烘料(30℃,12h),得中间体1,收率85%;反应方程式如下:

(2)氮气保护下,向四口反应瓶中依次将0.11mol中间体1a、0.11mol原料1c、0.12mol叔丁醇钠溶于80ml甲苯中,开启搅拌,通氮气,升温至150℃,回流4h。降温至40℃,加入0.0001molpd2(dba)3、0.0001molx-phos,放热不是太明显,继续升温至180℃左右,保温反应4h,反应结束后降至室温,搅拌下倒入60ml水中,分液,水相每次用甲苯60ml萃取,两次,合并有机相,加入6g无水硫酸钠干燥,滤液真空蒸馏得浓缩液,将浓缩的有机相倒入40ml石油醚中,有固体析出,过滤烘干得化合物2,收率60.75%;反应方程式如下;

化合物2元素含量的计算值c34h29n:c:90.43;h:6.47;n:3.10;实测值:c34h29n:c:90.40;h:6.40;n:3.05。具体氢谱图见图2。其中,原料2a、原料2b、原料2c为购买的。

实施例3:化合物3及其合成方法

化合物3的结构如下:

上述化合物3的合成方法,包括如下步骤:

(1)向三口反应瓶中依次加入100ml二氯甲烷、0.11mol原料1a和0.14mol原料1b,开启搅拌,30min后,缓慢向体系加入0.04mol浓硫酸,开启加热,升温至160℃,开始保温反应4h,反应结束后降至约40℃时,过滤,滤饼用100ml水淋洗,放入鼓风烘箱烘料(45℃,8h),得中间体3,收率84%;反应方程式如下:

(2)氮气保护下,向四口反应瓶中依次将0.09mol中间体1a、0.10mol原料1c、0.12mol叔丁醇钠溶于100ml甲苯中,开启搅拌,通氮气,升温至140℃,回流3h。降温至50℃,加入0.0001molpd2(dba)3、0.0001molx-phos,放热不是太明显,继续升温至150℃左右,保温反应6h,反应结束后降至室温,搅拌下倒入60ml水中,分液,水相每次用甲苯80ml萃取,两次,合并有机相,加入8g无水硫酸钠干燥,滤液真空蒸馏得浓缩液,将浓缩的有机相倒入60ml石油醚中,有固体析出,过滤烘干得化合物3,收率68.53%;反应方程式如下;

化合物3元素含量的计算值c53h41n:c:92.00;h:5.97;n:2.02;实测值:c53h41n:c:91.98;h:5.92;n:2.18。具体氢谱图见图3。其中,原料3a、原料3b、原料3c为购买的。

实施例4:化合物4及其合成方法

化合物4的结构如下:

上述化合物4的合成方法,包括如下步骤:

(1)上述化合物4的合成方法,将实施例1中原料1a替换成原料4a,原料1b替换成原料4b,其余操作与实施例1相同,得到中间体4,收率70.56%。其化学反应式如下所示:

(2)上述化合物4的合成方法,将实施例1中的中间体1替换成中间体4,原料1c替换成原料4c,其余操作与实施例1相同,得到化合物4,产率45.88%。其化学反应式如下所示:

具体氢谱图见图4。

实施例5:化合物5及其合成方法

化合物5的结构如下:

上述化合物5的合成方法,包括如下步骤:

(1)上述化合物5的合成方法,将实施例1中原料1a替换成原料5a,原料1b替换成原料5b其余操作与实施例1相同,得到中间体5。其化学反应式如下所示:

(2)上述化合物5的合成方法,将实施例1中的中间体1替换成中间体5,原料1c替换成原料5c其余操作与实施例1相同,得到化合物5,产率56.88%。其化学反应式如下所示:

具体氢谱图见图5。

实施例6

上述新型主体发光材料化合物5的合成方法,将实施例1中原料1a替换成原料6a,原料1b替换成原料6b,原料1c替换成原料6c,其余操作与实施例1相同,得到化合物6,产率68.32%;具体氢谱图见图6。

实施例7

上述新型主体发光材料化合物7的合成方法,将实施例1中原料1a替换成原料7a,原料1b替换成原料7b,原料1c替换成原料7c,其余操作与实施例1相同,得到化合物7,产率58.65%;具体氢谱图见图7。

实施例8

上述新型主体发光材料化合物8的合成方法,将实施例1中原料1a替换成原料8a,原料1b替换成原料8b,原料1c替换成原料8c,其余操作与实施例1相同,得到化合物8,产率57.45%;具体氢谱图见图8。

实施例9

上述新型主体发光材料化合物9的合成方法,将实施例1中原料1a替换成原料9a,原料1b替换成原料9b,原料1c替换成原料9c,其余操作与实施例1相同,得到化合物9,产率66.55%;具体氢谱图见图9。

实施例10

上述新型主体发光材料化合物10的合成方法,将实施例1中原料1a替换成原料10a,原料1b替换成原料10b,原料1c替换成原料10c,其余操作与实施例1相同,得到化合物10,产率66.29%。

实施例11

上述新型主体发光材料化合物11的合成方法,将实施例1中原料1a替换成原料11a,原料1b替换成原料11b,原料1c替换成原料11c,其余操作与实施例1相同,得到化合物11,产率65.81%。

实施例12

上述新型主体发光材料化合物11的合成方法,将实施例1中原料1a替换成原料12a,原料1b替换成原料12b,原料1c替换成原料12c,其余操作与实施例1相同,得到化合物12,产率58.75%。

实施例13

上述新型主体发光材料化合物13的合成方法,将实施例1中原料1a替换成原料13a,原料1b替换成原料13b,原料1c替换成原料13c,其余操作与实施例1相同,得到化合物13,产率59.76%。

实施例14

上述新型主体发光材料化合物14的合成方法,将实施例1中原料1a替换成原料14a,原料1b替换成原料14b,原料1c替换成原料14c,其余操作与实施例1相同,得到化合物14,产率69.57%。

实施例15

上述新型主体发光材料化合物15的合成方法,将实施例1中原料1a替换成原料15a,原料1b替换成原料15b,原料1c替换成原料15c,其余操作与实施例1相同,得到化合物15,产率64.68%。

实施例16

上述新型主体发光材料化合物16的合成方法,将实施例1中原料1a替换成原料16a,原料1b替换成原料16b,原料1c替换成原料16c,其余操作与实施例1相同,得到化合物16,产率56.99%。

实施例17

上述新型主体发光材料化合物11的合成方法,将实施例1中原料1a替换成原料17a,原料1b替换成原料17b,原料1c替换成原料17c,其余操作与实施例1相同,得到化合物17,产率69.00%。

实施例18

上述新型主体发光材料化合物18的合成方法,将实施例1中原料1a替换成原料18a,原料1b替换成原料18b,原料1c替换成原料18c,其余操作与实施例1相同,得到化合物18,产率56.88%。

实施例19

上述新型主体发光材料化合物19的合成方法,将实施例1中原料1a替换成原料19a,原料1b替换成原料19b,原料1c替换成原料19c,其余操作与实施例1相同,得到化合物19,产率58.67%。

实施例20

上述新型主体发光材料化合物20的合成方法,将实施例1中原料1a替换成原料20a,原料1b替换成原料20b,原料1c替换成原料20c,其余操作与实施例1相同,得到化合物20,产率63.34%。

实施例21-36

上述新型主体发光材料化合物21-36的合成方法,将实施例1中原料1a替换成原料21-36a,原料1b替换成原料21-36b,原料1c替换成原料21-36c,其余操作与实施例1相同,得到化合物21-36。

化合物6-38中原料及化合物结构见下表1。

表1化合物6-38中原料及化合物结构

应用例1化合物用作空穴传输材料在有机电致发光器件的空穴传输层中的应用

有机发光器件的制造方法,包括如下步骤:

(1)先依次用蒸馏水、甲醇超声清洗具有氧化铟锡(ito)电极(第一电极,阳极)的玻璃底板,干燥;

(2)再用氧等离子体清洗5分钟,然后将清洗干净的阳极底板装载到真空沉积设备中;

(3)将空穴注入层化合物2-tnata真空沉积到ito电极上形成约50nm厚度的hil,再将本发明实施例2所得到的化合物真空蒸镀到空穴注入层上形成约20nm厚度的htl,然后将主体发光材料bpo和balq3掺杂剂以96:4的质量比共沉积到空穴传输区域上形成约30nm厚度的发光层eml;

(4)最后依次沉积约20nm厚度的空穴阻挡层dpvbi、约30nm厚度的电子传输层alq3及约5nm厚度的阴极lif和约50nm厚度的铝,由此完成有机发光器件的制造。

对比例:npb,npb为现有常用的空穴传输材料,其结构式如下所示:

应用例2-8

所述应用例1中,将作为空穴传输层的化合物npb、4、5、18、20、23、25、28替代化合物1,与应用例1相同的方法制造有机电致发光器件。

对如上制得的有机电致元件,在15ma/cm2的条件下分析了元件的性能,其结果如表2:

表2有机发光器件的电子发光特性列表

由此表2可以看出,本发明的化合物2、4、5、18、20、23、25、28作为空穴传输材料可以成功应用于有机电致发光器件的空穴传输层。驱动电压明显低于常用空穴传输材料npb,在3.5~4.1v,并且在低的驱动电压下都具有较高的效率和亮度,光度效率达到6.3~7.8cd/a,相对npb能够提高90.24%;光亮度在686~798cd/m2,相对npb能够提高103.57%。在色度、玻璃化温度及半衰期等方面具有优异的性能,热稳定良好,其中,玻璃化转变温度在112~164℃,t50在2180~2820h。

本发明所设计新型有机化合物以及包含该有机物的有机电致发光器件,提供了高耐热性、化学稳定性、电荷迁移率等优异的三环庚烷衍生化合物,及其作为有机物层的这类材料在有机电致发光器件具有优良的空穴迁移率,本发明的有机化合物稳定性能高、成膜性能好,由该化合物制备的有机电致发光器件,表现出高效率、低驱动电压和寿命长的特点。

上述实施例为本发明较佳的实施方式,但本发明的实施方式不受上述实施例的限制,其它的任何未背离本发明的实质和原理下所作为的改变、修饰、替代、组合、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1