一种隔热母粒和低导热高阻燃发泡聚丙烯珠粒的制作方法

文档序号:21275470发布日期:2020-06-26 23:13阅读:236来源:国知局
一种隔热母粒和低导热高阻燃发泡聚丙烯珠粒的制作方法
本发明属于高分子材料加工
技术领域
,具体涉及一种隔热母粒和一种低导热高阻燃发泡聚丙烯珠粒。
背景技术
:建筑保温材料通过对建筑外围护结构采取措施,减少建筑物室内热量向室外散发,从而保持建筑物室内温度。建筑保温材料对创造适宜的室内热环境和节约能源有重要作用。建筑保温材料可分为泡沫型、硅酸盐型、硅酸钙型、纤维质型。泡沫型建筑保温材料以膨胀聚苯板、聚苯乙烯挤塑板和聚氨酯等材料为代表。但是,聚氨酯泡沫材料在发泡过程中使用有害物质,且制品中有有害物质的残留,泡沫材料回收利用比较困难。聚苯乙烯泡沫材料降解困难,易形成“白色污染”,且燃烧会产生有毒气体,对人体及环境有较大的危害。相比之下,聚丙烯发泡材料因具有良好力学强度、抗冲击性能和可降解性,在建筑保温材料方面具有广阔的应用前景。但是,聚丙烯发泡材料作为建筑保温材料,除对耐热性、疏水性、隔音降噪、高韧性、强度等基本性能的要求之外,对于隔热性能和阻燃性能均具有较高的要求。中国专利文献cn109836700a公开了一种阻燃低导热发泡聚丙烯的制备方法及发泡聚丙烯,通过挤出、一次发泡、二次发泡、养生、熔融粘合等步骤获得了具有优异阻燃性、低导热性和优良力学性能的发泡聚丙烯。该专利指出:闭孔的内径较大,内存有低导热气体量更多,具有降低导热系数的性能。但该专利所获得的泡孔内径为12-25μm,孔径较小,不利于进一步降低导热系数。中国专利文献cn105111583a公开了一种无卤阻燃聚丙烯微发泡材料及其制备方法,该无卤阻燃聚丙烯微发泡材料的原料包括以下重量份的各组分:聚丙烯50-70份、相容剂1-5份、填充剂5-20份、发泡剂母粒0.5-5份、抗氧剂0.2-2份、有机硅阻燃剂2-8份、膨胀型阻燃剂15-25份。该专利通过采用有机硅阻燃剂与膨胀型阻燃剂复配协效阻燃技术,提高了膨胀型阻燃剂在聚丙烯复合材料加工过程中的热稳定性,同时二者在复合材料体系燃烧过程中起到了有效的隔绝氧气、抑烟作用,阻燃级别达到ul94-v0级。但是,该专利中阻燃剂的总添加量高达17-33%,较高的阻燃剂添加量不仅会对发泡性能造成一定的不利影响,而且会影响材料的韧性、强度、保温等性能。中国专利文献cn106750942a公开了一种杂化铝硅气凝胶改性的阻燃聚丙烯发泡板及其制备方法,该发泡材料由以下重量份的原料制得:聚丙烯65-72、马来酸酐接枝聚丙烯5-6、聚烯烃弹性体10-12.5、纳米全硫化橡胶粒子3-5、发泡剂ac1-3、抗氧剂0.1-0.2、有机磷系阻燃剂0.5-0.8、季戊四醇5-8、异丙醇铝0.3-0.5、异丙醇1-2、聚乙烯吡咯烷酮0.05-0.08、硅烷偶联剂0.1-0.2、正硅酸乙酯3-5、去离子水100-150、浓硝酸0.04-0.06、0.01mol/l的草酸水溶液10-15、无水乙醇5-8,并通过特定的制备方法获得了杂化铝硅气凝胶改性的阻燃聚丙烯发泡板。该专利通过纳米全硫化橡胶粒子对材料进行增韧,并通过杂化铝硅气凝胶的纳米多孔结构提高材料的阻燃效果。但该专利所制备的阻燃聚丙烯发泡板的极限氧指数仅为28.8,可见,杂化铝硅气凝胶的添加并未能使该专利获得更高的阻燃性能。可见,虽然现有的发泡聚丙烯珠粒技术已经在低导热和高阻燃领域中获得一定成果,但目前的技术仍然有需要改进的地方。技术实现要素:为了在不影响发泡聚丙烯成型产品力学性能的基础上,通过少量添加阻燃剂的情况下就能获得同时具有低导热系数和高阻燃效果的发泡聚丙烯珠粒,本发明公开了一种隔热母粒和一种低导热高阻燃发泡聚丙烯珠粒,通过添加无卤阻燃剂和三氧化二锑获得较好的阻燃效果,其中隔热母粒不仅使发泡聚丙烯珠粒获得了良好的隔热效果,还有利于提高体系的阻燃效果,而且通过各组分之间的复配获得了具有低导热高阻燃效果的发泡聚丙烯珠粒。为了实现上述目的,本发明采用如下技术方案:一种隔热母粒,由如下重量份的各组分组成:聚丙烯100份、硅气凝胶10-40份、石墨5-15份、加工助剂0.1-1份。进一步,隔热母粒由如下方法制备而成:按比例称取各组分,先将聚丙烯和加工助剂混合均匀,加入主喂料口;再将硅气凝胶、石墨分别负压加入两个侧喂料口;设定主、侧喂料口的入料比例,挤出造粒,得到隔热母粒。进一步,在制备隔热母粒中所述主喂料口的失重秤精度精确至1g,两个侧喂料口的失重秤精度均精确至0.01g,所述制备过程在无尘环境下进行。进一步,隔热母粒中,硅气凝胶的粒径为5-50nm,折射率为0.8-1.2;所述石墨为鳞片状石墨,粒径为3000-3500目,碳含量不低于99.9%;所述聚丙烯为丙烯-乙烯嵌段或无规共聚物、丙烯-丁烯嵌段或无规共聚物、均聚聚丙烯中的一种或几种,所述聚丙烯中丙烯含量≥90%摩尔,熔融指数为5-10g/10min;所述加工助剂为相容剂、润滑剂、抗氧化剂中的一种或几种。一种低导热高阻燃发泡聚丙烯珠粒,由如下重量份的各组分组成:聚丙烯树脂100份、炭黑0.5-2.5份、滑石粉0.2-1份、无卤阻燃剂8-12份、三氧化二锑3-5份、隔热母粒20-30份、发泡助剂超临界二氧化碳0.5-5份、助剂0.3-0.7份。进一步,上述聚丙烯树脂为丙烯-乙烯嵌段或无规共聚物、丙烯-丁烯嵌段或无规共聚物、均聚聚丙烯中的一种或几种。进一步,上述聚丙烯树脂中丙烯含量≥90%摩尔,熔融指数为5-10g/10min。。进一步,上述炭黑的粒径为18-30μm;所述滑石粉的粒径为5-15μm;所述无卤阻燃剂为有机小分子阻燃剂,所述有机小分子阻燃剂的磷含量为15-25wt%,含水率≤0.5wt%,热分解温度≥300℃。进一步,上述助剂包括稳定剂、抗氧剂、润滑剂、防静电剂中的一种或几种。进一步,一种低导热高阻燃发泡聚丙烯珠粒,其特征在于:由如下方法制备而成:(1)按比例称取各组分,将各组分混合均匀后加入挤出机,进行混炼、挤出、拉丝,再利用切粒设备切粒后形成改性聚丙烯微粒;(2)将改性聚丙烯微粒投入反应釜,然后通入发泡助剂超临界二氧化碳,加热至150-160℃、加压至2.0-4.0mpa,在高温高压下产生向外膨胀的内部压力,并在瞬间释放至大气压,从而得到发泡倍率为45-60倍的发泡聚丙烯珠粒。本发明的一种隔热母粒,所添加的硅气凝胶是一种高效的隔热材料,其导热系数可抵达0.013-0.016w/(m·k),对红外和可见光的湮灭系数之比达100以上,能有效地透过太阳光,并阻止环境温度的红外热辐射,有效提升最终发泡聚丙烯成型产品的隔热性能。此外,硅气凝胶具有低声速特性,是一种高效的声学延迟材料,硅气凝胶的加入也可进一步改善发泡聚丙烯成型产品的隔音降噪特性。隔热母粒中所添加的硅气凝胶均匀分散在聚丙烯基体内,在用超临界二氧化碳发泡过程中,硅气凝胶中的空气被置换为二氧化碳,且冷却后二氧化碳不易逸出。在燃烧过程中,由于硅气凝胶中二氧化碳的存在,可稀释着火点周围的氧气含量,进一步提高阻燃效率。因此,隔热母粒中硅气凝胶的添加不仅具有优异的隔热性能,还可以有效减少阻燃剂的用量,避免阻燃剂的大量添加而对聚丙烯的发泡效果以及产品性能造成不利影响。隔热母粒中所添加的石墨选择鳞片状石墨,鳞片状石墨在受热后可迅速膨胀形成轻质碳层,且放出的毒气(如:so2、no等)较少,可有效的对基材进行防火保护。此外,鳞片状石墨是由许多单层的石墨结合而成,对热源具有一定的辐射作用,可协助硅气凝胶,有效提升发泡聚丙烯成型产品的隔热性能。由于硅气凝胶、石墨两个组分的密度较低,无法与聚丙烯等原料搅拌均匀,因此采用主动喂料的方式进行螺杆混炼,以制备隔热母粒,主喂料口和两个侧喂料口失重秤精度的设定有利于使硅气凝胶和石墨更加均匀地分散在隔热母粒中,无尘环境可以有效防止杂质混入隔热母粒中。本发明的一种低导热高阻燃发泡聚丙烯珠粒,所添加的炭黑粒径范围选择在18-30μm,首先,较窄的粒径分布更利于炭黑色粉在体系中的分散,当制备灰色或黑色的发泡聚丙烯(epp)珠粒产品时,可以尽量降低色粉的添加量,以提高材料整体的阻燃性能;其次,微米级的炭黑色粉在利于分散的同时,其球状微观结构在基体内部具有较大的比表面积,可以起到辐射热量的作用,提升材料的隔热性能;再次,炭黑色粉的粒径在微米级,分散在聚丙烯基体内有利于充当成核剂,在发泡过程中起到异相成核的作用,稳定泡孔尺寸的均一性,使得泡孔尺寸稳定在150-300微米之间,确保隔热与力学性能的最优化。滑石粉的粒径范围选择在5-15μm,首先,滑石粉的白度较高,一般在92%以上,可以掩盖隔热母粒中硅气凝胶的透明特性,确保灰色珠粒的颜色;其次,滑石粉的主要成分为二氧化硅,且微观结构为片状,可有效协助硅气凝胶,提升产品的隔热性能;再次,微米级的滑石粉也可作为高效成核剂,发泡过程中与炭黑共同完成聚丙烯的异相成核,稳定泡孔尺寸在150-300微米之间,确保隔热与力学性能的最优化。无卤阻燃剂选择含磷的有机小分子阻燃剂,含磷小分子阻燃剂在受热过程中生成聚偏磷酸,而聚偏磷酸是不易挥发的稳定化合物,附着在聚合物表面与空气隔绝,且具有强脱水性,可有效提高聚丙烯基材的阻燃性能。阻燃剂的含水率≤0.5wt%、热分解温度≥300℃,避免因螺杆内高温混炼后而出现降解或阻燃性能失效等异常。三氧化二锑作为一种协同阻燃剂,熔点为655℃,在燃烧火焰较旺后,熔融在发泡聚丙烯表面形成保护膜隔绝空气,通过内部吸热反应,降低燃烧温度,同时高温状态下三氧化二锑被气化,稀释了空气中氧浓度,从而起到很好的协同阻燃作用,进一步提升阻燃效率。本发明具有如下的有益效果:(1)本发明的隔热母粒,是由硅气凝胶、石墨和聚丙烯等挤出造粒获得,添加在低导热高阻燃发泡聚丙烯珠粒中,其中的硅气凝胶不仅具有隔热和隔音降噪的作用,在超临界二氧化碳釜压发泡过程中,二氧化碳还可以置换硅气凝胶中空气,使二氧化碳留在硅气凝胶中,从而在燃烧过程中释放出二氧化碳,稀释着火点周围的氧含量,提高阻燃效率,其中的石墨选自鳞片状石墨,受热后可迅速膨胀形成轻质碳层,对基材进行有效的防火保护,此外,鳞片状石墨是由许多单层的石墨结合而成,对热源具有一定的辐射作用,可协助硅气凝胶,有效提升发泡聚丙烯的隔热性能。(2)本发明的低导热高阻燃发泡聚丙烯珠粒,由于炭黑、滑石粉的加入,有效提升发泡聚丙烯的结晶性,提高体系内分子链的规整度,调整泡孔壁厚在4-5μm,泡孔尺寸在150-300μm。较厚的泡孔壁厚保证了在加热阻燃剂等以后,发泡聚丙烯的拉伸强度和断裂伸长率没有明显下降;较大的泡孔尺寸,意味着发泡聚丙烯的导热系数更低,隔热效果更好。(3)本发明的低导热高助燃发泡聚丙烯珠粒,通过添加隔热母粒和无卤阻燃剂及三氧化二锑,在获得优良的隔热和阻燃效果的同时,所添加的不仅使发泡聚丙烯珠粒获得了良好的隔热效果,还有利于提高体系的阻燃效果,阻燃剂用量减少;通过炭黑、滑石粉的加入,有效调控发泡聚丙烯珠粒的泡孔壁厚和泡孔尺寸。通过各组分的合理复配,最终获得的低导热高阻燃发泡聚丙烯珠粒阻燃氧指数达到32%以上,导热系数低至0.025w/(m·k)以下,其拉伸强度和断裂伸长率与通用型发泡聚丙烯材料的相比,没有明显下降,完全满足建筑保温材料的力学性能要求。附图说明下面结合附图和实施例对本发明进一步说明。图1是本发明实施例2所制备发泡聚丙烯珠粒的双熔融峰曲线;图2是本发明实施例2所制备发泡聚丙烯珠粒的剖面sem微观图。具体实施方式现在结合实施例对本发明作进一步详细的说明。隔热母粒的制备方法:按比例称取各组分,先将聚丙烯和加工助剂通过高速混合机混合均匀,加入主喂料口;再将硅气凝胶、石墨分别负压加入两个侧喂料口;设定主、侧喂料口的入料比例,挤出造粒,得到隔热母粒。其中,主喂料口的失重秤精度精确至1g,两个侧喂料口的失重秤精度均精确至0.01g,制备过程在无尘环境下进行。隔热母粒1-3中各组分的重量份详见表1。表1低导热高阻燃发泡聚丙烯珠粒,由如下方法制备而成:(1)按比例称取各组分,将各组分高速混合均匀后加入挤出机,进行混炼、挤出、拉丝,再利用切粒设备切粒后形成改性聚丙烯微粒;(2)将改性聚丙烯微粒投入反应釜,然后通入发泡助剂超临界二氧化碳,加热至150-160℃、加压至2.0-4.0mpa,在高温高压下产生向外膨胀的内部压力,并在瞬间释放至大气压,从而得到发泡倍率为45-60倍的发泡聚丙烯珠粒。实施例1-4及对比例1-13各组分及其重量份详见表2。表2实施例5与实施例1基本相同,不同之处在于,实施例7中还添加了0.3份稳定剂硬脂酸钙。实施例6与实施例1基本相同,不同之处在于,实施例5中还添加了0.2份稳定剂硬脂酸镁和0.3份抗氧剂1076。实施例7与实施例1基本相同,不同之处在于,实施例6中还添加了0.4份润滑剂pp蜡和0.3份酰胺类防静电剂(ldea)。将所制备的低导热、高阻燃发泡聚丙烯珠粒制备成模塑成型的板材,进行各项性能测试,其中:(1)氧指数测试:将模塑成型的板材(46cm×35cm×6cm)裁切为10mm×10mm×150mm的标准样条。将标准样条竖直地固定在氧指数仪的玻璃燃烧筒中,其底座与可产生氮氧混合气流的装置相连,点燃试样的顶端,混合气流中的氧浓度将会持续下降,直至火焰熄灭。(2)导热系数测试:将模塑成型的板材(46cm×35cm×6cm)裁切为300mm×300mm×10mm的标准尺寸。将裁切后的板材置于热板装置上进行测试材料的稳态传热性质,即导热系数。实施例1-7和对比例1-13所制备发泡聚丙烯珠粒的各项性能测试结果见表3。表3比较实施例1与对比例1或实施例2与对比例8可知,当配方中不添加隔热母粒,其余组分及用量不变时,导热系数上浮较大,即材料的隔热性能变差,而氧指数下降,即材料的阻燃性能也变差。以黑色低导热高阻燃发泡聚丙烯珠粒(实施例1和对比例1)为例,其导热系数从0.025w·(m·k)-1上升至0.039w·(m·k)-1,隔热性能下降56%,氧指数从32%下降到30%,阻燃性能下降6.3%。这是因为,5-50nm粒径的硅气凝胶加入到聚丙烯基材中,对红外和可见光的湮灭系数较高,能有效地透过太阳光,并阻止环境温度的红外热辐射,有效提升发泡聚丙烯珠粒成型产品的隔热性能;另外,石墨的片状结构有利于热源的辐射,阻止热量进一步通过发泡聚丙烯珠粒成型产品,故隔热母粒对整个发泡聚丙烯体系的隔热性能影响较大。另一方面,隔热母粒中的硅气凝胶可协同超临界二氧化碳釜式发泡工艺,将硅气凝胶中的空气置换为二氧化碳,且冷却后二氧化碳不易逸出。在燃烧过程中,由于气凝胶中二氧化碳的存在,可稀释着火点周围的氧气含量,进一步提高阻燃效率。所以,隔热母粒的加入有助于协同发泡工艺,改善材料的阻燃性能。但是,由于隔热母粒中硅气凝胶的纳米尺寸结构,螺杆挤出过程中易发生团聚,在发泡过程中作为异相成核点,引起发泡泡孔变小,可能导致发泡聚丙烯珠粒产品的成型压力偏高。不过由成型测试数据可以看出,硅气凝胶的加入,成型压力从3.2bar增加到3.4bar,影响并不大。比较实施例1和对比例2或实施例2和对比例9可知,配方中的无卤阻燃剂对整体材料的阻燃性能影响较大。以灰色低导热高阻燃发泡聚丙烯珠粒(实施例2和对比例9)为例,当配方中的无卤阻燃剂添加量为零时,氧指数测试结果由32%降至23%,阻燃性能下降明显。该含磷无卤阻燃剂,在燃烧受热过程中生成的聚偏磷酸,附着在发泡聚丙烯表面,使其表面与空气隔绝,有效提高聚丙烯基材的阻燃性能。但是,该配方所采用的无卤阻燃剂为小分子有机阻燃剂,在成型受热过程中,易迁移至发泡聚丙烯珠粒表面,影响珠粒间的熔接性能。故可以看出,无卤阻燃剂的加入,其成型压力由3.0bar增加至3.4bar,对成型压力有略微影响。同时,小分子有机阻燃剂的存在会对发泡聚丙烯珠粒的闭孔率有一定影响。小分子有机物越多,闭孔率越低。故发泡聚丙烯珠粒的导热系数出现略微上升,由对比例9的0.023w·(m·k)-1升至实施例2的0.024w·(m·k)-1,但均能满足发泡聚丙烯珠粒的性能要求。比较实施例1和对比例3或实施例2和对比例10可知,配方中不添加三氧化二锑协同阻燃剂,氧指数由32%降至29%。三氧化二锑的熔点为655℃以上,在燃烧初期阻燃作用并不明显。但在火焰燃烧较旺后,可协同无卤阻燃剂,熔融在燃烧表面,形成一种覆盖物,与聚偏磷酸一起协同隔绝空气,且该覆盖物可进一步气化,分散燃烧热量,起到阻燃作用。所以三氧化二锑在整个阻燃体系内部虽不是主导作用,但在火焰较旺时,可起到很好的协同阻燃作用。由于三氧化二锑的添加量不高,主要起协同阻燃作用,故其对发泡聚丙烯珠粒的隔热、成型等参数影响不大。比较实施例1和对比例4可知,炭黑含量从1.5份增加至3份,其余各组分及用量不变,氧指数从32%下降至31%,可以说明在一定范围内,炭黑含量对于阻燃性能的影响虽没有阻燃剂之间的协同效应那么大,但也有一定的影响。原因在于所选择的炭黑粉末粒径在18-30微米之间,是一种有效的助燃剂。但导热系数从0.025w·(m·k)-1上升到0.028w·(m·k)-1,说明炭黑用量多,发泡聚丙烯珠粒的隔热性能有所下降。这是因为,随着炭黑用量增大,异相成核能力提高,泡孔尺寸有可能变小而导致发泡聚丙烯珠粒的导热系数上升,隔热性能有所下降。比较实施例1和对比例5、对比例11可知,当隔热母粒中不添加硅气凝胶时,导热系数有较大幅度上升,分别由0.025w·(m·k)-1上升到0.041w·(m·k)-1说明隔热性能变差;阻燃性能也明显变差,氧指数分别由32%下降到28%。结果充分说明前述的硅气凝胶在发泡聚丙烯珠粒中的隔热作用和与超临界二氧化碳发泡工艺产生的协同阻燃作用。比较实施例1和对比例6、对比例12可知,当隔热母粒中鳞片状石墨改为球状石墨时,发泡聚丙烯珠粒的导热系数由0.025w·(m·k)-1上升到0.029w·(m·k)-1,说明鳞片状石墨有助于提高隔热性能。这是因为,鳞片状石墨在受热以后可迅速膨胀形成较轻碳层,且放出的毒气(如:so2、no等)较少,可有效对聚丙烯基材进行防火保护。此外,鳞片状石墨是由许多单层石墨结合而成,对热源有一定的辐射作用,可协助硅气凝胶提升发泡聚丙烯珠粒的隔热性能。比较实施例1和对比例7、对比例13可知,当将隔热母粒替换为硅气凝胶时,无论是隔热性能还是阻燃效果,均不能达到建筑保温材料的性能指标。这是因为,虽然硅气凝胶本身是一种高效隔热材料,但单独加热聚丙烯时,与聚丙烯材料的相容性差,硅气凝胶无法达到与基材的成分混合,硅气凝胶优异的隔热效果不仅无法体现出来,而且还有可能作为异相成核点,导致发泡泡孔变小,与有机磷阻燃剂、三氧化锑阻燃剂的协同效应也无法体现,反而导致成型压力偏高。综上所述,无卤阻燃剂、三氧化二锑、隔热母粒,协同超临界二氧化碳釜压发泡工艺,显著提升了发泡聚丙烯珠粒的阻燃性能。隔热母粒中硅气凝胶的存在,可协同泡孔尺寸的可控调节,改善发泡聚丙烯珠粒的隔热性能。配方中所有组分互相协同、互相补充,使得发泡聚丙烯珠粒的阻燃、隔热性能达到最佳。将本发明的低导热高阻燃发泡聚丙烯珠粒通过成型加工制成发泡聚丙烯成型产品,在隔热和阻燃性能方面,完全符合建筑保温材料的指标要求,而对发泡聚丙烯成型产品的力学性能方面,也同时兼有要求。进一步分别考察本发明的发泡聚丙烯珠粒和通用型发泡聚丙烯珠粒制成的成型产品的力学性能,本发明的实施例1和对比例14的各组分重量份和力学性能见表4。表4实施例1对比例14丙烯-乙烯嵌段共聚物5050丙烯-丁烯嵌段共聚物5050炭黑1.5--滑石粉0.8-无卤阻燃剂(dmmp)10-三氧化二锑4-隔热母粒320-硬脂酸钙0.30.3pp蜡0.40.4超临界二氧化碳2.52.5拉伸强度/kpa182186断裂伸长率/%3335拉伸强度和断裂伸长率的测试按照标准iso-1798。从测试结果看,实施例1和对比例14的拉伸强度和断裂伸长率基本没有差别,说明本发明的发泡聚丙烯成型产品,在保证低导热高阻燃性能基础上,力学性能基本没有下降。这是因为,本发明虽然加入一定量的阻燃剂,但是,由于加入本发明的隔热母粒,在确保隔热性能基础上,还有一定的增韧增强作用,所以,发泡聚丙烯珠粒的力学性能并没有因为阻燃剂的加入而有所降低。实施例2所得到的低导热高阻燃发泡聚丙烯珠粒的dsc熔融曲线均出现双熔融峰结构,其中高温熔融峰出现是因为在发泡过程的气体浸渍期间,树脂颗粒中有未熔的晶体进一步重排、完善而形成了熔融温度高于聚丙烯原始熔点的晶体结构;低温熔融峰的出现是气体浸渍期间树脂中已融化的晶体在释压后的冷却过程中重结晶的缘故。故在发泡过程中若控制高温峰热焓在16-20j·g-1范围内,一方面可保证成型时的蒸汽压力稳定在3.4bar左右,可以保证发泡聚丙烯珠粒具有较好的熔接性能;另一方面可以保证发泡聚丙烯珠粒内部泡孔的闭孔率可高达80%以上(见附图2),避免出现穿孔、破孔的珠粒。发泡聚丙烯珠粒的高闭孔率不仅可以提高成型制件的尺寸稳定性,还可以协助硅气凝胶,锁住更多的二氧化碳在珠粒内部,帮助改善成型制件的阻燃性能,附图2中发泡聚丙烯珠粒的sem截面图就可以说明本发明低导热高阻燃发泡聚丙烯珠粒的高闭孔率,且泡孔相互独立。以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1